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Abstract

In the present paper we investigate the resonant interaction between monochromatic electromagnetic waves

and charged particles in configurations with magnetic field reversals (e.g. in the earth magnetotail). The

smallness of certain physical parameters allows us to solve this problem using perturbation theory reducing the

problem of resonant wave-particle interaction to the analysis of slow passages of a particle through a resonance.

We discuss in details two of the most important resonant phenomena: capture into resonance and scattering

on resonance. We show that these processes result in destruction of the adiabatic invariants, chaotization of

particles, may lead to significant (almost free) acceleration of particles and govern transport in the phase space.

We calculate the characteristic times of mixing due to resonant effects and separatrix crossings and discuss the

relative importance of these phenomena.
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1 Introduction.

In recent years, reduced-order models became a thriving topic of investigation since they allow to observe

developing and interaction of coherent structures of different types in both numerical simulations and analytical

studies. In most cases even reduced-order dynamical systems contain too many degrees of freedom to allow

for analytical solution. Therefore, to obtain an analytical description one must either simplify a model even

further risking to lose physical relevance or implement methods from the theory of dynamical systems to obtain

approximate solution. One of such approaches is to reduce the coupling between different parts of the system

to resonant interactions.

Resonant phenomena occur in a variety of different systems: energy exchange between coupled oscillators,

(Gendelman et al., 2001; Vakakis and Gendelman, 2001; Popov at al, 2001), mixing in fluids (Neishtadt et

al., 1998; Ward and Homsy, 2001), celestial mechanics and astrophysics (Fux, 2001), billiards (Itin et al, 2001),

Josephson junctions (Vasiliev et al., 1997) to name a few recent papers. In the present paper we apply the theory

of resonant processes in Hamiltonian systems with slow and fast motions in the form, developed in (Neishtadt,

1999) (see also (Neishtadt, 1997) for references on preceding works) to the analysis of the dynamics of charged

particles in nonhomogeneous electromagnetic fields in the magnetotail of the earth.

Magnetospheric tail comes as a product of interaction between the solar wind and the magnetic field of the

earth. Solar wind compresses the magnetic field lines on the day side and extends them on the night side of the

earth for a few hundred earth radii. Such a structure is a vast reservoir of energy initially stored in magnetic field

configuration. This explains tremendous practical interest in understanding the physical processes governing its

storage/release cycle, controlling auroral emissions, radio communications and radiation hazards. At the same

time the magnetotail is very interesting as a large laboratory for exploration of hot collisionless plasma whose

quite a complex behavior can be at least partially deduced from simple mathematical models (Büchner and

Zelenyi, 1989; Ashour-Abdalla et al., 1995; Lui, 2001). Magnetic field there is rather weak and trajectories of

ions could not be described by the guiding center approximation. The equations of particles’ motion are non-

integrable even for the simplest magnetotail geometry and the phase space is partitioned to regions with regular,

weakly and strongly chaotic dynamics ((Chen and Palmadesso, 1986); see also (Chen, 1992) for a review). Many

features of the ion distributions predicted by these models have been observed in the experimental data (Chen

et al., 1990; Ashour-Abdalla et al., 1996), where it was shown that processes in the far region of the magnetotail

have a crucial impact on the structure of distribution function of the ions when they approach the earth.
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One of the open problems in this field is the persistence of solutions under various perturbations of the

electromagnetic field. Numerical simulations and experimental data show that parts of the initial structure

of distribution functions from the far region of the magnetotail survive even when particles come closer to the

Earth, while certain features are washed out by the perturbations (see, e.g. (Ashour-Abdalla et al., 1991; Ashour-

Abdalla et al., 1996)), thus further spurring the interest in chaotization and mixing processes in magnetotail.

Natural source of perturbations in the magnetotail are the electromagnetic waves (Cattell et al., 1995; Ma and

Summers, 1998). The problem of particle’s motion in the field of electromagnetic or electrostatic waves is one

of the classical problems of plasma physics (Sagdeev, 1983) and was well explored in the case of homogeneous

external magnetic field (Karney, et al., 1989; Zaslavskii et al., 1989; Neishtadt et al., 1989; Chernikov et al.,

1992; Itin et al., 2000).

In the present paper we study the interaction between particles and a single low-frequency planar monochro-

matic, electromagnetic or electrostatic, wave in a strongly nonhomogeneous background magnetic field of the

magnetotail. The smallness of certain physical parameters allows us to introduce the hierarchical scaling of

the slow and fast motions and reduces the problem of wave-particle interaction to the analysis of slow passages

of a particle through a nonlinear resonance. Far from the resonances dynamics of particles can be accurately

described using the averaging technique. The integrals of motion of the averaged system, obtained in the pro-

cess of averaging, are adiabatic invariants of the exact system (see e.g. (Arnold et al., 1988)). The scattering

on resonance and the capture into resonance lead to destruction of adiabatic invariancy thus controlling the

enhanced particles’ chaotization and mixing in the phase space.

In our analysis of resonance phenomena we relayed heavily on the theory developed in (Neishtadt, 1997;

Neishtadt, 1999). Our aim was neither to generalize nor to improve this theory, but to expand the applicability

domain of it (in particular, to illustrate that it can be used when preliminary averaging is required) and to use

it to solve a concrete problem of dynamics of charged particles in the earth magnetotail. In the latter part, our

main objectives are twofold. First, we want to describe the impact of electromagnetic waves on the particles’

dynamics, in particular, to estimate the rate of particle’s acceleration. Our second goal is to define the range of

parameters of the waves for which the resonance phenomena (and not the separatrix crossings) play the leading

role in the stochastization of particles and mixing in the phase space. To achieve this we estimate the rates of

mixing due to both processes. As the particles spend only a finite time in the magnetotail, the relation between

the characteristic times of mixing and the lifetime of particles in magnetotail determines the extend of mixing

due to the respective phenomenon and we compare the characteristic times to describe the relative importance

3



of the two phenomena.

The structure of the paper is as follows. In Sections 2 to 5 we discuss the dynamics of charged particles in

the field of one electromagnetic wave. In Sect. 2 we introduce the basic equations and approximations for the

case of electromagnetic wave. In Sect. 3 we discuss the averaging technique and the motion of particles far from

a resonance including jumps of an adiabatic invariant on a separatrix. In Sect. 4 we consider the structure of a

resonance in the phase space and discuss the breakdown of the method of averaging. Section 5 contains a detailed

description of the general properties of the particles’ dynamics in the vicinity of a resonance. Scattering on

resonance and the capture into resonance are discussed in Subsect. 5.1 and Subsect. 5.2, respectively. We show

that both capture and scattering destroy adiabatic invariancy and we obtain expressions for jumps of adiabatic

invariants during a single passage. As the magnitude of the jumps is very sensitive to initial conditions, in

the case of multiple passages through resonance these phenomena can be treated as random processes and we

derive their statistical properties. In Sect. 6 we discuss the same processes for the case of an electrostatic wave

stressing the differences between the influences of the two types of waves. In Sect. 7 we investigate the long-term

dynamics of particles, discuss the relative importance of two different chaotization mechanisms and introduce

a parameter that characterizes a measure of mixing in the phase space. Section 8 contains the conclusions.

2 The model of far magnetotail and main equations.

The earth magnetotail is a product of interaction between the supersonic stream of solar corona particles (solar

wind) and the magnetic field of the earth. Solar wind compresses the magnetic field lines on the day side

and extends them on the night side of the earth for a few hundreds earth radii. Charged particles from the

solar wind enter the magnetotail in the far region and then accelerate and drift towards the earth. In the

equatorial plane of the magnetospheric tail there is the current sheet, which supports antiparallel magnetic

fields in northern/southern lobes of the tail (Fig. 1a). The region between the earth at the left and the so-called

X-line at the right of Fig. 1a, is called “field reversal region.” Magnetic field there is rather weak and trajectories

of ions could not be described by well known guiding center approximation.

One of the simplest approximations of the magnetic field, B, which is adequate to incorporate main physical

effects is the so-called parabolic model (see e.g. Chen, 1992) (Fig. 1b):

B = B0
z

L
ex + Bnez.

