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Chapter 1

Path integral formulation of
Quantum Mechanics

1.1 Quantum mechanics: a brief review . . . . . . . 4
1.2 Matrix-valued functions . . . . . . . . . . . . . . 6
1.3 Short time propagation . . . . . . . . . . . . . . . 8
1.4 Path integral . . . . . . . . . . . . . . . . . . . . . 8
1.5 Free propagation . . . . . . . . . . . . . . . . . . . 10

We introduce Feynman path integral and construct semiclassical approxi-
mations to quantum propagators and Green’s functions.

Have: the Schrödinger equation, that is the (infinitesimal time) evolu-
tion law for any quantum wavefunction:

i�
∂

∂t
ψ(t) = Ĥψ(t) . (1.1)

Want: ψ(t) at any finite time, given the initial wave function ψ(0).
As the Schrödinger equation (1.1) is a linear equation, the solution can

be written down immediately:

ψ(t) = e−
i
�

Ĥtψ(0) , t ≥ 0 .

Fine, but what does this mean? We can be a little more explicit; using
the configuration representation ψ(q, t) = 〈q|ψ(t)〉 and the configuration
representation completness relation

1 =
∫

dqD |q〉〈q| (1.2)

we have

ψ(q, t) = 〈q|ψ(t)〉 =
∫

dq′ 〈q|e− i
�

Ĥt|q′〉〈q′|ψ(0)〉 , t ≥ 0 . (1.3)

In sect. 1.1 we will solve the problem and give the explicit formula (1.9)
for the propagator. However, this solution is useless - it requires knowing
all quantum eigenfunctions, that is it is a solution which we can implement
provided that we have already solved the quantum problem. In sect. 1.4 we
shall derive Feynman’s path integral formula for K(q, q′, t) = 〈q|e− i

�
Ĥt|q′〉.
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4CHAPTER 1. PATH INTEGRAL FORMULATION OF QUANTUM MECHANICS

1.1 Quantum mechanics: a brief review

We start with a review of standard quantum mechanical concepts prerequi-
site to the derivation of the semiclassical trace formula: Schrödinger equa-
tion, propagator, Green’s function, density of states.

In coordinate representation the time evolution of a quantum mechanical
wave function is governed by the Schrödinger equation (1.1)

i�
∂

∂t
ψ(q, t) = Ĥ(q,

�

i

∂

∂q
)ψ(q, t), (1.4)

where the Hamilton operator Ĥ(q,−i�∂q) is obtained from the classical
Hamiltonian by substitution p → −i�∂q. Most of the Hamiltonians we
shall consider here are of form

H(q, p) = T (p) + V (q) , T (p) =
p2

2m
, (1.5)

appropriate to a particle in a D-dimensional potential V (q). If, as is often
the case, a Hamiltonian has mixed terms of pq̇, consult any book on field
theory. We are interested in finding stationary solutions

ψ(q, t) = e−iEnt/�φn(q) = 〈q|e−iĤt/�|n〉 ,

of the time independent Schrödinger equation

Ĥψ(q) = Eψ(q) , (1.6)

where En, |n〉 are the eigenenergies, respectively eigenfunctions of the sys-
tem. For bound systems the spectrum is discrete and the eigenfunctions
form an orthonormal∫

dqD φ∗
n(q)φm(q) =

∫
dqD 〈n|q〉〈q|m〉 = δnm (1.7)

and complete∑
n

φn(q)φ∗
n(q′) = δ(q − q′) ,

∑
n

|n〉〈n| = 1 (1.8)

set of Hilbert space functions. For simplicity we will assume that the
system is bound, although most of the results will be applicable to open
systems, where one has complex resonances instead of real energies, and
the spectrum has continuous components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEnt/�φn(q) ,

where the expansion coefficient cn is given by the projection of the initial
wave function onto the nth eigenstate

cn =
∫

dqD φ∗
n(q)ψ(q, 0) = 〈n|ψ(0)〉.

The evolution of the wave function is then given by

ψ(q, t) =
∑

n

φn(q)e−iEnt/�

∫
dq

′Dφ∗
n(q′)ψ(q′, 0).

pathIntegrals - 4feb2005 version 3.3, Feb 14 2005



1.1. QUANTUM MECHANICS: A BRIEF REVIEW 5

Figure 1.1: Propagation from q′ to q in time
t = t′ + t′′ receives contributions from all paths
from q′ to q′′ for time t′ followed by propagation
from q′′ to q in time t′′.

We can write this as

ψ(q, t) =
∫

dq
′DK(q, q′, t)ψ(q′, 0),

K(q, q′, t) =
∑

n

φn(q) e−iEnt/�φ∗
n(q′)

= 〈q|e− i
�

Ĥt|q′〉 =
∑

n

〈q|n〉e−iEnt/�〈n|q′〉 , (1.9)

where the kernel K(q, q′, t) is called the quantum evolution operator, or
the propagator. Applied twice, first for time t1 and then for time t2, it
propagates the initial wave function from q′ to q′′, and then from q′′ to q

K(q, q′, t1 + t2) =
∫

dq′′ K(q, q′′, t2)K(q′′, q′, t1) (1.10)

forward in time, hence the name “propagator”, see figure 1.1. In non-
relativistic quantum mechanics the range of q′′ is infinite, meaning that the
wave can propagate at any speed; in relativistic quantum mechanics this is
rectified by restricting the forward propagation to the forward light cone.

Since the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, the propagator itself also satisfies the Schrödinger
equation

i�
∂

∂t
K(q, q′, t) = Ĥ(q,

i

�

∂

∂q
)K(q, q′, t) . (1.11)

The propagator is a wave function defined for t ≥ 0 which starts out at
t = 0 as a delta function concentrated on q′

lim
t→0+

K(q, q′, t) = δ(q − q′) . (1.12)

This follows from the completeness relation (1.8).
The time scales of atomic, nuclear and subnuclear processes are too

short for direct observation of time evolution of a quantum state. For this
reason, in most physical applications one is interested in the long time be-
havior of a quantum system.

In the t → ∞ limit the sharp, well defined quantity is the energy E (or
frequency), extracted from the quantum propagator via its Laplace/Fourier
transform, the energy dependent Green’s function

G(q, q′, E+iε) =
1
i�

∫ ∞

0
dt e

i
�

Et− ε
�

tK(q, q′, t) =
∑

n

φn(q)φ∗
n(q′)

E − En + iε
.(1.13)

version 3.3, Feb 14 2005 pathIntegrals - 4feb2005



6CHAPTER 1. PATH INTEGRAL FORMULATION OF QUANTUM MECHANICS

Here ε is a small positive number, ensuring that the propagation is forward
in time (and the very existence of the integral).

This completes our lightning review of quantum mechanics.
Feynman arrived to his formulation of quantum mechanics by thinking

of figure 1.1 as a “multi-slit” experiment, with an infinitesimal “slit” placed
at every q′ point. The Feynman path integral follows from two observations:

1. For short time the propagator can be expressed in terms of classical
functions (Dirac).

2. The group property (1.10) enables us to represent finite time evolution
as a product of many short time evolution steps (Feynman).

1.2 Matrix-valued functions

How are we to think of the quantum operator

Ĥ = T̂ + V̂ , T̂ = p̂2/2m , V̂ = V (q̂) , (1.14)

corresponding to the classical Hamiltonian (1.5)?
Whenever you are confused about an “operator”, think “matrix”. Ex-

pressed in terms of basis functions, the propagator is an infinite-dimensional
matrix; if we happen to know the eigenbasis of the Hamiltonian, (1.9) is
the propagator diagonalized. Of course, if we knew the eigenbasis the prob-
lem would have been solved already. In real life we have to guess that some
complete basis set is good starting point for solving the problem, and go
from there. In practice we truncate such matrix representations to finite-
dimensional basis set, so it pays to recapitulate a few relevant facts about
matrix algebra.

The derivative of a (finite-dimensional) matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′

ij(x) =
d

dx
Aij(x) . (1.15)

Derivatives of products of matrices are evaluated by the chain rule

d

dx
(AB) =

dA

dx
B + A

dB
dx

. (1.16)

A matrix and its derivative matrix in general do not commute

d

dx
A2 =

dA

dx
A + A

dA

dx
. (1.17)

The derivative of the inverse of a matrix follows from d
dx(AA−1) = 0:

d

dx
A−1 = − 1

A

dA

dx

1
A

. (1.18)

As a single matrix commutes with itself, any function of a single variable
that can be expressed in terms of additions and multiplications generalizes
to a matrix-valued function by replacing the variable by the matrix.

pathIntegrals - 4feb2005 version 3.3, Feb 14 2005



1.2. MATRIX-VALUED FUNCTIONS 7

In particular, the exponential of a constant matrix can be defined either
by its series expansion, or as a limit of an infinite product:

eA =
∞∑

k=0

1
k!

Ak , A0 = 1 (1.19)

= lim
N→∞

(
1 +

1
N

A

)N

(1.20)

The first equation follows from the second one by the binomial theorem, so
these indeed are equivalent definitions. For finite N the two expressions
differ by order O(N−2). That the terms of order O(N−2) or smaller do not
matter is easy to establish for A → x, the scalar case. This follows from
the bound(

1 +
x − ε

N

)N

<

(
1 +

x + δxN

N

)N

<

(
1 +

x + ε

N

)N

,

where |δxN | < ε accounts for extra terms in the binomial expansion of
(1.20). If lim δxN → 0 as N → ∞, the extra terms do not contribute. I do
not have equally simple proof for matrices - would probably have to define
the norm of a matrix (and a norm of an operator acting on a Banach space)
first.

As a simple application, we use the two definitions
Consider now the determinant

det eA = lim
N→∞

(det (1 + A/N))N .

To the leading order in 1/N

det (1 + A/N) = 1 +
1
N

tr A + O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1
N

tr A + O(N−2)
)N

= etrA (1.21)

Due to non-commutativity of matrices, generalization of a function of
several variables to a function is not as straightforward. Expression involv-
ing several matrices depend on their commutation relations. For example,
the commutator expansion

etABe−tA = B+t[A,B]+
t2

2
[A, [A,B]]+

t3

3!
[A, [A, [A,B]]]+· · · (1.22)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics, follows by recursive evaluation of t derivaties

d

dt

(
etABe−tA

)
= etA[A,B]e−tA .