Here ei are the unit vectors of a Cartesian coordinate system in which the x-axis is directed towards the earth,
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Figure 1: Configuration of the earth magnetotail. (a) General view (not to scale), the shaded area in the center
is the current sheet. (b) Field lines of the magnetic field in the parabolic model: at every point magnetic field
is tangential to the field line and the field strength is proportional to the density of the field lines. RE is the
radius of the earth.

the y-axis is in the equatorial plane and is directed from dusk to dawn (perpendicular to the plane of view in

Fig. 1a) and the z-axis is perpendicular to the equatorial plane and is directed from south to north (see Fig. 1a);

L is the characteristic transverse length scale. Bn and B0 are constants.

The impact of variations of Bn as a function of x on the dynamics of particles was studied in (Zelenyi et al.,

1990; Karimabadi et al., 1990; Vainshtein et al., 1995). It was shown that variations of Bn together with the

presence of constant electric field (in magnetotail this electric field is induced by the solar wind, E = Ecey) lead

to the acceleration of particles, thus limiting the time particles spend in the magnetotail (see Sect. 7). Otherwise,

the dynamics is quite similar with and without the constant electric field. If Bn = const, we can exclude Ec

from the Hamiltonian of a charged particle by switching to a moving coordinate frame x′ = x − tcEc/Bn (de

Hoffman-Teller substitution, (de Hoffman and Teller, 1950)). Therefore, in what follows we do not take Ec into

account, assuming that the de Hoffman-Teller substitution was made.

What was ignored in the previous studies is the influence of time-dependent perturbations of electromagnetic

fields. One of the most natural ways to consider these perturbations is to include low-frequency electromagnetic

or electrostatic waves. In the present paper, we discuss the influence of either one monochromatic electromag-

netic wave with the vector of the electric field directed along the y-axis or one electrostatic wave with the wave

vector residing in the equatorial plane. The impact of two types of waves on the particle’s dynamics turns out

to be quite similar. We start with one electromagnetic wave and return to an electrostatic wave in Section 6.

The vector potential of a charged particle in the field of an electromagnetic wave is

A =
(

0; Bnx − B0
z2

2L
− cE

ω
sin(kx − ωt); 0

)
,

where k and ω are the wave vector and the frequency of the wave, respectively, t is the time, and c is the speed
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of light. This vector potential corresponds to the following configuration of electromagnetic field:

B = rot A =
(

B0
z

L
+

cEkz

ω
cos(kx − ωt)

)
ex +

(
Bn − cEkx

ω
cos(kx − ωt)

)
ez,

E = −1
c

∂A
∂t

= −E cos(kx − ωt)ey.

The Hamiltonian of a charged particle has the form

H =
1

2m

(
P − e

c
A

)2

=
1

2m

{
P 2

x +
[
Py − e

c

(
Bnx − B0

z2

2L
− cE

ω
sin(kx − ωt)

)]2

+ P 2
z

}
,

where P = (Px, Py, Pz), m and e are the generalized momentum, the mass and the charge of a particle,

respectively. We introduce a set of non-dimensional variables and parameters

x1 = x/
√

ρL, h1 = H/mv2, k = k
√

ρL, κ =
Bn

B0

√
L/ρ,

P1 = P/mv, t1 = t
v√
ρL

, ω = ω

√
ρL

v
, ε = cE/vBn,

(1)

where v is a typical velocity of a particle and ρ = cmv/(eB0) is a characteristic Larmor radius in asymptotic

field B0. We restrict our consideration to the case when the wave vector resides in the equatorial plane:

k = (kx, ky, 0). To be definite, we assume kx, ky ≥ 0 and let ω be of any sign to account for the waves that

move in either direction along the x-axis (or the y-axis). The other cases (kx < 0 or ky < 0) can be considered

in the same manner.

The dimensionless Hamiltonian of a charged particle is

h1 =
1
2

{
P 2

x1
+ P 2

z1
+

[
Py1 − κ

(
x1 − ε

ω
sin(kxx1 + kyy1 − ωt1)

)
+

1
2
z2
1

]2
}

.

Apply change of variables with a generating function

S = Pϕ
1
k

(kxx1 + kyy1 − ωt1) + Px2x1 + Pz2z1, k = |k|,

that corresponds to the introduction of a phase of the wave, ϕ:

ϕ =
1
k

(kxx1 + kyy1 − ωt1) , x2 = x1, z2 = z1,

Pϕ =
k

ky
Py1 , Px2 = Px1 −

kx

k
Pϕ, Pz2 = Pz1 .

The new Hamiltonian is

h2 = h1 − Pϕ
ω

k
(2)
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and in the new variables takes the form (we do not write the subscripts 1 and 2)

h =
1
2

[(
Px +

kx

k
Pϕ

)2

− 2
ω

k
Pϕ + P 2

z +
(

ky

k
Pϕ − κx +

1
2
z2 + κ

ε

ω
sin(kϕ)

)2
]

. (3)

The new “energy”, h (that differs from the usual energy by a quantity
ω

k
Pϕ), is an integral of motion.

Now we must make some approximations. Parameter κ can be written as κ =
√

ρc/ρ, where is ρc is minimal

curvature radius of a magnetic field line (which is achieved at z = 0). If κ � 1, particles are magnetized and

their motion can be described by the guiding center theory (see e.g (Chen, 1992)). In the magnetotail electrons

are always magnetized, except for the very close vicinity of the X-line. The value of κ for ions depends on the

distance from the earth and can be anywhere between 0.05 in the far magnetotail and 3 close to the earth. We

are interested in the case κ � 1, which is realized for ions beyond 20RE , where RE is the radius of the earth.

In this case the typical size of the system in the x-direction (∼ L/κ) is much larger than the typical size of the

system in the z-direction (∼ L) and also

ωx � ωz,

where ωz and ωx are the typical frequencies of motion in z- and x- directions, respectively.

For a variety of electromagnetic waves present in the magnetotail the wavelength (∼ 1/k) is much smaller

than the typical size of the system in the x-direction and much larger than the typical size of the system in the

z-direction and the frequency residing between ωz and ωx. Taking normalizing conditions (1) into account and

assuming that v ∼ vA ∼ vTi, where vA is the Alfven velocity and vTi is the thermal velocity of ions, we arrive

at the following inequalities:

κ � ω � 1, κ � k
√

ρ/L � 1.

The above inequalities allow us to introduce a hierarchy of motions and to solve the problem using the pertur-

bation theory.

3 The averaged system.

Hamiltonian (3) possesses three degrees of freedom. Under the above assumptions on the values of the param-

eters of the problem, we can introduce the hierarchy of time scales. The fastest motion is z-motion, the second

fastest is the time scale associated with the wave and the slowest is x-motion. In the present section we apply

two successive averagings (the first over z-motion and the second over the period of the wave) to describe the

long-term dynamics of charged particles.
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Figure 2: Characteristic phase portrait of z-motion for (a) ζ > 0 and (b) ζ < 0.

The properties of z-motion, governed by the Hamiltonian

hz =
1
2

[
P 2

z +
(

ζ − z2

2

)2
]

,

where ζ = −(ky/k)Pϕ + κx − κ(ε/ω) sin(kϕ), were considered in (Zelenyi et al., 1990).

When studying the z-motion, we fix the values of x, Px, ϕ and Pϕ. Characteristic phase portraits of z-motion

are schematically shown in Fig. 2a for ζ > 0 and in Fig. 2b for ζ < 0. The separatrix Sz in Fig. 2a is specified

by hz = ζ2/2. The action variable,

Iz =
1
2π

∮
Pz dz,

is equal to the normalized by 2π area inside a phase curve on the (z, Pz) plane. Upon averaging equation of

motion over z-motion (cf. (Büchner and Zelenyi, 1989)) we get

h =
1
2

(
Px +

kx

k
Pϕ

)2

− ω

k
Pϕ + hz (ζ, Iz) , (4)

where

δ = ε/ω

and hz(·) is the Hamiltonian of z-motion, expressed in terms of slow variables and Iz, that is an adiabatic

invariant of exact system (3) (see (Büchner and Zelenyi, 1989) for the explicit form of hz . The effects arising

from the dependence of hz on Iz were studied before (see (Büchner and Zelenyi, 1989; Vainshtein et al., 1995)).

It was shown that hz satisfies a scaling law: hz(ζ, Iz) = I
−4/3
z hz(ζI

−2/3
z , 1), and in what follows we omit Iz from

the arguments of hz. Figure 3 presents the profiles of hz(ζ) and its derivative with respect to the first argument,

h′
z(ζ), for Iz = 1 (cf. (Büchner, 1986)). In Fig. 3, h′

z(ζ) has a discontinuous derivative at ζs = (3π/8)2/3 and

ζm ≈ 0.59 ζs is the zero of hz(ζ).
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Figure 3: Profiles of the functions hz(ζ) and h′
z(ζ) for Iz = 1.

To consider a wave as a perturbation, we must assume that the amplitude of the wave is small:

κδ � 1.

Using (1), this condition can be rewritten in dimensional form as

eE/mvω � 1.

Note, that ω is dimensional frequency of the wave (see (1)). The physical meaning of the above inequality is

that the maximum momentum that a particle could gain in one period of the wave is much smaller then the

initial momentum. If the above condition is satisfied, the term κδ sin(kϕ) in the argument of hz is small and

hz can be approximated by the first two terms of the series expansion:

h =
1
2

(
Px +

kx

k
Pϕ

)2

− ω

k
Pϕ + hz

(
−ky

k
Pϕ + κx

)
− κδh′

z sin(kϕ)

(5)

= hav (κx, Px, Pϕ) − κδh′
z sin(kϕ).

In (5), hav is the average value of h over ϕ.

Hamiltonian (5) possesses two degrees of freedom, of which the variable ϕ is fast and the variables x, Px, Pϕ

are slow. Therefore, in the next approximation we can average the motion over fast ϕ-oscillations. This

approximation is valid everywhere except for a small part of the phase space where ϕ̇ ≈ 0. This (second overall)

averaging of (5) over ϕ corresponds to omitting the term κδh′
z sin(kϕ) and reduces the Hamiltonian h to hav:

h = hav =
1
2

(
Px +

kx

k
Pϕ

)2

− ω

k
Pϕ + hz

(
−ky

k
Pϕ + κx

)
. (6)

As a result, Pϕ becomes an integral of motion and the problem reduces to the one already solved (cf. (Büchner

and Zelenyi, 1989; Zelenyi et al., 1990)): the averaging is equivalent to neglecting the wave. Therefore, it follows
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Figure 4: The phase portrait of the system with the Hamiltonian hav on the (X, Y ) plane (see (7)). On the
whole phase plane Pϕ = Pϕ,0. The horizontal and vertical solid lines are the intersections of Pϕ = Pϕ,0 plane
and the resonant surface for ky = 0 and kx = 0, respectively.

from (2), that in the double-averaged system the energy of particles does not change. The quantity Pϕ is the

adiabatic invariant of the exact system: in the absent of resonances it would be conserved with the accuracy of

order κδ over times of order 1/κδ (see (Bogolyubov and Mitropolsky, 1961)).

Figure 4 presents the phase portrait of the system with the Hamiltonian hav on the (X, Y ) plane, defined

by Pϕ = Pϕ,0 = const, Iz = Iz,0 = const. The new variables, X and Y , are given by

X = −ky

k
Pϕ + κx, Y = Px +

kx

k
Pϕ. (7)

Note, that ζ = X − κ(ε/ω) sin(kϕ), in other words, up to the small (and disappearing upon the averaging)

term X is equivalent to ζ. The qualitative structure of the phase portrait is the same for all values of Pϕ and

Iz . For example, there is always only one, elliptic, fixed point. The horizontal and vertical thick lines are the

intersections of the phase plane and resonant surfaces for ky = 0 and kx = 0, respectively (see Sect. 4 below).

The vertical line denoted as UC is discussed in the following subsection.

3.1 Separatrix crossings

The vertical thick dashed line is the uncertainty curve, UC (see (Wisdom, 1985)). This line corresponds to

the separatrix of the z-motion: when a phase curve of averaged system (6) intersects UC, a phase curve of the

z-motion resides on the separatrix of the z-motion, Sz , (see (Vainshtein et al., 1995) for the detailed description).

To the right of UC, particles move inside of two separatrix loops in Fig. 2a; while to the left of UC, particles

encircle the origin in Fig. 2a or Fig. 2b depending on the sign of ζ. It is the presence of UC that leads to
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discontinuity of h′′
z . A special phase curve Γj , defined by

2
(
hΓj +

ω

k
Pϕ

)
= ((8/3π)Iz)

4/3 ,

is tangent to UC. It divides the phase plane into two regions: trajectories residing within Γj do not cross UC,

and those residing outside Γj cross UC.

The value of Iz is conserved only far from UC and undergoes a jump every time a phase curve crosses

UC. The asymptotic formulas for the jump of adiabatic invariant on a separatrix were obtained by Timofeev

(Timofeev, 1978) for particular case of a pendulum in a slowly varying gravity field, by Neishtadt (Neishtadt,

1986) and Cary and co-workers (Cary et al., 1986) for systems with one degree of freedom plus slowly varying

parameter and by Neishtadt (Neishtadt, 1987) for systems with two degrees of freedom, one corresponding to

the fast motion and the other corresponding to the slow motion. This theory was first applied to magnetospheric

problems in (Büchner and Zelenyi, 1989). Modifying the corresponding equation from (Büchner and Zelenyi,

1989) to accommodate for the presence of the wave, we have for the leading order approximation the magnitude

of the jump

∆Iz = ∓ 4
π

κ

(
Px +

kx

k
Pϕ

)
ln (2 sinπΘs) . (8)

In (8), ∆Iz is the difference between the value of Iz outside of Sz and twice the value of Iz inside Sz; the minus

and plus signs correspond to the crossing of UC from left to right and from right to left in Fig. 3, respectively.

The phase Θs ∈ (0, 1) characterizes a separatrix crossing and it depends not only on x, Px, ϕ and Pϕ, but on

z and Pz as well. The error term in (8) is of order κ3/2 log κ, provided that Θs is at the distance of order 1

from both 0 and 1. The value of Θs is very sensitive to small perturbations of the initial conditions and it is

shown in (Neishtadt, 1987), that in the limit κ → 0 it can be treated as a random value uniformly distributed

on (0, 1) interval. In this case ∆Iz can be also treated as a random value with a zero mean and dispersion of

order ∼ κ2. Accumulation of the jumps may lead to chaotization of particles’ motion. Because of these jumps,

Iz was referred to as a quasi-adiabatic invariant in (Büchner and Zelenyi, 1989; Vainshtein et al., 1995).

In the present paper we assume that the intersections of a given trajectory with UC and the areas where

ϕ̇ ≈ 0 do not overlap. In this case the influence of separatrix crossings and resonance crossings (see below,

Sect. 5) on the dynamics of particles can be studied separately.

Far from the domains where ϕ̇ ≈ 0 the presence of the term −κδh′
z sin(kϕ) leads to small oscillations of an

exact trajectory around the corresponding averaged one. These oscillations give rise to two phenomena:

• The domain of separatrix crossings is augmented by a strip of the width of order κδ � 1 as if an averaged
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trajectory comes within κδ from the UC, the corresponding exact trajectory may cross UC.

• The exact expression for the magnitude of the jumps of the adiabatic invariant of z-motion, Iz , changes

although the statistics of the diffusion of Iz remains the same.

4 Structure of the resonance and breakdown of the method of av-
eraging.

In the present section and in Sect. 5 we apply the general theory of resonance crossings in Hamiltonian systems

with slow and fast motions (Neishtadt, 1999) to the problem under consideration. Our aim is to expand the

applicability domain of this theory (in particular, to illustrate that it can be used when preliminary averaging is

required) and to use it to solve a concrete problem of dynamics of charged particles in the earth magnetotail. It

is worth noting that despite double averaging, it is possible to obtain all the estimates explicitly. In particular,

although hz is an implicit function of both κx and Pϕ (see (Büchner and Zelenyi, 1989)) the explicit expressions

for the parameters controlling the resonance crossings (see Eqns. (13) - (16) below) can be obtained.

The equation ϕ̇ = 0 defines a 2-D surface, in the 3-D (κx, Px, Pϕ) phase space, that we call the resonant

surface, or the resonance, and denote by R. At the resonance the projection of the averaged velocity of a particle

on the direction of the wave vector is equal to the phase speed of the wave. This phenomena is similar to the

classical Cherenkov-type resonance ω = (k, v̂) but v̂ here stands not for the instant, but the averaged (over fast

z-oscillations) velocity of a particle.

In the vicinity of a resonance the variable ϕ is not fast compared with x. Hence, we can not expect averaged

system (6) to approximate the exact system adequately. As a result, the value of the integral of the averaged

system, Pϕ, may change in the process of a passing through the vicinity of the resonance. The change in Pϕ

leads to the corresponding change in the energy of a particle (see (2)).