Expanding exp(A+B), expA, expB to first few orders using (1.19) yields

e(A+B)/N = eA/NeB/N − 1
2N2

[A,B] + O(N−3) , (1.23)

and the Trotter product formula: if B, C and A = B + C are matrices,
then

eA = lim
N→∞

(
eB/NeC/N

)N
. (1.24)

version 3.3, Feb 14 2005 pathIntegrals - 4feb2005



8CHAPTER 1. PATH INTEGRAL FORMULATION OF QUANTUM MECHANICS

1.3 Short time propagation

Split the Hamiltonian into the kinetic and potential terms Ĥ = T̂ + V̂ and
consider the short time propagator

K(q, q′, ∆t) = 〈q|e− i
�

Ĥ∆t|q′〉 = 〈q|e−T̂ λe−V̂ λ|q′〉 + O(∆t2) . (1.25)

where λ = i
�
∆t. The error estimate follows from (1.23). In the coordinate

representation the operator

e−V̂ λ|q〉 = e−V (q)λ|q〉

is diagonal (a “c-number”). In order to evaluate 〈q|e−T̂ λ|q′〉, insert the
momentum eigenstates sum in a D-dimensional configuration space

1 =
∫

dpD |p〉〈p| , 〈p|q〉 = (2π�)−D/2e−
i
�

p·q (1.26)

〈q|e−λT̂ |q′〉 =
∫

dpD 〈q|e−T̂ λ|p〉〈p|q′〉 =
∫

dpD

(2π�)
D
2

e−λp2/2me
i
�

p·(q−q′)

=
( m

2πi�∆t

)D
2

e
i
�

1
2
m( q−q′

∆t
)2∆t . (1.27)

Replacement (q − q′)/∆t → q̇ leads (up to an error of order of ∆t2) to a
purely classical expression for the short time propagator

K(q, q′, ∆t) =
( m

2πi�∆t

)D/2
e

i
�
∆t L(q,q̇) + O(∆t2) , (1.28)

where L(q, q̇) is the Lagrangian of classical mechanics

L(q, q̇) =
mq̇2

2
− V (q) . (1.29)

1.4 Path integral

Now we turn expressing the finite time evolution as a product of many short
time evolution steps.

Splitting the Hamiltonian into the kinetic and potential terms Ĥ = T̂+V̂
and using the Trotter product formula (1.24) we have

e−
i
�

Ĥt = lim
N→∞

(
e−

i
�

T̂∆te−
i
�

V̂ ∆t
)N

, ∆t = t/N (1.30)

Turn this into matrix multiplication by inserting the configuration repre-
sentation completness relations (1.2)

K(q, q′, t) = 〈q|e− i
�

Ĥt|q′〉 (1.31)

=
∫

dqD
1 · · · dqD

N−1〈q|e−Ĥλ|qN−1〉 · · · 〈q1|e−Ĥλ|q′〉

= lim
N→∞

∫
dqD

1 · · · dqD
N−1〈q′|e−T̂ λe−V̂ λ|qN−1〉 · · · 〈q1|e−T̂ λe−V̂ λ|q〉 .

pathIntegrals - 4feb2005 version 3.3, Feb 14 2005



1.4. PATH INTEGRAL 9

Figure 1.2: Path integral receives contribu-
tions from all paths propagating forward from
q′ to qj to qj+1, j = 1, 2, . . . , N − 1, ending in
q in total time t.

Substituting (1.28) we obtain that the total phase shift is given by the Hamil-
ton’s principal function, the integral of (1.29) evaluated along the given path
p from q′ = q(0) to q = q(t):

R[q] = lim
N→∞

N−1∑
j=0

∆t

(
m

2

(
qj+1 − qj

∆t

)2

− V (qj)

)
, q0 = q′

=
∫

dτL(q(τ), q̇(τ)) , (1.32)

where functional notation [q] indicates that R[q] depends on the vector q =
(q′, q1, q2, . . . , qN−1, q) defining a given path q(τ) in the limit of N → ∞
steps, and the propagator is given by

K(q, q′, t) = lim
N→∞

( m

2πi�∆t

)DN/2
∫

dqD
1 · · · dqD

N−1e
i
�

R[q] . (1.33)

We assume that the energy is conserved, and that the only time dependence
of L(q, q̇) is through (q(τ), q̇(τ)).

Path integral receives contributions from all paths propagating forward
from q′ to q in time t, see figure 1.2. The usual, more compact notation is

K(q, q′, t) =
∫

Dq e
i
�

R[q] , or, more pictoresquely

= C
∑

p

e
i
�

R[qp] , q′ = qp(0), q = qp(t) , (1.34)

where
∫ Dq is shorthand notation for the N → ∞ limit in (1.33),∫

Dq = lim
N→∞

∫
[dq] , [dq] =

N−1∏
j=1

dqD
j

(2πi�∆t/m)D/2
(1.35)

and the “sum over the paths C
∑

p” is whatever you imagine it to be.
What’s good and what’s bad about path integrals? First the virtues:

• conceptual unification of

– quantum mechanics

– statistical mechanics

– chaotic dynamics

version 3.3, Feb 14 2005 pathIntegrals - 4feb2005



10 References

• yields analytic solutions to classes of quantum problems

• quantum-classical correspondence

– semiclassical theory

• theory of perturbative corrections

– Feynman diagrams

• relativistic quantum field theory

And now for the perils of path integrals:

• N → ∞ continuum limit

– fraught with perils - sides of the road are littered with corpses of
the careless

1.5 Free propagation

In many field theory textbooks much time is spent on “non-interacting
fields”, “free propagation”, etc... As a matter of fact, papers which at-
tempt to “derive” quantum mechanics from deeper principles most often do
not ever get to “interacting fields”. Why is that?

Mathematical physics equals three tricks: 1) Gaussian integral, 2) inte-
gration by parts, and 3) (your own more sophisticated trick). As we shall
now see, 1) suffices to solve free field theories.
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Chapter 2

WKB quantization
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2.3 WKB quantization . . . . . . . . . . . . . . . . . . 14

2.3.1 Harmonic oscillator quantization . . . . . . . . . 16
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The wave function for a particle of energy E moving in a constant
potential V is

ψ = Ae
i
�

pq (2.1)

with a constant amplitude A, and constant wavelength λ = 2π/k, k = p/�,
and p = ±√2m(E − V ) is the momentum. Here we generalize this solution
to the case where the potential varies slowly over many wavelengths. This
semiclassical (or WKB) approximate solution of the Schrödinger equation
fails at classical turning points, configuration space points where the par-
ticle momentum vanishes. In such neighborhoods, where the semiclassical
approximation fails, one needs to solve locally the exact quantum problem,
in order to compute connection coefficients which patch up semiclassical
segments into an approximate global wave function.

Two lessons follow. First, semiclassical methods can be very power-
ful - classical mechanics computations yield suprisingly accurate estimates
of quantal spectra, without solving the Schrödinger equation. Second, semi-
classical quantization does depend on a purely wave-mechanical phenomena,
the coherent addition of phases accrued by all fixed energy phase-space tra-
jectories that connect pairs of coordinate points, and the topological phase
loss at every turning point, a topological property of the classical flow that
plays no role in classical mechanics.

2.1 WKB ansatz

Consider a time-independent Schrödinger equation in 1 spatial dimension:

− �
2

2m
ψ′′(q) + V (q)ψ(q) = Eψ(q) , (2.2)

11



12 CHAPTER 2. WKB QUANTIZATION

Figure 2.1: A 1-dimensional potential, loca-
tion of the two turning points at fixed energy
E.

with potential V (q) growing sufficiently fast as q → ±∞ so that the classical
particle motion is confined for any E. Define the local momentum p(q) and
the local wavenumber k(q) by

p(q) = ±
√

2m(E − V (q)), p(q) = �k(q) . (2.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (2.4)

sugests that the wave function be written as ψ = Ae
i
�

S, A and S real
functions of q. Substitution yields two equations, one for the real and other
for the imaginary part:

(S′)2 = p2 + �
2 A′′

A
(2.5)

S′′A + 2S′A′ =
1
A

d

dq
(S′A2) = 0 . (2.6)

The Wentzel-Kramers-Brillouin (WKB) or semiclassical approximation con-
sists of dropping the �

2 term in (2.5). Recalling that p = �k, this amounts
to assuming that k2 � A′′

A , which in turn implies that the phase of the wave
function is changing much faster than its overall amplitude. So the WKB
approximation can interpreted either as a short wavelength/high frequency
approximation to a wave-mechanical problem, or as the semiclassical, � � 1
approximation to quantum mechanics.

Setting � = 0 and integrating (2.5) we obtain the phase increment of a
wave function initially at q, at energy E

S(q, q′, E) =
∫ q

q′
dq′′p(q′′) . (2.7)

This integral over a particle trajectory of constant energy, called the action,
will play a key role in all that follows. The integration of (2.6) is even
easier

A(q) =
C

|p(q)| 12
, C = |p(q′)| 12 ψ(q′) , (2.8)

where the integration constant C is fixed by the value of the wave function
at the initial point q′. The WKB (or semiclassical) ansatz wave function
is given by

ψsc(q, q′, E) =
C

|p(q)| 12
e

i
�

S(q,q′,E) . (2.9)

In what follows we shall supress dependence on the initial point and energy
in such formulas, (q, q′, E) → (q).

WKB - 18feb2004 version 3.3, Feb 14 2005



2.2. METHOD OF STATIONARY PHASE 13

Figure 2.2: A 1-dof phase space trajectory of
a particle moving in a bound potential.

The WKB ansatz generalizes the free motion wave function (2.1), with
the probability density |A(q)|2 for finding a particle at q now inversely
proportional to the velocity at that point, and the phase 1

�
q p replaced by

1
�

∫
dq p(q), the integrated action along the trajectory. This is fine, except

at any turning point q0, figure 2.1, where all energy is potential, and

p(q) → 0 as q → q0 , (2.10)

so that the assumption that k2 � A′′
A fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslov, does
the job. In the q coordinate, the turning points are defined by the zero
kinetic energy condition (see figure 2.1), and the motion appears singular.
This is not so in the full phase space: the trajectory in a smooth confining
1-dimensional potential is always a smooth loop, with the “special” role of
the turning points qL, qR seen to be an artifact of a particular choice of
the (q, p) coordinate frame. Maslov’s idea was to proceed from the initial
point (q′, p′) to a point (qA, pA) preceeding the turning point in the ψ(q)
representation, then switch to the momentum representation

ψ̃(p) =
1√
2π�

∫
dq e−

i
�

qpψ(q) , (2.11)

continue from (qA, pA) to (qB, pB), switch back to the coordinate represen-
tation,

ψ(q) =
1√
2π�

∫
dp e

i
�

qp ψ̃(p) , (2.12)

and so on.
The only rub is that one usually cannot evaluate these transforms ex-

actly. But, as the WKB wave function (2.9) is approximate anyway, it
suffices to estimate these transforms to leading order in � accuracy. This
is accomplished by the method of stationary phase.