The resonance R is given by

ϕ̇ =
∂hav

∂Pϕ
=

(
Px +

kx

k
Pϕ

)
kx

k
− ω

k
− ky

k
h′

z = 0. (9)

The structure of resonances, and dynamics of particles in general, are simpler for particular cases ky = 0 or

kx = 0.

1. ky = 0.

The equation defining the resonant surface has the form

−ω

k
+ (Pϕ + Px) = 0.
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In this case R is a plane that is parallel to the κx-axis.

2. kx = 0.

The equation defining the resonant surface has the form

−ω

k
− h′

z(−Pϕ + κx) = 0. (10)

It follows from the profile of h′
z in Fig. 3, that Eqn. (10) either has no solutions, or defines one or two planes,

that are parallel to the Px-axis.

The horizontal and vertical thick lines in Fig. 4 are the intersections of the resonant surface and the plane

Pϕ = Pϕ,0 for ky = 0 and kx = 0, respectively. For every resonance curve there is a special phase trajectory,

Γr, that is tangent to R (the one shown in Fig. 4 corresponds to kx = 0) and it divides the phase space into

two parts: trajectories residing within Γr do not cross the resonance, and those residing outside Γr cross the

resonance.

A characteristic trajectory of exact system looks as follows. A particle approaches the resonant zone with the

value of Pϕ oscillating with a small amplitude, ∼ (κδ), near some value P−
ϕ . When in the process of the motion

it arrives to the resonant zone is either captured into the resonance, or crosses the resonant zone without being

captured. (Actually, there is also some intermediate regime of motion in the resonant zone, but it occurs for a

very small measure of initial conditions; we will not discuss it.) Phenomenologically, the difference between the

two regimes of motion in the resonant zone can be described as follows. In the case of capture, upon the arrival

to the resonant zone the phase, kϕ, switches its behavior from rotation (ϕ changes monotonically, a trajectory

encircle the phase cylinder) to oscillation (ϕ changes between two values, ϕ̇ changes the sign twice during each

period). In the case of crossing the resonant zone without capture, ϕ̇ changes the sign only once in the resonant

zone. The two phenomena have qualitatively different impact on the particle’s dynamics. After the passage

through the resonant zone (and far from the resonance) the value of Pϕ oscillates near some other value, P+
ϕ ,

again with a small amplitude ∼ (κδ).

In the rest of the present section we provide a qualitative description of these phenomena and return to a

qualitative description in the next section.

In the case of capture into resonance, upon the arrival to the resonant zone a phase point drifts for a long

time (of order ∼ 1/(κδ)) along the resonant surface. As a result, Pϕ changes by a value of order 1. Among all

the particles that arrive to the resonant zone during a given time interval of order ∼ 1/(κδ) only a small part,

of order ∼ √
κδ, is captured. Initial conditions for particles that are or are not captured are mixed. Therefore,
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it is reasonable to consider capture as probabilistic phenomenon. For a particular particle the probability to be

captured is small, of order ∼ √
κδ.

The particles that cross the resonant zone without being captured typically pass through this zone in time

of order ∼ 1/
√

κδ (see (Neishtadt, 1997; Neishtadt, 1999) for more accurate estimates). The major resonant

phenomenon for such particles is the scattering on resonance. In this case the difference, ∆Pϕ = P+
ϕ −P−

ϕ , that

is typically of order ∼ √
κδ, is referred to as the amplitude of the scattering or, as Pϕ is the adiabatic invariant

of the averaged system, as a jump of the adiabatic invariant. This value is very sensitive to small changes of

the initial conditions: a change of the initial conditions far from a resonance by a quantity of order ∼ κδ leads

to a big (of order ∼ 1 compared with the typical values) change in the amplitude of the scattering. Hence, the

scattering can be considered as a random process.

As the passages through the vicinity of a resonance lead to the destruction of adiabatic invariancy of Pϕ,

the dynamics of particles becomes chaotic. There is a crucial difference between these resonant phenomena and

certain other routes to chaos, like separatrix splitting. Although the total size of the resonant zone is small

with the magnitude of the perturbation and it is localized in a small domain in the phase space, the effect is

large and global: the chaotic domain is of the order 1 (of the order of the total phase volume of the system)

regardless of the magnitude of perturbation.

5 The description of motion in the vicinity of the resonance.

In the present section we consider the resonance processes for particles in the field of one electromagnetic wave.

A vicinity of the resonant surface, where |ϕ̇| < const
√

κδ, is called a resonant zone. Let us derive equations of

motion in this zone. Expanding Hamiltonian (5) as a power series over Pϕ − Pϕ,res, where Pϕ,res is the value

of Pϕ on the resonance, and keeping the first three terms we get:

h ≈ hres(κx, Px) +
1
2

∂2hav

∂P 2
ϕ

∣∣∣∣
res

(Pϕ − Pϕ,res)
2 − κδh′

z sin(kϕ),

(11)

hres(κx, Px) = hav(κx, Px, Pϕ,res).

In (11), we must express Pϕ,res = Pϕ,res(κx, Px) from (9). The neglected terms in (11) are of order O(κδ)3/2.

Recall that, by definition of a resonance (see (10)), ∂hav/∂Pϕ is zero on R. Apply a change of variables with a

generating function

S =
(
P̄ϕ + Pϕ,res(κx, P̄x)

)
ϕ + xP̄x,
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that can be explicitly written as

x̄ =
∂S

∂P̄x
= x +

∂Pϕ,res

∂P̄x
ϕ, ϕ̄ = ϕ,

Px =
∂S

∂x
= P̄x + κ

∂Pϕ,res

∂κx
ϕ, Pϕ = P̄ϕ + Pϕ,res.

(12)

Although the value of ϕ changes while a particle moves in the resonant zone, the total change of this value is

small compared with 1/κ. As ϕ is defined up to an additive constant, one can choose this constant to make κϕ

small and, therefore, to make substitution (12) close to identity in the vicinity of R. Expanding the first term

in Hamiltonian (11) over κϕ � 1 and substituting hres from (5) into (11) we arrive at

h = hx + κhϕ, (13)

where

hx =
1
2

(
P̄x +

kx

k
Pϕ,res

)2

− ω

k
Pϕ,res + hz

(
−ky

k
Pϕ,res + κx̄

)
, (14)

hϕ =
k2

k2
x + k2

yh′′
z

[
kx

k
h′

z +
ky

k

(
Px +

kx

k
Pϕ,res

)
h′′

z

]
ϕ

(15)

+
1
2

1
κ

k2
x + k2

yh′′
z

k2
P̄ 2

ϕ − δh′
z sin(kϕ).

In (14) and (15) we must substitute Pϕ,res = Pϕ,res(κx̄, P̄x). Equations (13) - (15) are valid away from the

singularity of h′′
z (see Sect. 2). The explicit form of Eqn. (15) is quite remarkable, as hz, obtained by the

averaging the exact Hamiltonian over z-motion, is an implicit function of both κx and Px (see (Büchner and

Zelenyi, 1989)). Denote

b =
k2

k2
x + k2

yh′′
z

[
kx

k
h′

z +
ky

k

(
P̄x +

kx

k
Pϕ,res

)
h′′

z

]
,

(16)

g =
k2

x + k2
yh′′

z

k2
.

In terms of b and g, hϕ takes the form

κhϕ = κbϕ +
1
2
gP̄ 2

ϕ − κδh′
z sin(kϕ). (17)

Note, that (nearly) all the discussion of the previous and current sections is quite general and is a direct reworking

of (Neishtadt, 1999). Particular properties of the problem at hand come to play are in deriving Eqns.(15) -
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(17) and will become important later, when we discuss statistical properties of capture and scattering and the

effects of multiple passages through resonance.

In certain particular cases the equations of motion can be simplified:

1. ky = 0.

.
x̄ = ω/k

˙̄Px = −κh′
z

κhϕ = κ (ϕ − δ sin(kϕ)) h′
z +

1
2
P̄ 2

ϕ

2. kx = 0.

˙̄x = P̄x

˙̄P x = κω/k

κhϕ = κP̄xϕ + κ
ω

k
δ sin(kϕ) +

1
2
h′′

z P̄ 2
ϕ

In the last line we substituted h′
z = ω/k from (10).