2.2 Method of stationary phase

All “semiclassical” approximations are based on saddlepoint evaluations of
integrals of the type

I =
∫

dx A(x) eisΦ(x) , x,Φ(x) ∈ R , (2.13)

where s is assumed to be a large, real parameter, and Φ(x) is a real-valued
function. In our applications s = 1/� will always be assumed large.
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14 CHAPTER 2. WKB QUANTIZATION

For large s, the phase oscillates rapidly and “averages to zero” every-
where except at the extremal points Φ′(x0) = 0. The method of approxi-
mating an integral by its values at extremal points is called the method of
stationary phase. Consider first the case of a 1-dimensional integral, and
expand Φ(x0 + δx) around x0 to second order in δx,

I =
∫

dx A(x) eis(Φ(x0)+ 1
2
Φ′′(x0)δx2+...) . (2.14)

Assume (for time being) that Φ′′(x0) 
= 0, with either sign, sgn[Φ′′] =
Φ′′/|Φ′′| = ±1. If in the neighborhood of x0 the amplitude A(x) varies
slowly over many oscillations of the exponential function, we may retain
the leading term in the Taylor expansion of the amplitude, and approxi-
mate the integral up to quadratic terms in the phase by

I ≈ A(x0)eisΦ(x0)

∫
dx e

1
2
isΦ′′(x0)(x−x0)2 . (2.15)

Using the Fresnel integral formula✎ 2.2
page 20 1√

2π

∫ ∞

−∞
dx e−

x2

2ia =
√

ia = |a|1/2 e
i π
4

a
|a| (2.16)

we obtain

I ≈ A(x0)
∣∣∣∣ 2π

sΦ′′(x0)

∣∣∣∣1/2

eisΦ(x0)±i π
4 , (2.17)

where ± corresponds to the positive/negative sign of sΦ′′(x0).

2.3 WKB quantization

We can now evaluate the Fourier transforms (2.11), (2.12) to the same
order in � as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C√
2π�

∫
dq

|p(q)| 12
e

i
�
(S(q)−qp)

≈ C√
2π�

e
i
�
(S(q∗)−q∗p)

|p(q∗)| 12

∫
dq e

i
2�

S′′(q∗)(q−q∗)2 , (2.18)

where q∗ is given implicitly by the stationary phase condition

0 = S′(q∗) − p = p(q∗) − p

and the sign of S′′(q∗) = p′(q∗) determines the phase of the Fresnel integral
(2.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)| 12
e

i
�
[S(q∗)−q∗p]+ iπ

4
sgn[S′′(q∗)] . (2.19)

As we continue from (qA, pA) to (qB, pB), nothing problematic occurrs -
p(q∗) is finite, and so is the acceleration p′(q∗). Otherwise, the trajectory
would take infinitely long to get across. We recognize the exponent as the
Legendre transform

S̃(p) = S(q(p)) − q(p)p

WKB - 18feb2004 version 3.3, Feb 14 2005



2.3. WKB QUANTIZATION 15

Figure 2.3: Sp(E), the action of a periodic
orbit p at energy E, equals the area in the phase
space traced out by the 1-dof trajectory.

which can be used to expresses everything in terms of the p variable,

q∗ = q(p),
d

dq
q = 1 =

dp

dq

dq(p)
dp

= q′(p)p′(q∗) . (2.20)

As the classical trajectory crosses qL, the weight in (2.19),

d

dq
p2(qL) = 2p(qL)p′(qL) = −2mV ′(q) , (2.21)

is finite, and S′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant,
including (qA, pA). Hence, the phase loss in (2.19) is −π

4 . To go back
from the p to the q representation, just turn figure 2.2 90o anticlockwise.
Everything is the same if you replace (q, p) → (−p, q); so, without much
ado we get the semiclassical wave function at the point (qB, pB),

ψsc(q) =
e

i
�
(S̃(p∗)+qp∗)− iπ

4

|q∗(p∗)| 12
ψ̃sc(p∗) =

C

|p(q)| 12
e

i
�

S(q)− iπ
2 . (2.22)

The extra |p′(q∗)|1/2 weight in (2.19) is cancelled by the |q′(p∗)|1/2 term, by
the Legendre relation (2.20).

The message is that going through a smooth potential turning point the
WKB wave function phase slips by −π

2 . This is equally true for the right
and the left turning points, as can be seen by rotating figure 2.2 by 180o,
and flipping coordinates (q, p) → (−q,−p). While a turning point is not
an invariant concept (for a sufficiently short trajectory segment, it can be
undone by a 45o turn), for a complete period (q, p) = (q′, p′) the total phase
slip is always −2 · π/2, as a loop always has m = 2 turning points.

The WKB quantization condition follows by demanding that the wave
function computed after a complete period be single-valued. With the nor-
malization (2.8), we obtain

ψ(q′) = ψ(q) =
∣∣∣∣p(q′)
p(q)

∣∣∣∣ 12 ei( 1
�

∮
p(q)dq−π)ψ(q′) .

The prefactor is 1 by the periodic orbit condition q = q′, so the phase must
be a multiple of 2π,

1
�

∮
p(q)dq = 2π

(
n +

m

4

)
, (2.23)

where m is the number of turning points along the trajectory - for this 1-dof
problem, m = 2.

The action integral in (2.23) is the area (see figure 2.3) enclosed by the
classical phase space loop of figure 2.2, and the quantization condition says
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16 CHAPTER 2. WKB QUANTIZATION

Figure 2.4: Airy function Ai(q).

that eigenenergies correspond to loops whose action is an integer multiple
of the unit quantum of action, Planck’s constant �. The extra topological
phase, which, although it had been discovered many times in centuries past,
had to wait for its most recent quantum chaotic (re)birth until the 1970’s.
Despite its derivation in a noninvariant coordinate frame, the final result
involves only canonically invariant classical quantities, the periodic orbit
action S, and the topological index m.

2.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose
quantum mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure 2.2 is now a circle in the (mωq, p) plane, the action is
its area S = 2πE/ω, and the spectrum in the WKB approximation

En = �ω(n + 1/2) (2.24)

turns out to be the exact harmonic oscillator spectrum. The stationary
phase condition (2.18) keeps V (q) accurate to order q2, which in this case
is the whole answer (but we were simply lucky, really). For many 1-dof
problems the WKB spectrum turns out to be very accurate all the way down
to the ground state. Surprisingly accurate, if one interprets dropping the �

2

term in (2.5) as a short wavelength approximation.

2.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly vary-
ing potential the phase of the WKB wave function slips by a π/2 for each
turning point. This π/2 came from a

√
i in the Fresnel integral (2.16), one

such factor for every time we switched representation from the configuration
space to the momentum space, or back. Good, but what does this mean?

The stationary phase approximation (2.14) fails whenever Φ′′(x) = 0,
or, in our the WKB ansatz (2.18), whenever the momentum p′(q) = S′′(q)
vanishes. In that case we have to go beyond the quadratic approxima-
tion (2.15) to the first nonvanishing term in the Taylor expansion of the
exponent. If Φ′′′(x0) 
= 0, then

I ≈ A(x0)eisΦ(x0)

∫ ∞

−∞
dx eisΦ′′′(x0)

(x−x0)3

6 . (2.25)
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2.4. BEYOND THE QUADRATIC SADDLE POINT 17

Airy functions can be represented by integrals of the form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3
) . (2.26)

Derivations of the WKB quantization condition given in standard quan-
tum mechanics textbooks rely on expanding the potential close to the turning
point

V (q) = V (q0) + (q − q0)V ′(q0) + · · · ,

solving the Airy equation

ψ′′ = qψ , (2.27)

and matching the oscillatory and the exponentially decaying “forbidden” re-
gion wave function pieces by means of the WKB connection formulas. That
requires staring at Airy functions and learning about their asymptotics - a
challenge that we will have to eventually overcome, in order to incorporate
diffraction phenomena into semiclassical quantization.

2) what does the wave function look like?
3) generically useful when Gaussian approximations fail
The physical origin of the topological phase is illustrated by the shape

of the Airy function, figure 2.4. For a potential with a finite slope V ′(q)
the wave function pentrates into the forbidden region, and accomodates a
bit more of a stationary wavelength then what one would expect from the
classical trajectory alone. For infinite walls (that is, billiards) a different
argument applies: the wave function must vanish at the wall, and the phase
slip due to a specular reflection is −π, rather than −π/2.

Commentary

Remark 2.1 Airy function. The stationary phase approxima-
tion is all that is needed for the semiclassical approximation, with the
proviso that D in (??) has no zero eigenvalues. The zero eigenvalue
case would require going beyond the Gaussian saddle-point approx-
imation, which typically leads to approximations of the integrals in
terms of Airy functions [3.4]. ✎ 2.4

page 20

Remark 2.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld
quantization condition was the key result of the old quantum theory,
in which the electron trajectories were purely classical. They were
lucky - the symmetries of the Kepler problem work out in such a
way that the total topological index m = 4 amount effectively to
numbering the energy levels starting with n = 1. They were unlucky -
because the hydrogen m = 4 masked the topological index, they could
never get the helium spectrum right - the semiclassical calculation
had to wait for until 1980, when Leopold and Percival [?] added the
topological indices.
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Résumé

The WKB ansatz wave function for 1-degree of freedom problems fails at
the turning points of the classical trajectory. While in the q-representation
the WKB ansatz a turning point is singular, along the p direction the classi-
cal trajectory in the same neighborhood is smooth, as for any smooth bound
potential the classical motion is topologically a circle around the origin in
the (q, p) space. The simplest way to deal with such singularities is as fol-
lows; follow the classical trajectory in q-space until the WKB approximation
fails close to the turning point; then insert

∫
dp|p〉〈p| and follow the clas-

sical trajectory in the p-space until you encounter the next p-space turning
point; go back to the q-space representation, an so on. Each matching in-
volves a Fresnel integral, yielding an extra e−iπ/4 phase shift, for a total
of e−iπ phase shift for a full period of a semiclassical particle moving in a
soft potential. The condition that the wave-function be single-valued then
leads to the 1-dimensional WKB quantization, and its lucky cousin, the
Bohr-Sommerfeld quantization.