Equations (13) - (17) describe the motion of a particle inside the resonant zone. Now let us discuss scattering

on resonance and capture into resonance for the problems under consideration in more details.

5.1 Scattering on resonance.

The value of Pϕ changes in the process of motion near and inside the resonant zone. The cumulative change in

Pϕ during a single passage can be considered as a jump associated with a resonance crossing. In the present

paper we calculate this jump using the approach from (Neishtadt, 1999) (in different cases such jump was

calculated in (Chirikov, 1959, Kevorkian, 1974)).

In the resonant zone, where |ϕ̇| < const
√

κδ, the variables θ = kϕ and P̄ϕ/
√

κδ change with velocity of

order k
√

κδ while the variables κx̄ and P̄x change with velocity of order κ (we assume that δk is of order 1).

Therefore, in (13) the variables kϕ, P̄ϕ/
√

κδ are fast and the variables κx̄, P̄x are slow. For frozen values of slow

variables, dynamics of fast variables is governed by 1D Hamiltonian system with the Hamiltonian h = hϕ (see

(17)):

ϕ̇ = gP̄ϕ,
d

dt
P̄ϕ = −κ

∂hϕ

∂ϕ
= −κb + κkh′

zδ cos(kϕ). (18)

Systems of such form, similar to a pendulum with torque, always appear in analysis of resonance crossings

(Arnold et al., 1988). A phase portrait of the Hamiltonian hϕ in the (ϕ, P̄ϕ) plane can be of one of two types:
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Figure 5: The schematic phase portrait on the (ϕ, P̄ϕ) plane: (a) |kδh′
z| ≥ |b|, (b) |kδh′

z| < |b|. The resonance
surface corresponds to P̄ϕ = 0.

with or without the oscillatory domain, that are shown qualitatively in Figs. 5a and 5b, respectively. Both

phase portraits are plotted for b > 0 and g > 0. For b < 0 and g < 0 we have the opposite direction of motion

(in other words, particles move from P̄ϕ < 0 to P̄ϕ > 0), while for b > 0 and g < 0 or b < 0 and g > 0 particles

come from and leave to the right (in other words, the portrait is mirrored with respect to a vertical axis). In

both cases the resonance corresponds to the horizontal axis, P̄ϕ = 0.

Consider a trajectory of Hamiltonian system (5), that crosses the resonant surface at some time moment t∗.

Denote by κx∗, Px,∗, ϕ∗ values of the corresponding variables at t∗ and let θ∗ = kϕ∗. Suppose θ∗ mod 2π is at

the distance of order 1 from the root of cos θ = b/(δkh′
z), that corresponds to unstable equilibrium of system

(18) with κx̄ = κx∗, P̄x = Px,∗ if such an equilibrium exists. Along this trajectory a phase point passes through

the resonant zone fast enough, in time of order 1/
√

κδ. While the phase point moves inside the resonant zone

changes of the slow variables are small, of order
√

κδ. Therefore, for approximate description of dynamics inside

the resonant zone one can use equations (18) with κx̄ = κx∗, P̄x = Px,∗.

Let t1 and t2 be two time moments, t1 < t∗ < t2 such that |t1,2 − t∗| ∼ 1/κ and t∗ is the only moment of

crossing of resonance on time interval (t1, t2). Then the jump of Pϕ on the resonance is

∆Pϕ = −
∫ t2

t1

∂h

∂ϕ
dt, (19)

where h is given by (5) and values κx, Px, ϕ, Pϕ in the argument of ∂h/∂ϕ are taken along the exact trajectory;

so the integrand is a well defined function of time. In the main approximation, in the argument of ∂h/∂ϕ

one can substitute κx = κx∗, Px = Px,∗ and replace the values of ϕ and Pϕ with the values calculated along

a trajectory of (18) with κx̄ = κx∗, P̄x = Px,∗ that crosses the resonance at the moment t∗ having ϕ = ϕ∗.

The integration interval in (19) can be divided into three parts. In the immediate vicinity of the resonance,
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where |t − t∗| < const 1/
√

κδ, the above approximation works (with an accuracy O(κδ)) because dynamics in

the resonant zone is described in the main approximation by (18). Relatively far from the resonance, where

|t − t∗| ∼ 1/κ, the approximation works because the integral over this part is small, of order O(κδ) for both

original and modified integral. And in the intermediate part, where const 1/
√

κδ < |t − t∗| < const 1/κ, the

approximation works due to a combination of two previous reasons: the larger is |t − t∗| on some part of the

integration interval in (19) the worse is approximation of the integrand but the smaller is the value of integral

over this part itself. One can show that total accuracy of this approximation is O(κδ) (see (Neishtadt, 1999)).

Replacing in the modified integral the limits t2,1 with ±∞ does not change accuracy. Thus, with such accuracy

we get

∆Pϕ = −
∫ ∞

−∞

∂h

∂ϕ
dt = 2κkδh′

z

∫ ϕ∗

−s∞

1
ϕ̇

cos(kϕ) dϕ,

where the integrand is calculated on the trajectory of (18) as it was discussed above and s = sign(bg). Substi-

tuting ϕ̇ = gP̄ϕ (see (18)) into the above equation we get

∆Pϕ = 2κkδh′
z

∫ ϕ∗

−s∞

1
g

cos(kϕ)
P̄ϕ

dϕ.

Expressing P̄ϕ in terms of hϕ and ϕ from (17) we obtain

∆Pϕ = 2sδk

√
κ

k

h′
z√|bg|

∫ θ∗

−s∞

cos θ dθ√
2

∣∣∣∣hϕk

b
+ δ

h′
zk

b
sin θ − θ

∣∣∣∣
,

Substituting hϕ in terms of θ∗ we finally arrive at asymptotic expression:

∆Pϕ = 2sδk

√
κ

k

h′
z√|bg|

∫ θ∗

−s∞

cos θ dθ√
2

∣∣∣∣2πξ + δ
h′

zk

b
sin θ − θ

∣∣∣∣
, (20)

where the quantity ξ, that characterizes a scattering, is given by

2πξ = θ∗ − δ
h′

zk

b
sin θ∗.

The quantity ξ mod 1, is a function of the initial data. A small change of order κ in the initial conditions produces

in general a large change of order 1 in ξ. Hence for small κ it is the best to treat ξ as a random variable. This

approach was suggested in (Lifshitz, et al, 1962) for problems with separatrix crossings. Following (Arnol’d,

1963), see also (Neishtadt, 1999; Itin, 2000), let us determine the distribution of this random variable. Consider

a point M far from the resonance such that trajectory passing through M intersects the resonance. Let Vd be

a sphere of radius d centered at M . Assume that each point of this sphere is an initial point of a trajectory.
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Denote by V
(a,b)
d,κ the part of the sphere Vd for whose points the quantity ξ lies in the interval (a, b) ∈ (0, 1).

Define the probability for ξ to fall into the interval (a, b) as

P{ξ ∈ (0, 1)} = lim
d→0

lim
κ→0

vol V
(a,b)
d,κ

vol Vd

where the symbol vol represents the standard volume in R
4. It can be shown that P{ξ ∈ (0, 1)} = (b − a)

(see (Neishtadt, 1999)). Therefore, ξ can be treated as a random variable uniformly distributed on (0, 1). This

property was checked numerically in (Itin, 2000)).

Statistical properties of the scatterings depend on the shape of the phase portrait in the (ϕ, P̄ϕ) plane. The

relation between the values of b and kδh′
z specify which of two types is realized. If

|kδh′
z| ≥ |b|, (21)

the phase portrait looks like the one shown in Fig. 5a and, in a generic case, scatterings on resonance cause Pϕ

diffuse and drift. The rate of drift is determined by the ensemble average of ∆Pϕ:

〈∆Pϕ〉 =
∫ 1

0

∆Pϕ(ξ)dξ

It was shown in (Neishtadt, 1999) that

〈∆Pϕ〉 = − 1
2π

sign(b)kSR, (22)

where SR is the area under the separatrix loop in Fig. 5a:

SR = 2
1
k

√
κ

k

∫ θmax

θmin

(
2
b

g

(
2πξc +

δh′
zk

b
sin θ − θ

))1/2

dθ. (23)

The integral in (23) is taken over the interval where the radicand expression is positive. The quantity ξc is given

by

2πξc = −δh′
zk

b
sin θc + θc,

where θc is the value of θ at the hyperbolic fixed point in Fig. 5a. One can see that θc = θmin for bg < 0 and

θc = θmax for bg > 0. Order of magnitude estimates yield

〈∆Pϕ〉 ∼
√

κδ.