Alternatively, one can linearize the potential around the turning point a,
V (q) = V (a)+(q−a)V ′(a)+· · ·, and solve the quantum mechanical constant
linear potential V (q) = qF problem exactly, in terms of an Airy function.
An approximate wave function is then patched together from an Airy func-
tion at each turning point, and the WKB ansatz wave-function segments
inbetween via the WKB connection formulas. The single-valuedness con-
dition again yields the 1-dimensional WKB quantization. This a bit more
work than tracking the classical trajectory in the full phase space, but it
gives us a better feeling for shapes of quantum eigenfunctions, and exempli-
fies the general strategy for dealing with other singularities, such as wedges,
bifurcation points, creeping and tunneling: patch together the WKB seg-
ments by means of exact QM solutions to local approximations to singular
points.
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Exercises
Exercise 2.1 WKB ansatz. Try to show that no other ansatz other

than (??) gives a meaningful definition of the momentum in the � → 0 limit.Exercise 2.2 Fresnel integral. Derive the Fresnel integral

1√
2π

∫ ∞

−∞
dx e−

x2

2ia =
√

ia = |a|1/2e
i π
4

a
|a| .

Exercise 2.3 Sterling formula for n!. Compute an approximate value of n!
for large n using the stationary phase approximation. Hint: n! =

∫∞
0

dt tne−t.

Exercise 2.4 Airy function for large arguments. Important con-
tributions as stationary phase points may arise from extremal points where the first
non-zero term in a Taylor expansion of the phase is of third or higher order. Such situ-
ations occur, for example, at bifurcation points or in diffraction effects, (such as waves
near sharp corners, waves creeping around obstacles, etc.). In such calculations, one
meets Airy functions integrals of the form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (2.28)

Calculate the Airy function Ai(x) using the stationary phase approximation. What

happens when considering the limit x → 0. Estimate for which value of x the

stationary phase approximation breaks down.

exerWKB - 27jan2004 version 3.3, Feb 14 2005



Chapter 3

Lattice field theory

3.1 Saddle-point expansions are asymptotic . . . . . 22
Historical remarks . . . . . . . . . . . . . . . . . . . . 24

3.2 Path integrals . . . . . . . . . . . . . . . . . . . . . 25
3.3 Field theory - setting up the notation . . . . . . 26
3.4 Saddle-point expansions . . . . . . . . . . . . . . 27
3.5 Free field theory . . . . . . . . . . . . . . . . . . . 30
3.6 Feynman diagrams . . . . . . . . . . . . . . . . . . 30

3.6.1 Hungry pac-men munching on fattened J ’s . . . 31
3.7 Propagator in the space representation . . . . . 32

3.7.1 Lattice derivatives . . . . . . . . . . . . . . . . . 32
3.7.2 Lattice Laplacian . . . . . . . . . . . . . . . . . . 33
3.7.3 Inverting the Laplacian . . . . . . . . . . . . . . 33
3.7.4 Why is propagator called “propagator”? . . . . . 34

3.8 Periodic lattices . . . . . . . . . . . . . . . . . . . 36
3.8.1 A 2-point lattice diagonalized . . . . . . . . . . . 36
3.8.2 Discrete Fourier transforms . . . . . . . . . . . . 37
3.8.3 Lattice Laplacian diagonalized . . . . . . . . . . 39

3.9 Continuum field theory . . . . . . . . . . . . . . . 40
3.10 Summary and outlook . . . . . . . . . . . . . . . 40

Field theory is developed at not quite the pedestrian level, perhaps a
cyclist level. We do it all on a finite lattice, without any functional integrals
voodoo; all we have to know is how to manipulate finite dimensional vectors
and matrices. More of such stuff can be found in ref. [3.2].

This version of field theory presupposes prior exposure to the Ising model
and the Landau mean field theory of critical phenomena on the level of
ref. [3.1], or any other decent introduction to critical phenomena.

Good. You know how to evaluate a Gaussian integral, and now you
would like to master path integrals. What to do? Simple - turn path integrals
into Gaussian integrals, as follows:

Laplace method deals with integrals of form

I =
∫ ∞

−∞
dx e−tΦ(x) (3.1)

21



22 CHAPTER 3. LATTICE FIELD THEORY

where t and Φ(x) are real. If Φ(x) is bounded from below and smooth at
minimal value Φ(x∗), Φ′(x∗) = 0, Φ′′(x∗) > 0, I is dominated by the value
of the integrand at Φ(x∗). For large values of t the Laplace estimate is
obtained by expanding Φ(x∗ + δx) to second order in δx and evaluting the
resulting Gaussian integral,

I ≈
∑
x∗

√
2π/tΦ′′(x∗) e−tΦ(x∗) . (3.2)

Generalization to multidimensional integrals is straightforward. The
Gaussian integral in D-dimensions is given by✎ 3.3

page 42
∫

[dx]e−
1
2
xT ·M−1·x+x·J = (detM)

1
2 e

1
2
JT ·M ·J , (3.3)

[dx] =
dx1√
2π

dx2√
2π

· · · dxD√
2π

,

where M is a real symmetric positive definite matrix, that is, matrix with
strictly positive eigenvalues.

The stationary phase estimate of (3.1) is✎ ??
page ?? I ≈

∑
x∗

(2πi/t)d/2 |detD2Φ(x∗)|−1/2A(xn) eitΦ(x∗)− iπ
4

m(x∗) ,

where x∗ are the stationary phase points

d

dxi
Φ(x)

∣∣∣∣
x=x∗

= 0 ,

D2Φ(x∗) denotes the matrix of second derivatives, and m(x∗) is the number
of its negative eigenvalues (when evaluted at the stationary phase point x∗).

These integrals is all that is needed for the semiclassical approximation,
with the proviso that M−1 in (3.3) has no zero eigenvalues.

3.1 Saddle-point expansions are asymptotic

The first trial ground for testing our hunches about field theory is the zero-
dimensional field theory, the field theory of a lattice consisting of one point.
As there are no neighbors, there are no derivatives to take, and the field
theory is a humble 1-dimensional integral

Z[J ] =
∫

dφ√
2π

e−
φ2

2M
−βuφ4+φJ .

In zero-dimensional field theory M is a [1×1] matrix, i.e. just a number.
As it is in good taste to get rid of extraneous parameters, we rescale φ2 →
Mφ2,

√
MJ → J , and are left with one parameter which we define to be

g = 4βM2u. As multiplicative constants do not contribute to averages, we
will drop an overall factor of

√
M and study the integral

Z[J ] =
∫

dφ√
2π

e−φ2/2−gφ4/4+φJ . (3.4)

Substituting M as defined by (3.22) we have g = T/(r + 12u(φc)2), so the
small g expansions is a low temperature expansion. However, as we ap-
proach the critical temperature, r + 12u(φc)2 → 0, the perturbation theory
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3.1. SADDLE-POINT EXPANSIONS ARE ASYMPTOTIC 23

fails us badly, and that is one of the reasons why we need the renormaliza-
tion theory.

The idea of the saddle-point expansion (3.23) is to keep the Gaussian
part

∫
dφ e−φ2/2+φJ as is, expand the rest as a power series, and then com-

pute the moments∫
dφ√
2π

φne−φ2/2 =
(

d

dJ

)n

eJ2/2
∣∣∣
J=0

= (n − 1)!! if n even, 0 otherwise .

We already know the answer. In this zero-dimensional theory we have taken
M = 1, the n-point correlation is simply the number of terms in the dia-
grammatic expansion, and according to (3.29) that number is exploding
combinatorially, as (n − 1)!!. And here our troubles start.

To be concrete, let us work out the exact zero-dimensional φ4 field theory
in the saddle-point expansion to all orders:

Z[0] =
∑

n

Zngn ,

Zn =
(−1)n

n!4n

∫
dφ√
2π

φ4ne−φ2/2 =
(−1)n

16n!
(4n)!
(2n)!

. (3.5)

The Stirling formula n! =
√

2π nn+1/2e−n yields for large n

gnZn ≈ 1√
nπ

(
4gn

e

)n

. (3.6)

✎ 3.2
page 42

As the coefficients of the parameter gn are blowing up combinatorially, no
matter how small g might be, the perturbation expansion is not convergent!
Why? Consider again (3.5). We have tacitly assumed that g > 0, but for
g < 0, the potential is unbounded for large φ, and the integrand explodes.
Hence the partition function in not analytic at the g = 0 point.

Is the whole enterprise hopeless? As we shall now show, even though di-
vergent, the perturbation series is an asymptotic expansion, and an asymp-
totic expansion can be extremely good [3.9]. Consider the residual error
after inclusion of the first n perturbative corrections:

Rn =

∣∣∣∣∣Z(g) −
n∑

m=0

gmZm

∣∣∣∣∣
=

∫
dφ√
2π

e−φ2/2

∣∣∣∣∣e−gφ4/4 −
n∑

m=0

1
m!

(
−g

4

)m
φ4m

∣∣∣∣∣
≤

∫
dφ√
2π

e−φ2/2 1
(n + 1)!

(
gφ4

4

)n+1

= gn+1 |Zn+1| . (3.7)

The inequality follows from the convexity of exponentials, a generalization ✎ 3.5
page 42

of the inequality ex ≥ 1+x. The error decreases as long as gn |Zn| decreases.
From (3.6) the minimum is reached at 4g nmin ≈ 1, with the minimum error

gnZn|min ≈
√

4g

π
e−1/4g. (3.8)

As illustrated by the figure 3.1, a perturbative expansion can be, for all
practical purposes, very accurate. In QED such argument had led Dyson to
suggest that the QED perturbation expansions are good to nmin ≈ 1/α ≈ 137
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24 CHAPTER 3. LATTICE FIELD THEORY

Figure 3.1: Plot of the saddle-point estimate of Zn vs. the exact result (3.5) for
g = 0.1, g = 0.02, g = 0.01.

terms. Due to the complicated relativistic, spinorial and gauge invariance
structure of perturbative QED, there is not a shred of evidence that this is
so. The very best calculations that humanity has been able to perform so
far stop at n ≤ 5.

Commentary

Remark 3.1 Asymptotic series.

• The Taylor expansion in g fails, as g is precisely on the border of
analyticity. The situation can sometimes be rescued by a Borel
re-summation.

• If you really care, an asymptotic series can be improved by re-
sumations “beyond all orders”, a technically daunting task (see
M. Berry’s papers on such topics as re-summation of the Weyl
series for quantum billiards).

• Pairs of nearby and coalescing saddles should be treated by uni-
form approximations, where the Airy integrals

Z0[J ] =
1

2πi

∫
C

dx e−x3/3!+Jx

play the role the Gaussian integrals play for isolated saddles [3.4].
In case at hand, the phase transition φc = 0 → ±φc 
= 0 is a
quartic inflection of this type, and in the Fourier representation
of the partition function one expects instead of |det M | 12 explicit
dependence on the momentum k

1
4 . Whether anyone has tried

to develop a theory of the critical regime in this way I do not
know.