Similarly, rate of diffusion depends on the mean square value of ∆Pϕ:

D =
∫ 1

0

(∆Pϕ(ξ) − 〈∆Pϕ〉)2 d ξ ∼ κδ.
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The long-term rate of drift depends on the quantity 〈∆Pϕ〉Σ, that is equal to the sum of all the 〈∆Pϕ〉 during

one period of x-motion. It is clear that two successive crossings of a connected subset of R by a trajectory of x-

motion occur in the opposite directions. Hence, the corresponding values of b have the opposite signs. Therefore,

it follows from (22) that, if 〈∆Pϕ〉 
= 0, the corresponding values of 〈∆Pϕ〉 have the opposite signs.

If (21) does not hold, the phase portrait looks like the one shown in Fig. 5b. In this case, the mean change

of Pϕ is zero: as there is no separatrix, SR = 0. The evolution of Pϕ is purely diffusive.

Turn to the particular cases considered above.

1. ky = 0.

In this case

b = h′
z, g = 1,

and condition (21) is reduced to

kδ ≥ 1.

If the above inequality holds we have

〈∆Pϕ〉 = − 1
2π

(sign(h′
z))kSR,

(24)

SR = 2
1
k

√
κ

k

√
|h′

z|
∫ θmax

θmin

(
2

∣∣∣∣2πξc + kδ sin θ − θ

∣∣∣∣)1/2

dθ.

Therefore, 〈∆Pϕ〉 > 0 if h′
z < 0 and 〈∆Pϕ〉 < 0 if h′

z > 0. As two consecutive scatterings occur at the same

value of Px > 0 (recall, that in this particular case the projection of R on the (κx, Px) plane is a straight line

parallel to the κx-axis), it follows from Fig. 3 and Fig. 4, that for the particles with large energy the average

change of Pϕ on one turn of x-motion is positive: 〈∆Pϕ〉Σ > 0. Consequently, the energy of particle increases.

2. kx = 0.

In this case

b = Px, g = h′′
z .

Note, that in this case the phase portrait of x-motion (Fig. 4) is symmetric with respect to the abscissas

axis. Hence, the values of 〈∆Pϕ〉 at two intersections of a trajectory of x-motion with R compensate each other,

〈∆Pϕ〉Σ = 0, and the statistics of the changes of Pϕ is diffusive, regardless of the validity of (21).
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5.2 Capture into resonance.

The other phenomenon that affects the dynamics of a particle at a resonance crossing is capture into resonance.

Due to nonuniformity of the magnetic field, the captured dynamics is quite rich comparing with the previous

publications (see e.g. Itin et al., 2000)). While the conditions of capture and release and the conservation laws

that govern the captured motion remain the same, properties of the input-output function (the value of Pϕ after

release, Pϕ,fin, as a function of initial value of Pϕ, Pϕ,in, other phase variables and parameters of the wave)

are more complex. In (Itin et al., 2000), Pϕ,fin was either (approximately) equal to Pϕ,in if the resonant curve

was an ellipse, or went to infinity if the resonant curve was a parabola or a hyperbola. In our case, the value of

Pϕ,fin depends strongly, among other parameters, on the direction of the wave vector, k, with the possibilities

of Pϕ,fin returning to Pϕ,in, going to the infinity or anything in between.

Capture is possible only if the phase portrait in the (ϕ, P̄ϕ) plane looks like the one shown in Fig. 5a, in

other words, if (21) is satisfied and the phase space (ϕ, P̄ϕ) has a well-defined separatrix. In this case, the

expectation of the change of Pϕ (the probability of a phenomenon times the size of a change of Pϕ) is the same

for scattering and capture.

Capture into resonance can be described as follows. The area under the separatrix loop, SR, in the (ϕ, P̄ϕ)

plane changes as a particle moves along a phase trajectory. Suppose the area under the separatrix loop increases

when the particle approaches the resonance. Then if the particle comes very close to the hyperbolic fixed point

it may cross the separatrix and, as a result, be caught in the oscillatory domain within the separatrix loop. In

this case, the particle starts moving on the resonant surface and it’s motion is governed by the conservation law

Pϕ = Pϕ,res(κx, Px),

or, in other words, by the Hamiltonian hx (see (14)). The area under a phase trajectory in the (ϕ, P̄ϕ) plane

remains constant. As a result, the captured motion is integrable. While the particle moves, the area under the

separatrix loop, that is a function of slow variables, changes and, if it returns to the initial value, the particle

is released from the resonance. If the area under the separatrix loop keeps increasing, the captured particle

accelerates along y-axis until it exits the system.

As it was discussed in Sect. 4, capture can be considered as a probabilistic phenomenon: initial conditions

for particles that are or are not captured are mixed. Consider a point M far from the resonance such that the

trajectory passing through M intersects the resonance. Let Vd be a sphere of radius d centered at M and V c
d,κ

be the part of Vd formed by initial conditions of trajectories with a capture into the resonance (see (Itin, 2000)).
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We define the probability of capture at M as

P (M) =
√

κδ lim
d→0

lim
κ→0

vol V
(a,b)
δ,κ /

√
κδ

vol Vδ
.

Following (Neishtadt, 1999), we have (see (23)):

P (M) = k
{SR, hres}∗

2π |b|∗
∼

√
κδ, if {SR, hres}∗ > 0,

where hres was defined in (11), {, } denotes Poisson bracket and the subscript ‘∗’ indicates that the corresponding

quantity must be evaluated at the resonance. For {SR, hres}∗ < 0, P (M) = 0.

Turn to two particular cases discussed above.

1. ky = 0.

In this case, the capture is possible if (ω/k)h′
z(κx)h′′

z (κx) > 0, which is the condition for ṠR > 0. For a

wave propagating in the direction opposite to x-axis (from the earth), when ω/k < 0, this condition is satisfied

on two intervals: κx < ζm and κx > ζs (see Fig. 3). Particles which were captured on the interval κx < ζm

accelerate up to the boundary of our 2D system in y-direction. Particles which are captured on the interval

κx > ζs are transported by the wave into the region ζm < κx < ζs where they are released from the resonance.

For a wave propagating along x-direction (towards the Earth in the magnetotail) (ω/k > 0), the capture is

possible on the interval ζm < κx < ζs. The wave transports captured particles into the region κx > ζs where

the particles are released from the resonance.

Consider the case ω/k < 0 in more detail. A typical dynamics of a particle is shown in Fig. 6. In Fig. 6a,

a particle moves from the rightmost point along the averaged trajectory and is captured into the resonance

(h′
z is increasing, hence the area under the separatrix loop is increasing: see (24) and Fig. 3). The captured

particle is transported to the region where h′
z is decreasing and the particle is released from the resonance and

starts moving along another trajectory of the averaged system. The next capture is shown in Fig. 6b. In this

case, however, the area under the separatrix loop increases unboundedly (within the limits of the validity of

our model) and the particle is transported to the edge of the system. Figure 6c presents the phase portrait

on the (ϕ, Pϕ) plane for the last part of the trajectory. Pϕ is nearly constant when a particle moves far from

the resonance, undergoes a jump when the trajectory is scattered crossing R and goes towards −∞ during

the captured motion. It follows from (2), that the sum of the energy of a particle and (−ω/k)Pϕ is constant.

Therefore, if Pϕ is decreasing towards −∞ (see Fig. 6c), energy increases up to Hmax = ELy, where Ly is the

transverse dimension of the system, when a captured particle leaves the physical boundaries of the system.
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Figure 6: The projection of a long-time trajectory of a particle on the (X, Y ) plane (see (7)) in the case ky = 0,
electromagnetic wave. (a) The capture into resonance and the subsequent release from resonance, (b) the next
capture and the subsequent transport to the infinity, (c) the projection of motion on the (ϕ, Pϕ) plane.
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Figure 7: The projection of a long-time trajectory of a particle on the (X, Y ) plane in the case kx = 0 for
electromagnetic wave.

2. kx = 0.

The section of R by a plane Pϕ = const is either empty or has the form of one or two straight lines that are

parallel to the Px-axis. It follows from the symmetry of the phase portrait of x-motion with respect to the axis

of abscissas that a capture into the resonance and the consequent release from the resonance occur at the same

value of Px. The capture happens in the upper half-plane if ω/k < 0 and in the lower half-plane if ω/k > 0.

Figure 7 presents the projection of the phase curve onto the (X, Y ) plane. It illustrates that the capture into

the resonance is a probabilistic process: the capture occurs only once in three consecutive crossings of R. The

other two crossings result in the scattering on the resonance.

Finally, Fig. 8 presents the projection of one phase curve onto the (X, Y ) plane in the general case ky 
= 0,

kx 
= 0. The particle is captured into the resonance and is transported to the edge of the system.
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Figure 8: The dynamics of a particle in a generic case of the electromagnetic wave (ky 
= 0, kx 
= 0): the capture
into resonance and the transport to the infinity.

6 Dynamics of particles in the presence of an electrostatic wave.

Now let us derive an analogue of Hamiltonian (5) for an electrostatic wave. Recall that a wave is called

electrostatic if the vector of the electric field is parallel to the wave vector. In this case, there is no perturbation

of the magnetic field. Such a wave can be described by a scalar potential

Φ =
E

k
sin(kx− ωt).

The induced electric field is given by E = grad Φ and the Hamiltonian takes the form

H =
1

2m

{
P 2

x +
[
Py − e

c

(
Bnx − B0

z2

2L

)]2

+ P 2
z

}
+ eΦ. (25)

Applying normalizing conditions (1), introducing the phase ϕ and averaging over z-motion we arrive at

h =
1
2

(
Px +

kx

k
Pϕ

)2

− ω

k
Pϕ + hz

(
−ky

k
Pϕ + κx

)
+ κ

ε

k
sin(kϕ).

(26)

= hav (κx, Px, Pϕ) + κ
ε

k
sin(kϕ).

One can see that (5) and (26) are very similar. In particular, the function hav is the same for both

Hamiltonians. Hamiltonian (26) differs from Hamiltonian (5) by the substitution of κ
ε

k
sin(kϕ) instead of

−κ
ε

ω
h′

z sin(kϕ). Therefore, hav does not change and the equation for the resonant surface and the expression

for hx, (Eq.(14)), are the same for electrostatic wave as for electromagnetic wave. The equation for hϕ takes

the form

κhϕ = κbϕ +
1
2
gP̄ 2

ϕ + κ
ε

k
sin(kϕ), (27)
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where b and g are given by (16).

6.1 Scattering on resonance.

The expression analogous to (20) for an electrostatic wave is

∆Pϕ = −2εs

√
κ

k

1√|bg|

∫ θ∗

−s∞

cos θdθ√
2

∣∣∣2πξ − ε

b
sin θ − θ

∣∣∣ , (28)

where ξ is given by

2πξ =
ε

b
sin θ∗ + θ∗.

The error term in (28) is of order κ/k, provided ε is of order 1 and θ∗ mod 2π is at the distance of order 1 from

the root of equation sin θ = b/ε, that correspond to unstable equilibrium position of system (27). The condition

analogous to (21) takes the form

ε ≥ |b|.

The ensamble average of the jumps of Pϕ is:

〈∆Pϕ〉 = − 1
2π

sign(b)kS,

SR = 2
1
k

√
κ

k

∫ θmax

θmin

(
2
b

g

(
2πξc − ε

b
sin θ − θ

))1/2

dθ.

Turn to the particular cases considered above.

1. ky = 0.

In this case the ensamble average of the jumps of Pϕ is

〈∆Pϕ〉 = − 1
2π

sign(h′
z)kS,

SR = 2
1
k

√
κ

k

√
|h′

z|
∫ θmax

θmin

(
2

∣∣∣∣2πξc − ε

h′
z

sin θ − θ

∣∣∣∣)1/2

dθ.

Unlike the case of an electromagnetic wave, the area under the separatrix loop decreases as |h′
z | increases. We

also have that 〈∆Pϕ〉 > 0 if h′
z < 0 and 〈∆Pϕ〉 < 0 if h′

z > 0. It follows from Fig. 3, that for the same value

of hz the value of |h′
z| is larger if h′

z < 0. Therefore, the average change of Pϕ on one period of x-motion is

negative: 〈∆Pϕ〉Σ < 0. Hence, the energy of the particles that cross the resonance decreases.

2. kx = 0.
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Figure 9: The scattering on resonance and the subsequent capture into resonance for an electrostatic wave in
the case ky = 0.

In this case there is no difference between the interaction particles with electrostatic and electromagnetic

waves.

6.2 Capture into resonance.

Let us turn to capture into the resonance and focus on the ky = 0 case. Recall, that the intersection of the

resonant surface and the Pϕ = const plane is a straight line, parallel to the κx-axis. Contrary to the case of

electromagnetic wave (Section 5.2), capture into resonance is possible if (ω/kx)h′
z(κx)h′′

z (κx) < 0. Particles are

captured into the resonance with waves moving from the Earth (ω/kx < 0) within the interval ζm < κx < ζs.

The captured particles are transported into the region κx < ζm and are released from the resonance there. The

dynamics in this case is shown in Fig. 9. Particles can be captured into a wave that is moving towards the Earth

(ω/kx > 0) in the regions κx > ζs and κx < ζm. The particles that were captured in the region ζ− < κx < ζm

are transported into the region ζm < κx < ζs and are released from the resonance there. Here ζ− is given by the

conditions ζ− < ζs, and |h′
z(ζ−)| = h′

z(ζs). Other captured particles stay in the resonance and are transported

to the edge of the system.

7 The long-time behaviour of the particles.

The earth magnetotail is an open system. Charged particles from the solar wind enter in the far region (see

Fig. 1a) and then accelerate and drift towards the earth. Characteristic life time of particles in the magnetotail,

TL, is defined by the magnitude of the constant solar wind-induced electric field and non-uniformity of magnetic

field (see Sect. 2 and e.g. Vainshtein et al., 1995). In the present section we discuss the properties of particles’
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dynamics on the time scales of order of TL, that spans many resonance and separatrix crossings. For a typical

particle, TL is much longer then the period of the x-motion, that is the slowest motion in the system.

In the region where there are neither resonance nor separatrix crossings the phase space is filled by invariant

tori up to a residue of exponentially small measure and the value of both adiabatic invariants, Iz and Pϕ, are

conserved eternally: on infinite time interval it has only oscillations of order κ (the Arnold theorem about

perpetual adiabatic invariance, see, e.g. (Arnold et al., 1988)).

The accumulation of the jumps of adiabatic invariants could produce chaotic dynamics. In the case of

separatrix crossings for the problem under consideration it was illustrated in (Büchner and Zelenyi, 1989;

Zelenyi et al., 1990). Long-term evolution of adiabatic invariants depends on whether consecutive crossings are

statistically dependent or independent. Statistical independence follows from the divergence of phases along

trajectories. For separatrix crossings consecutive crossings for some initial conditions are statistically dependent

(Cary and Skodje, 1989) and islands of stability, albeit being of a small measure, do exist (Elskens and Escande,

1991; Neishtadt et al, 1997) inside large chaotic see. Consecutive resonance crossings should be treated as

independent as shows the following reasoning from (Neishtadt, 1999).

Let two successive crossings of the resonant surface occur at ϕ1 and ϕ2. A small variation ∆ϕ1 of ϕ1

produces the variation of the jump value of Pϕ by a quantity of order
√

κδ∆ϕ1. As a result, the phase ϕ2

changes by the quantity ∆ϕ2 ∼
(
1/κδ)

√
κδ

)
∆ϕ1 =

(
1/

√
κδ

)
∆ϕ1 � ∆ϕ1. In other words, a small change in

the resonance phase before one crossing generally results in a big change in the value of the resonance phase

of the next crossing. Therefore, jumps of adiabatic invariant at two successive crossings can be considered as

independent.

With consecutive jumps being independent, evolution of the adiabatic invariant due to multiple passages

through the resonance can be treated a random walk with a step of order of
√

κδ with or without a preferred

direction depending of the validity of (21). In the absence of the drift (i.e. no preferred direction), diffusion

of adiabatic invariants is observed in (nearly all) numeric simulations. Diffusion time can be estimated as a

product of a characteristic mean square value of a jump and a characteristic slow period. Thus estimated,

diffusion time was shown to be in a good agreement with numerical simulations (see (Bruhwiler and Cary, 1989)

and (Itin, 2000) for separatrix and resonance crossings, respectively).