• If there are symmetries that relate terms in perturbation expan-
sions, a perturbative series might be convergent. For example,
individual Feynman diagrams in QED are not gauge invariant,
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Figure 3.2: In the classical � → 0 limit the
path integral (1.33) is dominated by the minima
of the integrand’s exponent. The location qc

of a minimum is determined by the extremum
condition ∂�S[qc] + J� = 0 .

only their sums are, and QED αn expansions might still turn
out to be convergent series [3.10].

• Expansions in which the field φ is replaced by N copies of the
original field are called 1/N expansions. The perturbative coef-
ficients in such expansions are convergent term by term in 1/N .

3.2 Path integrals

The path integral (1.33) is an ordinary multi-dimensional integral. In the
classical � → 0, the action is large (high price of straying from the beaten
path) almost everywhere, except for some localized regions of the q-space.
Highly idealized, the action looks something like the sketch in figure 3.2 (in
order to be able to draw this on a piece of paper, we have supressed a large
number of q� coordinates).

Such integral is dominated by the minima of the action. The minimum
value S[q] configurations qc are determined by the zero-slope, saddle-point
condition

d

dφ �

S[qc] + J� = 0 . (3.9)

The term “saddle” refers to the general technique of evaluating such inte-
grals for complex q; in the statistical mechanics applications qc are locations
of the minima of S[q], not the saddles. If there is a number of minima, only
the one (or the nc minima related by a discrete symmetry) with the lowest
value of −S[qc]−qc ·J dominates the path integral in the low temperature
limit. The zeroth order, classical approximation to the partition sum (1.33)
is given by the extremal configuration alone

Z[J ] = eW [J ] →
∑

c

eWc[J ] = eWc[J ]+ln nc

Wc[J ] = S[qc] + qc · J . (3.10)

In the saddlepoint approximation the corrections due to the fluctuations
in the qc neighborhood are obtained by shifting the origin of integration to

q� → qc
� + q� ,

the position of the c-th minimum of S[q] − q · J , and expanding S[q] in a
Taylor series around qc.

For our purposes it will be convenient to separate out the quadratic part
S0[q], and collect all terms higher than bilinear in q into an “interaction”
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term SI [q]

S0[q] = −
∑

�

q�

(
M−1

)
�,�′ q� ,

SI [q] = −(· · ·)�,�′,�′′q�q�′q�′′ + · · · . (3.11)

Rewrite the partition sum (1.33) as

eW [J ] = eWc[J ]

∫
[dq]e−

1
2
qT ·M−1·q+SI [q] .

As the expectation value of any analytic function

g(q) =
∑

gn1n2...q
n1
1 qn2

2 · · · /n1!n2! · · ·
can be recast in terms of derivatives with respect to J∫

[dq]g(q)e−
1
2
qT ·M−1·q = g( d

dJ
)
∫

[dq]e−
1
2
qT ·M−1·q+q·J

∣∣∣∣
J=0

,

we can move SI [q] outside of the integration, and evaluate the Gaussian
integral in the usual way✎ 3.3
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eW [J ] = eWc[J ]eSI [ d

dJ
]

∫
[dq]e−

1
2
qT ·M−1·q+q·J

∣∣∣∣
J=0

= |det M | 12 eWc[J ]eSI [ d
dJ

] e
1
2
JT ·M ·J

∣∣∣
J=0

. (3.12)

M is invertible only if the minima in figure 3.2 are isolated, and M−1

has no zero eigenvalues. The marginal case would require going beyond
the Gaussian saddlepoints studied here, typically to the Airy-function type
stationary points [3.4]. In the classical statistical mechanics S[q] is a real-
valued function, the extremum of S[q] at the saddlepoint qc is the minimum,
all eigenvalues of M are strictly positive, and we can drop the absolute value
brackets | · · · | in (3.12).✎ 2.4

page 20
Expanding the exponentials and evaluating the d

dJ derivatives in (3.12)
yields the fluctuation corrections as a power series in 1/β = T .

The first correction due to the fluctuations in the qc neighborhood is
obtained by approximating the bottom of the potential in figure 3.2 by a
parabola, that is, keeping only the quadratic terms in the Taylor expansion
(3.11).

3.3 Field theory - setting up the notation

The partition sum for a lattice field theory defined by a Hamiltonian H[φ]
is

Z[J ] =
∫

[dφ]e−β(H[φ]−φ·h)

[dφ] =
dφ1√
2π

dφ2√
2π

· · · ,

where β = 1/T is the inverse temperature, and h� is an external probe that
we can twiddle at will site-by-site. For a theory of the Landau type the
Hamiltonian is

HL[φ] =
r

2
φ�φ� +

c

2
∂µφ�∂µφ� + u

Nd∑
�=1

φ4
� . (3.13)
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Unless stated otherwise, we shall assume the repeated index summation con-
vention throughout. We find it convenient to bury now some factors of√

2π into the definition of Z[J ] so they do not plague us later on when
we start evaluating Gaussian integrals. Rescaling φ → (const)φ changes
[dφ] → (const)N [dφ], a constant prefactor in Z[J ] which has no effect on
averages. Hence we can get rid of one of the Landau parameters r, u, and
c by rescaling. The accepted normalization convention is to set the gradient
term to 1

2(∂φ)2 by h → c1/2h, φ → c−1/2φ, and the HL in (3.13) is replaced
by

H[φ] =
1
2
∂µφ�∂µφ� +

m2
0

2
φ�φ� +

g0

4!

∑
�

φ4
�

m2
0 =

r

c
, g0 = 4!

u

c2
. (3.14)

Dragging factors of β around is also a nuisance, so we absorb them by
defining the action and the sources as

S[φ] = −βH[φ] , J� = βh� .

The actions we learn to handle here are of form

S[φ] = −1
2
(M−1)��′φ�φ�′ + SI [φ] ,

SI [φ] =
1
3!

γ�1�2�3 φ�1φ�2φ�3 +
1
4!

γ�1�2�3�4 φ�1φ�2φ�3φ�4 + · · · . (3.15)

Why we chose such awkward notation M−1 for the matrix of coefficients of
the φ�φ�′ term will become clear in due course (or you can take a peak at
(3.25) now). Our task is to compute the partition function Z[J ], the “free
energy” W [J ], and the full n-point correlation functions

Z[J ] = eW [J ] =
∫

[dφ]eS[φ]+φ·J (3.16)

= Z[0]

1 +
∞∑

n=1

∑
�1�2···�n

G�1�2···�n

J�1J�2 . . . J�n

n!

 ,

G�1�2···�n = 〈φ�1φ�2 . . . φ�n〉 =
1

Z[0]
d

dJ �1
. . .

d

dJ �n

Z[J ]
∣∣∣∣
J=0

. (3.17)

The “bare mass” m0 and the “bare coupling” g0 in (3.14) parameterize the
relative strengths of quadratic, quartic fields at a lattice point vs. contribu-
tion from spatial variation among neighboring sites. They are called “bare”
as the 2- and 4-point couplings measured in experiments are “dressed” by
fluctuation contributions.

3.4 Saddle-point expansions

The “path integral” (3.16) is an ordinary multi-dimensional integral. In the
β → ∞ limit, or the T → 0 low temperature limit, the action is large (high
price of straying from the beaten path) almost everywhere, except for some
localized regions of the φ-space. Highly idealized, the action looks something
like the sketch in figure 3.3 (in order to be able to draw this on a piece of
paper, we have suppressed a large number of φ� coordinates).
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Figure 3.3: For the low temperature T = 1/β the path integral (3.16) is domi-
nated by the minima of the integrand’s exponent. The location φc of a minimum is
determined by the extremum condition ∂�S[φc] + J� = 0 .

Such integral is dominated by the minima of the action. The minimum
value S[φ] configurations φc are determined by the zero-slope, saddle-point
condition

d

dφ �

S[φc] + J� = 0 . (3.18)

The term “saddle” refers to the general technique of evaluating such inte-
grals for complex φ; in the statistical mechanics applications φc are locations
of the minima of S[φ], not the saddles. If there is a number of minima,
only the one (or the nc minima related by a discrete symmetry) with the
lowest value of −S[φc]−φc ·J dominates the path integral in the low tem-
perature limit. The zeroth order, mean field approximation to the partition
sum (3.16) is given by the extremal configuration alone

Z[J ] = eW [J ] →
∑

c

eWc[J ] = eWc[J ]+ln nc

Wc[J ] = S[φc] + φc · J . (3.19)

In the saddle-point approximation the corrections due to the fluctuations
in the φc neighborhood are obtained by shifting the origin of integration to

φ� → φc
� + φ� ,

the position of the c-th minimum of S[φ] − φ · J , and expanding S[φ] in a
Taylor series around φc. For our purposes it will be convenient to separate
out the quadratic part S0[φ], and collect all terms higher than bilinear in φ
into an “interaction” term SI [φ]

S0[φ] = −
∑

�

φ�

(
βr

2c
+ 12

βu

c2
(φc

�)
2

)
φ� +

β

2

∑
�,�′

φ�∆��′φ�′ ,

SI [φ] = −βu

c2

Nd∑
�=1

φ4
� . (3.20)
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Spatially nonuniform φc
� are conceivable. The mean field theory assump-

tion is that the translational invariance of the lattice is not broken, and φc
�

is independent of the lattice point, φc
� → φc. In the φ4 theory considered

here, it follows from (3.18) that φc = 0 for r > 0, and φc = ±√|r|/4u
for r < 0 . There are at most nc = 2 distinct φc configuration with the
same S[φc], and in the thermodynamic limit we can neglect the “mean field
entropy” lnnc in (3.19) when computing free energy density per site [3.3],

− βf [J ] = lim
N→∞

W [J ]/Nd . (3.21)

We collect the matrix of bilinear φ coefficients in

(M−1)��′ = βm′2
0 δ��′ − βc∆��′ , m′2

0 = m2
0 + 12u(φc)2 (3.22)

in order to be able to rewrite the partition sum (3.16) as

eW [J ] = eWc[J ]

∫
[dφ]e−

1
2
φT ·M−1·φ+SI [φ] .

As the expectation value of any analytic function

g(φ) =
∑

gn1n2...φ
n1
1 φn2

2 · · · /n1!n2! · · ·
can be recast in terms of derivatives with respect to J∫

[dφ]g(φ)e−
1
2
φT ·M−1·φ = g( d

dJ
)
∫

[dφ]e−
1
2
φT ·M−1·φ+φ·J

∣∣∣∣
J=0

,

we can move SI [φ] outside of the integration, and evaluate the Gaussian
integral in the usual way ✎ 3.3
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eW [J ] = eWc[J ]eSI [ d

dJ
]

∫
[dφ]e−

1
2
φT ·M−1·φ+φ·J

∣∣∣∣
J=0

= |det M | 12 eWc[J ]eSI [ d
dJ

] e
1
2
JT ·M ·J

∣∣∣
J=0

. (3.23)

M is invertible only if the minima in figure 3.3 are isolated, and M−1

has no zero eigenvalues. The marginal case would require going beyond
the Gaussian saddle-points studied here, typically to the Airy-function type
stationary points [3.4]. In the classical statistical mechanics S[φ] is a real-
valued function, the extremum of S[φ] at the saddle-point φc is the mini-
mum, all eigenvalues of M are strictly positive, and we can drop the absolute
value brackets | · · · | in (3.23).

As we shall show in sect. 3.6, expanding the exponentials and evaluating
the d

dJ derivatives in (3.23) yields the fluctuation corrections as a power
series in 1/β = T .

The first correction due to the fluctuations in the φc neighborhood is
obtained by approximating the bottom of the potential in figure 3.3 by a
parabola, that is, keeping only the quadratic terms in the Taylor expansion
(3.20). For a single minimum the “free energy” is in this approximation

W [J ]1-loop = Wc[J ] +
1
2
tr lnM , (3.24)

where we have used the matrix identity ln det M = tr lnM , valid for any
finite-dimensional matrix. This result suffices to establish the Ginzburg cri-
terion (explained in many excellent textbooks) which determines when the
effect of fluctuations is comparable or larger than the mean-field contribu-
tion alone. ✎ 3.4

page 42
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3.5 Free field theory

There are field theory courses in which months pass while free non-interacting
fields are beaten to pulp. This text is an exception, but even so we get our
first glimpse of the theory by starting with no interactions, SI [φ] = 0. The
free-field partition function (which sometimes ekes living under the name
“Gaussian model”) is

Z0[J ] = eW0[J ] =
∫

[dφ]e−
1
2
φT ·M−1·φ+φ·J = |det M | 12 e

1
2
JT ·M ·J

W0[J ] =
1
2
JT · M · J +

1
2
tr lnM . (3.25)

The full n-point correlation functions (3.17) vanish for n odd, and for n
even they are given by products of distinct combinations of 2-point correla-
tions

G��′ = (M)��′

G�1�2�3�4 = (M)�1�2(M)�3�4 + (M)�1�3(M)�2�4 + (M)�1�4(M)�2�3

G�1�2···�n = (M)�1�2 · · · (M)�n−1�n + (M)�1�3 · · · (M)�n−1�n + · · ·(3.26)

Keeping track of all these dummy indices (and especially when they turn
into a zoo of of continuous coordinates and discrete indices) is a pain, and
it is much easier to visualize this diagrammatically. Defining the propagator
as a line connecting 2 lattice sites, and the probe J� as a source/sink from
which a single line can originate

(M)�1�2 = �1 �2 , J� = � , (3.27)

we expand the free-field theory partition function (3.25) as a Taylor series
in JT · M−1 · J

Z0[J ]
Z0[0]

= 1 + · · · . (3.28)

In the diagrammatic notation the non-vanishing n-point correlations (3.26)
are drawn as

(11 terms) . (3.29)

The total number of distinct terms contributing to the noninteracting full✎ 3.1
page 42

n-point correlation is 1 · 3 · 5 · · · (n− 1) = (n− 1)!!, the number of ways that
n source terms J can be paired into n/2 pairs M .

3.6 Feynman diagrams

For field theories defined at more than a single point the perturbative correc-
tions can be visualized by means of Feynman diagrams. It is not clear that
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this is the intelligent way to proceed [3.5], as both the number of Feynman
diagrams and the difficulty of their evaluation explodes combinatorially, but
as 99% of physicists stop at a 1-loop correction, for the purpose at hand
this is a perfectly sensible way to proceed.

3.6.1 Hungry pac-men munching on fattened J’s

The saddle-point expansion is most conveniently evaluated in terms of Feyn-
man diagrams, which we now introduce. Expand both exponentials in (3.23)

eSI [ d
dJ

] e
1
2
JT ·M ·J =

{
1 +

1
4!

+
1
2

1
(4!)2

+ · · ·
}

×
{

1 + · · ·
}
(3.30)

Here we have indicated d
dJ as a pac-man [3.6] that eats J , leaving a delta

function in its wake

d

dJ j
J� = δj�

. (3.31)

For example, the rightmost pac-man in the
∑

�(
d
dJ �

)4 interaction term
quartic in derivative has four ways of munching a J from the free-field
theory 1

2

(
1
2JT · M · J)2 term, the next pac-man has three J ’s to bite into

in two distinct ways, and so forth:

1
4!

1
23

=
1
3!

1
23

=
1
3!

1
23

(
+ 2

)
=

1
23

=
1
8

. (3.32)

In the hum-drum field theory textbooks this process of tying together vertices
by propagators is called the Wick expansion. Professionals have smarter ✎ 3.7

page 42
ways of generating Feynman diagrams [3.2], but this will do for the problem
at hand.

It is easy enough to prove this to all orders [3.7], but to this order you
can simply check by expanding the exponential (3.16) that the free energy
W [J ] perturbative corrections are the connected, diagrams with J = 0 ✎ 3.6
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W [0] = S[φc]+
1
2
tr lnM+

1
8

+
1
16

+
1
48

.(3.33)

According to its definition, every propagator line M connecting two vertices
carries a factor of T = 1/β, and every vertex a factor of 1/T . In the φ4

theory the diagram with n vertices contributes to the order Tn of the pertur-
bation theory. In quantum theory, the corresponding expansion parameter
is �.

To proceed, we have to make sense of M , and learn how to evaluate
diagrammatic perturbative corrections.
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3.7 Propagator in the space representation

In order to describe the spatial variation in (3.14) we need to define a lattice
derivative.

3.7.1 Lattice derivatives

Consider a smooth function φ(x) evaluated on d-dimensional lattice

φ� = φ(x) , x = a = lattice point ,  ∈ Zd , (3.34)

where a is the lattice spacing and there are Nd points in all. A vector φ
specifies a lattice configuration. Assume the lattice is hyper-cubic, and let
n̂µ ∈ {n̂1, n̂2, · · · , n̂d} be the unit lattice cell vectors pointing along the d
positive directions, |n̂µ| = 1 . The lattice partial derivative is then

(∂µφ)� =
φ(x + an̂µ) − φ(x)

a
=

φ�+n̂µ − φ�

a
.

Anything else with the correct a → 0 limit would do, but this is the simplest
choice. We can rewrite the derivative as a linear operator, by introducing
the hopping operator (or “shift”, or “step”) in the direction µ

(hµ)�j = δ�+n̂µ,j . (3.35)

As h will play a central role in what follows, it pays to understand what it
does, so we write it out for the 1-dimensional case in its full [N×N ] matrix
glory:

h =



0 1
0 1

0 1
. . .
0 1

1 0

 . (3.36)

We will assume throughout that the lattice is periodic in each n̂µ direction;
this is the easiest boundary condition to work with if we are interested in
large lattices where surface effects are negligible. We will (perhaps) briefly
discuss other boundary conditions in sect. ??.

Applied on the lattice configuration φ = (φ1, φ2, · · · , φN ), the hopping
operator shifts the lattice by one site, hφ = (φ2, φ3, · · · , φN , φ1). Its trans-
pose shifts the entries the other way, so the transpose is also the inverse

h−1 = hT . (3.37)

The lattice derivative can now be written as a multiplication by a matrix:

∂µφ� =
1
a

(hµ − 1)�j φj .

In the 1-dimensional case the [N×N ] matrix representation of the lattice
derivative is:

∂ =
1
a



−1 1
−1 1

−1 1
. . .

1
1 −1

 . (3.38)

lattFT - 3feb2005 version 3.3, Feb 14 2005



3.7. PROPAGATOR IN THE SPACE REPRESENTATION 33

To belabor the obvious: On a finite lattice of N points a derivative is sim-
ply a finite [N×N ] matrix. Continuum field theory is a world in which
the lattice is so fine that it looks smooth to us. Whenever someone calls
something an “operator” you say “it is just a matrix, no big deal, I know
what a matrix is”. OK?

3.7.2 Lattice Laplacian

In order to get rid of some of the lattice indices in (3.15) it is convenient to
employ vector notation for the terms bilinear in φ, and keep the rest lumped
into “interaction”,

S[φ] = −βm2
0

2
φT · φ − β

2a2
[(hµ − 1) φ]T · (hµ − 1) φ + SI [φ] . (3.39)

In the Landau case (3.14) the quartic term SI [φ] is local site-by-site, γ�1�2�3�4 =
−4! βu δ�1�2δ�2�3δ�3�4, so this general quartic coupling is a little bit of an
overkill, but by the time we get to the Fourier-transformed theory, it will
make sense as a momentum conserving vertex (3.67).

In the continuum integration by parts moves ∂µ around; on a lattice this
amounts to a matrix transposition

[(hµ − 1) φ]T · [(hµ − 1) φ] = φT · (h−1
µ − 1) (hµ − 1) · φ .

If you are wandering where the “integration by parts” minus sign is, it is
there in discrete case at well. It comes from the identity ∂T = −h−1∂. The
combination ∆ = h−1∂2

∆ = − 1
a2

d∑
µ=1

(h−1
µ −1) (hµ − 1) = − 2

a2

d∑
µ=1

(
1 − 1

2
(h−1

µ + hµ)
)

(3.40)

is the lattice Laplacian. We shall show in sect. 3.9 that this Laplacian has
the correct continuum limit. It is the simplest spatial derivative allowed for
x → −x symmetric actions. In the 1-dimensional case the [N×N ] matrix
representation of the lattice Laplacian is:

∆ =
1
a2



−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2

 . (3.41)

The lattice Laplacian measures the second variation of a field φ� across
three neighboring sites. You can easily check that it does what the second
derivative is supposed to do by applying it to a parabola restricted to the
lattice, φ� = φ(), where φ() is defined by the value of the continuum
function φ(x) = x2 at the lattice point .

3.7.3 Inverting the Laplacian

Evaluation of perturbative corrections in (3.23) requires that we come to
grips with the “free” or “bare” propagator M . While the inverse propagator
M−1 is a simple one-step difference operator (3.22), its inverse is a messier
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object. A way to compute is to start expanding M as a power series in the
Laplacian

βM =
1

m′2
0 1 − ∆

=
1

m′2
0

∞∑
k=0

(
c

m′2
0

)k

∆m . (3.42)

As ∆ is a finite matrix, the expansion is convergent for sufficiently large
m′2

0 . To get a feeling for what is involved in evaluating such series, evaluate
∆2 in the 1-dimensional case:

∆2 =
1
a4



6 −4 1 1 −4
−4 6 −4
1 −4 6 −4 1

−4
. . .