The assumption of statistical independence is crucial for chaotization: when phases on the successive cross-

ings are related a regular motion can emerge. Such a phenomenon may appear if Tx is (approximately) indepen-

dent of Pϕ. In this case ∂Tx/∂Pϕ vanish and consecutive phases become correlated. In particular, consecutive
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jumps may cancel each other – a phenomenon called beamlets (see e.g. Chen, 1992, Ashour-Abdalla, 1993),

that is well known in magnetospheric applications. Beamlets occur on short intervals in history of particle

convection from the distant tail to the earth. For nearby trajectories net effect (averaged for all the crossings

during one period of x-motion), although not exactly vanishing, is much smaller than in a regular case. As a

mixing parameter, η (see below), is proportional to the square of the average net change, it nearly vanishes in

the vicinity of beamlet trajectories and particles behave as if they are in an adiabatic regime.

7.1 Loss of adiabatic invariancy and mixing over a finite time.

In the chaotic region resonance and separatrix crossings lead to loss of adiabatic invariancy, which, in turn,

results in mixing. Had the particles stay in the magnetotail forever, the result would be complete mixing and

washing out of all the structures in the distribution functions of the chaotic region that were present when

particles entered the magnetotail.

To define a measure of importance of resonance and separatrix crossings we introduce the characteristic

time of mixing due to either process, Tr and Tj, respectively, as the time over which the diffusion spreads the

value of the adiabatic invariant (Pϕ or Iz , respectively) by a quantity of order 1 (see below). The combined

extend of mixing in the system depends on the relation between the Tr and Tj on one hand and TL on the

other. If both Tr and Tj are larger then TL, then mixing is small everywhere in the phase space and distribution

functions are transported towards the earth relatively intact. Contrarily, if at least one of Tr or Tj is less then

TL, then mixing is important and distribution functions are homogenized. The relative importance of resonant

phenomena and the jumps of the adiabatic invariant depends on the comparison between Tr and Tj . To be

definite, in what follows we consider the case of the electromagnetic wave.

As the phenomena related to both resonant and separatrix crossings are localized near R and UC, respec-

tively, characteristic time of mixing due to either process can be written as

Tr(j) ∼ Tper
1
D

. (29)

In (29), Tper is a typical time between consecutive crossings of R or UC and is of order of the period of the

x-motion. D is the mean square value of a jump of the adiabatic invariant in a single passage (of order of the

square of a characteristic jump).

The value of Tper is the same for both separatrix and resonance crossings and is of order of ∼ 1/κ. It was

shown in (Zelenyi et al., 1990; Vainshtein et al., 1995), that separatrix crossings lead to the diffusion of the
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adiabatic invariant with a characteristic size of jumps of order ∼ κ. Therefore,

Tj ∼ κ−3.

For resonant phenomena D ∼ κδ. Hence,

Tr ∼ 1
κ

(κδ)−1
,

and we arrive at
Tr

Tj
∼ κ3

δκ2
=

κ

δ
.

The value of Tr/Tj defines what phenomenon is more important for the chaotization of the particles. If

Tr/Tj � 1, the resonant processes dominate. If Tr/Tj � 1, the separatrix crossings dominate. Note, that κ is

a function of the distance from the earth while δ is a parameter of a wave. Therefore, Tr < Tj defines a range

of parameters of the waves that must be taken into account when describing the long-time dynamics of charged

particles in a particular part of the magnetotail.

To describe the extend of the overall mixing we introduce a parameter

η =
TL

min(Tj , Tr)
.

If η � 1, the mixing is negligible. If η � 1, the mixing is strong: particles cross resonance (or separatrix)

sufficient number of times for adiabatic invariant cover the whole admissible domain. A similar observation (for

separatrix crossings) was made in (Karimabadi et al., 1990).

7.2 Resonances and acceleration of particles.

There is an additional major difference between the impacts of resonance phenomena and separatrix crossings.

Unlike separatrix crossings, resonance phenomena can on average lead to acceleration of particles. If the average

value of 〈∆Pϕ〉 during a period of x-motion, 〈∆Pϕ〉Σ, does not vanish, there is an average drift of energy (see

(2)):
dh

dt
=

1
Tper

〈∆Pϕ〉Σ
ω

k
.

For 〈∆Pϕ〉Σ to be non-zero, (21) must be valid. For electromagnetic wave 〈∆Pϕ〉Σ ∼ √
κδ (see Subsect. 5.1).

Taking (1) and the estimate for Tper into account, we arrive at

dh

dt
∼ κ

√
κδ

ω

k
. (30)

Note, that although it was omitted in (30), the value of 〈∆Pϕ〉Σ depends on the direction of the wave vector.

In particular, as it was shown in Subsect. 5.1, 〈∆Pϕ〉Σ = 0 for kx = 0 and there is no acceleration. Numerical
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simulations show that for electromagnetic wave 〈∆Pϕ〉Σ is always non-negative and reaches its maximum and

minimum (zero) values for ky = 0 and kx = 0, respectively. Therefore, electromagnetic waves accelerate

particles.

On the other hand, for electrostatic waves 〈∆Pϕ〉Σ is always non-positive, vanishing for kx = 0 and reaching

the maximum absolute value for ky = 0 (see Sect. 6). In this case, instead of (30), we have

dh

dt
∼ −κ

√
κε/k

ω

k

and the energy of particles decrease.

8 Discussion and conclusions.

In the present paper we discuss the influence of a single low-frequency monochromatic electromagnetic or

electrostatic wave on the dynamics of charged particles and mixing in the magnetic-field-reversal region of the

earth magnetotail. Assuming that the amplitude of a wave is small and the frequency resides between the

characteristic frequencies of the motion in and perpendicular to the equatorial plane we solved the problem

using perturbation theory.

We show that waves effect the dynamics of the particles mostly by the way of resonant phenomena: scattering

on resonance and capture into resonance. Each passage through resonance results in an abrupt change in the

adiabatic invariant. We derive expressions for jumps of adiabatic invariants and show that in the case of multiple

passage through resonance these phenomena can be treated as random processes. Resonance phenomena, like

the jumps of the adiabatic invariant on a separatrix, lead to the chaotization of motion and mixing. We estimate

the characteristic times of mixing due to resonance and separatrix phenomena, discuss their relative importance

on the dynamics of the particles and introduce a parameter that can serve as a measure of mixing. We calculate

the range of the parameters of the problem when the resonant phenomena are the primary mechanisms of

the chaotization. We show that besides the chaotization the resonant phenomena can lead to a significant

acceleration of particles limited, for some values of the parameters of a wave, only by the scales of the system.

We would like to link the strong (“unbound”, in terms of our model) particle acceleration with the discovery

of the so-called magnetotail beamlets (Grigorenko, et al., 2002). Beamlets represent short (tens of seconds)

spikes of highly accelerated particles usually registered at magnetotail edges. This phenomenon could hardly

be explained by standard laminar models of acceleration. Some strong transient effects are obviously involved

in their formation. Resonant interactions of particles with electromagnetic or electrostatic waves could provide
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the plausible mechanism of such a bursty particle energization.

Let us discuss the validity of the restrictions we put on the wave. The magnetic field in the magnetotail is

quite non-uniform in the z-direction. The typical length scale of the non-uniformities is of order Lz ∼ 1RE ,

where RE is the radius of the earth. The assumption that waves propagate in the equatorial plane (kz = 0)

is motivated by very significant confinement of particles in the vicinity of the current sheet: strong and fast

bounce-like motion of particles across the sheet makes the interaction with the waves propagating in the current

sheet the most effective. The second assumption, that the wave is monochromatic, given that it propagates in

the (x, y) plane, is less restricting. Typical sizes of the magnetotail in the y- and x- directions are relatively

large: Ly ∼ 30RE , and Lx ∼ 100RE, hence the system is approximately uniform for the perturbations with the

wave length λ � Ly, Lx.

Finally, the results obtained for a single wave can be easily generalized for a case of wave packets propagating

in the current sheet, as any given wave appreciably effects the motion of a particle only when a particle is in

the resonance with this particular wave. Numerical simulations of interaction between particles and wave

packets performed during last few years support this statement. Although wave packets with random phases

usually make particle trajectories within magnetic field reversal very chaotic, one could still see the evidence of

resonant-like effects manifested as large scale Levy flights (Veltri, et al., 1998; Greco, et al., 2001).
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