−4
−4 1 1 −4 6

 . (3.43)

What ∆3, ∆4, · · · contributions look like is now clear; as we include higher
and higher powers of the Laplacian, the propagator matrix fills up; while
the inverse propagator is differential operator connecting only the nearest
neighbors, the propagator is integral operator, connecting every lattice site
to any other lattice site [3.8].✎ 3.8
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This matrix can be evaluated as is, on the lattice, and sometime it is

evaluated this way, but in case at hand a wonderful simplification follows
from the observation that the lattice action is translationally invariant. We
will show how this works in sect. 3.8.

3.7.4 Why is propagator called “propagator”?

In statistical mechanics, M is the (bare) 2-point correlation. In quantum
field theory, it is called a propagator. Why?

Until now the collective indices have stood for all particle labels; space-
time location, spin, field type and so on. Statistical mechanics is formulated
in a Euclidean world in which there is no time, just space. What do we mean
by propagation in such a space?

Our formulation is inevitably phenomenological: we have no idea what
the structure of our space on distances much shorter than inter–atomic
might be. The very space-time might be discrete rather than continuous, or
it might have geometry different from the one we observe at the accessible
distance scales. The formalism we use should reflect this ignorance. We deal
with this problem by coarse graining the space into small cells and requiring
that our theory be insensitive to distances comparable to or smaller than
the cell sizes.

Our next problem is that we have no idea why there are particles, and
why or how they propagate. The most we can say is that there is some prob-
ability that a particle hops from one space-time cell to another space-time
cell. At the beginning of the century, the discovery of Brownian motion
showed that matter was not continuous but was made up of atoms. In par-
ticle physics we have no indication of having reached the distance scales
in which any new space-time structure is being sensed: hence for us this
hopping probability has no direct physical significance. It is simply a phe-
nomenological parameter: in the continuum limit it will be replaced by the
mass of the particle.
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skip the rest of this section, unfinished
We assume for the time being that the state of a particle is specified by

its space-time position, and that it has no further labels (such as spin or
color): a= (x1,x x d ). What is it like to be free? A free particle exists
only in itself and for itself; it neither sees nor feels the others; it is, in this
chilly sense, free. But if it is not at once paralyzed by the vast possibilities
opened to it, it soon becomes perplexed by

with all possible paths connecting the two cells:

A.. = sIhLNij(L) (3.44)

Nij(L) is the number of all paths of length L connecting lattice sites i and
j. Define a stepping matrix

(Sµ)ij = 6i+nµ,j . (3.45)

If a particle is introduced into the i-th cell by a source

Jk = δ′ik
the stepping matrix moves it into a neighboring cell:

(SµJ)k = 6i + n, ki + n

The operator

d(h · S)ij =
∑

itµ[(Sµ)ij + (Sµ)jilµ = 1

hµ = (h, h, · · · , h), h) (3.46)

generates all paths of length 1 with probability h:

(h · S)J = hi − thcell

(The examples are drawn in two dimensions). The paths of length 2 are
generated by

2
(has) 21 = h2

I and so on. Note that the k-th component of the vector (h ·S)LJ counts
the number of paths of length L connecting the i-th and the k-th spacetime
cells. The total probability that the particle stops in the k-th cell is given by

s ZNS?J.
I ki a
(5.4)
The value of the field at a space-time point it measures the probability

of observing the particle introduced into the system by the source J . The
Euclidean free scalar particle propagator (5.1) is given by

A s (5.5)
ij = OAK
or, in the continuum limit do by ✎ 3.8

page 42dik · (x − y)A(X, Y )dkeI − +m2(2π)dk2 (3.47)

Interpreting φ as a field is consistent with the previous definition of a free
field, equations (2.22) and (2.25).
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3.8 Periodic lattices

Our task now is to transform M into a form suitable to evaluation of Feyn-
man diagrams. The theory we will develop in this section is applicable only
to translationally invariant saddle-point configurations.

Consider the effect of a φ → hφ translation on the action (3.20)

S[hφ] = −1
2
φT · hT M−1h · φ − βg0

4!

Nd∑
�=1

(hφ)4� .

As M−1 is constructed from h and its inverse, M−1 and h commute, and
the bilinear term is h invariant. In the quartic term h permutes cyclically
the terms in the sum, so the total action is translationally invariant

S[hφ] = S[φ] = −1
2
φT · M−1 · φ − βg0

4!

Nd∑
�=1

φ4
� .

If a function (in this case, the action S[φ]) defined on a vector space (in
this case, the configuration φ) commutes with a linear operator h, then the
eigenvalues of h can be used to decompose the φ vector space into invariant
subspaces. For a hyper-cubic lattice the translations in different directions
commute, hµhν = hνhµ, so it is sufficient to understand the spectrum of
the 1-dimensional shift operator (3.36). To develop a feeling for how this
reduction to invariant subspaces works in practice, let us continue in the
humble spirit of sect. 3.1, by expanding the scope of our deliberations to a
lattice consisting of 2 points.

3.8.1 A 2-point lattice diagonalized

The action of the shift operator h (3.36) on a 2-point lattice φ = (φ1, φ2)
is to permute the two lattice sites

h =
(

0 1
1 0

)
.

As exchange repeated twice brings us back to the original configuration,
h2 = 1, and the characteristic polynomial of h is

(h + 1)(h − 1) = 0 ,

with eigenvalues λ = 1, λ2 = −1. Construct now the symmetrization, anti-
symmetrization projection operators

P1 =
h − λ21
λ1 − λ2

=
h − (−1)
1 − (−1)

=
1
2
(1 + h) =

1
2

(
1 1
1 1

)
(3.48)

P2 =
h − 1
−1 − 1

=
1
2
(1 − h) =

1
2

(
1 −1
−1 1

)
. (3.49)

Noting that P1 +P2 = 1, we can project the lattice configuration φ onto the
two eigenvectors of h:

φ = 1φ = P1 · φ + P2 · φ ,(
φ1

φ2

)
=

(φ1 + φ2)√
2

1√
2

(
1
1

)
+

(φ1 − φ2)√
2

1√
2

(
1
−1

)
. (3.50)
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As P1P2 = 0, the symmetric and the antisymmetric configurations trans-
form separately under any linear transformation constructed from h and its
powers.

In this way the characteristic equation h2 = 1 enables us to reduce the
2-dimenional lattice configuration to two 1-dimensional ones, on which the
value of the shift operator h is λ = 1,−1, and the eigenvectors are 1√

2
(1, 1),

1√
2
(1,−1). We have inserted

√
2 factors only for convenience, in order that

the eigenvectors be normalized unit vectors.

3.8.2 Discrete Fourier transforms

Now let us generalize this reduction to a 1-dimensional periodic lattice with
N sites.

Each application of h translates the lattice one step; in N steps the
lattice is back in the original configuration

hN = 1 ,

so the eigenvalues of h are the N distinct N -th roots of unity

hN − 1 =
N−1∏
k=0

(h − ωk1) = 0 , ω = ei 2π
N . (3.51)

As the eigenvalues are all distinct and N in number, the space is decom-
posed into N one-dimensional subspaces. The general theory (expounded in
appendix A.1) associates with the k-th eigenvalue of h a projection operator
that projects a configuration φ onto k-th eigenvector of h,

Pk =
∏
j �=k

h − λj1
λk − λj

. (3.52)

A factor (h − λj1) kills the j-th eigenvector ϕj component of an arbitrary
vector in expansion φ = · · ·+ φ̃jϕj + · · ·. The above product kills everything
but the eigendirection ϕk, and the factor

∏
j �=k(λk − λj) ensures that Pk is

normalized as a projection operator. The set of the projection operators is
complete∑

k

Pk = 1 (3.53)

and orthonormal

PkPj = δkjPk (no sum on k) . (3.54)

Constructing explicit eigenvectors is usually not a the best way to fritter
one’s youth away, as choice of basis is largely arbitrary, and all of the
content of the theory is in projection operators [3.11]. However, in case at
hand the eigenvectors are so simple that we can forget the general theory,
and construct the solutions of the eigenvalue condition

hϕk = ωkϕk (3.55)
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by hand:

1√
N



0 1
0 1

0 1
. . .
0 1

1 0





1
ωk

ω2k

ω3k

...
ω(N−1)k

 = ωk 1√
N



1
ωk

ω2k

ω3k

...
ω(N−1)k


The 1/

√
N factor is chosen in order that ϕk be normalized unit vectors

ϕ†
k · ϕk =

1
N

N−1∑
k=0

1 = 1 , (no sum on k)

ϕ†
k =

1√
N

(
1, ω−k, ω−2k, · · · , ω−(N−1)k

)
. (3.56)

The eigenvectors are orthonormal

ϕ†
k · ϕj = δkj , (3.57)

as the explicit evaluation of ϕ†
k · ϕj yields the Kronecker delta function for

a periodic lattice

δkj =
1
N

N−1∑
�=0

ei 2π
N

(k−j)� . (3.58)

The sum is over the N unit vectors pointing at a uniform distribution of
points on the complex unit circle; they cancel each other unless k = j (mod
N), in which case each term in the sum equals 1.

The projection operators can be expressed in terms of the eigenvectors
(3.55), (3.56) as

(Pk)��′ = (ϕk)�(ϕ
†
k)�′ =

1
N

ei 2π
N

(�−�′)k , (no sum on k) . (3.59)

The completeness (3.53) follows from (3.58), and the orthonormality (3.54)
from (3.57).

φ̃k, the projection of the φ configuration on the k-th subspace is given
by

(Pk · φ)� = φ̃k (ϕk)� , (no sum on k)

φ̃k = ϕ†
k · φ =

1√
N

N−1∑
�=0

e−i 2π
N

k�φ� (3.60)

We recognize φ̃k as the discrete Fourier transform of φ�. Hopefully redis-
covering it this way helps you a little toward understanding why Fourier
transforms are full of eix·p factors (they are eigenvalues of the generator of
translations) and when are they the natural set of basis functions (only if
the theory is translationally invariant).

Now insert the identity
∑

Pk = 1 wherever profitable:

M = 1M1 =
∑
kk′

PkMPk′ =
∑
kk′

ϕk(ϕ
†
k · M · ϕk′)ϕ†

k′ .
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The matrix

M̃kk′ = (ϕ†
k · M · ϕk′) (3.61)

is the Fourier space representation of M. No need to stop here - the terms
in the action (3.15) that couple 3, 4, · · · fields also have the Fourier space
representations

γ�1�2···�n φ�1φ�2 · · ·φ�n = γ̃k1k2···kn φ̃k1 φ̃k2 · · · φ̃kn ,

γ̃k1k2···kn = γ�1�2···�n(ϕk1)�1(ϕk2)�2 · · · (ϕkn)�n

=
1

Nn/2

∑
�1···�n

γ�1�2···�n e−i 2π
N

(k1�1+···+kn�n) .(3.62)

According to (3.57) the matrix Uk� = (ϕk)� = 1√
N

ei 2π
N

k� is a unitary ma-

trix, and the Fourier transform is a linear, unitary transformation UU † =∑
Pk = 1 with Jacobian det U = 1. The form of the path integral (3.16)

does not change under φ → φ̃k transformation, and from the formal point
of view, it does not matter whether we compute in the Fourier space or in
the configuration space that we started out with. For example, the trace of
M is the trace in either representation

trM =
∑

�

M�� =
∑
kk′

∑
�

(PkMPk′)��

=
∑
kk′

∑
�

(ϕk)�(ϕ
†
k · M · ϕk′)(ϕ†

k′)� =
∑
kk′

δkk′M̃kk′ = tr M̃ .(3.63)

From this it follows that trMn = tr M̃n, and from the tr ln = ln tr relation
that det M = det M̃. In fact, any scalar combination of φ’s, J ’s and
couplings, such as the partition function Z[J ], has exactly the same form
in the configuration and the Fourier space.

OK, a dizzying quantity of indices. But what’s the pay-back?

3.8.3 Lattice Laplacian diagonalized

Now use the eigenvalue equation (3.55) to convert h matrices into scalars.
If M commutes with h, then (ϕ†

k ·M ·ϕk′) = M̃kδkk′, and the matrix M acts
as a multiplication by the scalar M̃k on the k-th subspace. For example, for
the 1-dimensional version of the lattice Laplacian (3.40) the projection on
the k-th subspace is

(ϕ†
k · ∆ · ϕk′) =

2
a2

(
1
2
(ω−k + ωk) − 1

)
(ϕ†

k · ϕk′)

=
2
a2

(
cos

(
2π

N
k

)
− 1

)
δkk′ (3.64)

In the k-th subspace the bare propagator (3.42) is simply a number, and,
in contrast to the mess generated by (3.42), there is nothing to inverting
M−1:

(ϕ†
k·M ·ϕk′) = (G̃0)kδkk′ =

1
β

δkk′

m′2
0 − 2

a2

∑d
µ=1

(
cos

(
2π
N kµ

)− 1
) , (3.65)
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where k = (k1, k2, · · · , kµ) is a d-dimensional vector in the Nd-dimensional
dual lattice.

Going back to the partition function (3.23) and sticking in the factors
of 1 into the bilinear part of the interaction, we replace the spatial J� by its
Fourier transform J̃k, and the spatial propagator (M)��′ by the diagonalized
Fourier transformed (G̃0)k

JT ·M ·J =
∑
k,k′

(JT ·ϕk)(ϕ
†
k ·M ·ϕk′)(ϕ†

k′ ·J) =
∑

k

J̃†
k(G̃0)kJ̃k .(3.66)

What’s the price? The interaction term SI [φ] (which in (3.23) was local in
the configuration space) now has a more challenging k dependence in the
Fourier transform version (3.62). For example, the locality of the quartic
term leads to the 4-vertex momentum conservation in the Fourier space

SI [φ] =
1
4!

γ�1�2�3�4 φ�1φ�2φ�3φ�4 = −βu
Nd∑
�=1

(φ�)4 ⇒

= −βu
1

N3d/2

N∑
{ki}

δ0,k1+k2+k3+k4 φ̃k1 φ̃k2 φ̃k3 φ̃k4 . (3.67)

3.9 Continuum field theory

3.10 Summary and outlook

We have formulated the standard field-theoretic perturbation theory. From
here, any generalization and future direction is wide open.

Acknowledgement. I am indebted to Benny Lautrup both for my
first introduction to a lattice field theory, and for the interpretation of the
Fourier transform as the spectrum of the shift operator.
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Exercises
Exercise 3.1 Free-field theory combinatorics. Check that there indeed are

no combinatorial prefactors in the expansion (3.29).Exercise 3.2 Quality of asymptotic series. Use the saddle-point method to
evaluate Zn

Zn =
(−1)n

n!4n

∫
dφ√
2π

e−φ2/2+4n ln φ

Find the smallest error for a fixed g; plot both your error and the the exact result

(3.5) for g = 0.1, g = 0.02, g = 0.01. The prettiest plot makes it into these notes as

figure 3.1!Exercise 3.3 Complex Gaussian integrals. Read sect. 3.B, do exercise 3.B.1

of ref. [3.2].Exercise 3.4 Prove ln det = tr ln. (link here the ln det = tr ln problem sets,

already done).Exercise 3.5 Convexity of exponentials. Prove the inequality (3.7). Matthias

Eschrig suggest that a more general proof be offered, applicable to any monotone

descreasing sequence with alternating signs.Exercise 3.6 Wick expansion for φ4 theories. Derive (3.33), check the

combinatorial signs.Exercise 3.7 Wick expansions. Read sect. 3.C and do exercise 3.C.2 of

ref. [3.2].Exercise 3.8 Propagators in the configuration space. Define the finite
difference operator by f(x + f(x -a)

∂f(x) 2 a where a is the lattice spacing. Show that
1 d h (So’ + Sri 2d+a’3’
P if ji ,
where ∂2 = 911∂11 is the finite difference Laplacian. Show that the Euclidean

scalar lattice propagator (??) is given by
-1 ha’ 2 ij s
The mass in the continuum propagator (5.6) is related to the hopping parameter

by s
(5.9)

If the particle does not like hopping (h → O), the mass is infinite and there is

no propagation. If the particle does not like stopping (s -0), the mass is zero and

the particle zips all over the space. Diagonalize 32 by Fourier transforming and derive

(5.6).
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A.1 Invariant matrices and reducibility

The basic idea is simple; any hermitian (or, for real matrices, any symmet-
ric) matrix can be brought to diagonal form. If this matrix is an invariant
matrix, it decomposes the space into direct sums of lower-dimensional sub-
spaces. This topic is developed at great length in ref. [A.1]. For the humble
application at hand, even this appendix is an overkill, but it might give
you a feeling for how the Fourier analysis fits into the general theory of
invariance groups and their representations.

A.1.1 Definitions

Let V be the defining d-dimensional complex vector space, V̄ = {x̄ | x̄∗ ∈ V }
the conjugate space, and G a group acting linearly on V . The action of g ∈ G
on a vector x ∈ V is given by a [d×d] matrix representation G

x′
a = Gb

axb a, b = 1, 2, . . . , d . (A.1)

The repeated indices are always summed over unless explicitly stated
otherwise.

We distinguish the components of defining space vectors, resp. conjugate
vectors, by lower, resp. upper indices

x = (x1, x2, . . . , xn) , x ∈ V

x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (A.2)

The two spaces are related by complex conjugation, which is here indicating
by raising the vector index:

xa = (xa)∗ .

43
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The action of g ∈ G on a vector q̄ ∈ V̄ is given by the conjugate represen-
tation G†

x′a = xb(G†)a
b , (G†)a

b ≡ (Gb
a)

∗ (A.3)

A.1.2 Projection operators

A matrix is hermitian if its elements satisfy

(M †)a
b = Ma

b . (A.4)

For M a hermitian matrix, there exists a diagonalizing unitary matrix C:

CMC† =



λ1 0
0 λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

...

0 0
λ3 . . .
...

. . .


, λi 
= λj .(A.5)

Here λi are the r distinct roots of the minimal characteristic polynomial
r∏

i=1

(M − λi1) = 0 . (A.6)

In the matrix (M − λ21) the eigenvalues corresponding to λ2 are replaced
by zeroes:

C(M − λ21)C† =



λ1 − λ2

λ1 − λ2

λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .




so the product over all factors (M − λ11)(M − λ31) . . . with exception of
the (M − λ21) factor has non-zero entries only in the subspace associated
with λ1:

C
∏
j �=1

(M − λj1)C† =
∏
j �=1

(λ1 − λj)



1
1

1
0

0
. . .

0


.

In this way we can associate with each distinct root λi a projection operator
Pi

Pi =
∏
j �=i

M − λj1
λi − λj

, (A.7)
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which is identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†



1
1

1
0

0
0

. . .
0


C . (A.8)

It follows from the characteristic equation (A.6) that λi is the eigenvalue
of M on Pi subspace:

MPi = λiPi , (no sum on i) , (A.9)

and that any matrix polynomial f(M) takes scalar value f(λi) on the Pi

subspace

f(M)Pi = f(λi)Pi . (A.10)

The matrices Pi are orthonormal �
PiPj = δijPj , (no sum on j) , (A.11)

and satisfy a completeness relation

r∑
i=1

Pi = 1 . (A.12)

As tr (CPiC
+) = tr Pi, the dimension of the i-th subspace is given by

di = tr Pi . (A.13)

A.1.3 Decomposition of representations

A matrix M is invariant if it commutes with all group transformations
[G, M ] = 0. Projection operators (A.7) constructed from M are polynomials
in M , so they also commute with all g ∈ G:

[G, Pi] = 0 , (A.14)

(remember that Pi are [d × d] matrices). Hence a [d × d] matrix represen-
tation can be written as a direct sum of [di × di] matrix representations

G = 1G1 =
∑
i,j

PiGPj =
∑

i

PiGPi =
∑

i

Gi . (A.15)

In the diagonalized representation (A.8), the matrix G has a block di-
agonal form:

CGC† =

G1 0 0
0 G2 0

0 0
. . .

 , G =
∑

i

CiGiCi . (A.16)
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Representation Gi acts only on the di dimensional subspace Vi consisting
of vectors Piq, q ∈ Ṽ . In this way an invariant [d × d] hermitian matrix
M with r distinct eigenvalues induces a decomposition of a d-dimensional
vector space Ṽ into a direct sum of di-dimensional vector subspaces Vi

Ṽ
M

→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (A.17)

On the one-dimensional spaces the group acts trivially, G = 1.
If a projection operator projects onto a zero-dimensional subspace, it

must vanish identically

di = 0 =⇒ Pi = 0 . (A.18)

This follows from (A.8); di is the number of 1’s on the diagonal on the
right-hand side. The general form of Pi is

Pi =
r∑

k=1

ckMk (A.19)

where Mk are the invariant matrices used in construction of the projec-
tor operators, and ck are numerical coefficients. Vanishing of Pi therefore
implies linear dependence among invariant matrices Mk.
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