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Figure 1.4 A turbulent spot triggered by jets in the wall of plane Poiseuille flow at
R = 1000, where R = Vd /v, V is the maximum velocity of the flow, and the walls are
separated by a distance 2d. (From Carlson et al., 1982, Fig. 4.)

by use of the compact disk of Homsy et al. (CD2000); this CD is currently
more readily available than the film loops or their video versions, although
briefer. Under the heading Video Library and subheadings ‘Reynolds Transition
Apparatus” and ‘The Reynolds Transition Experiment’, some short videos
of recent experiments on Reynolds’s original apparatus are shown; further
experiments can be found under the subheadings ‘Pipe Flow’, “Tube Flow’ and
“Turbulent Pipe Flow’. Under the heading Boundary Layers and subheadings
‘Instability, Transition and Turbulence’ and ‘Instability and Transition in Pipe
and Duct Flow’ more short videos are available.

1.2 The Methods of Hydrodynamic Stability

It may help at the outset to recognize that hydrodynamic stability has a lot in
common with stability in many other fields, such as magnetohydrodynamics,
plasma physics, elasticity, rheology, combustion and general relativity. The
physics may be very different but the mathematics is similar. The mathemat-
ical essence is that the physics is modelled by nonlinear partial differential
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equations and the stability of known steady and unsteady solutions is examined.
Hydrodynamics happens to be a mature subject (the Navier—Stokes equations
having been discovered in the first half of the nineteenth century), and a given
motion of a fluid is often not difficult to produce and to see in a laboratory, so
hydrodynamic stability has much to tell us as a prototype of nonlinear physics
in a wider context.

We learn about instability of flows and transition to turbulence by various
means which belong to five more-or-less distinct classes:

(1) Natural phenomena and laboratory experiments. Hydrodynamic instabil-
ity would need no theory if it were not observable in natural phenom-
ena, man-made processes, and laboratory experiments. So observations of
nature and experiments are the primary means of study. All theoretical
investigations need to be related, directly or indirectly, to understand-
ing these observations. Conversely, theoretical concepts are necessary to
describe and interpret observations.

(2) Numerical experiments. Computational fluid dynamics has become
increasingly important in hydrodynamic stability since 1980, as numerical
analysis has improved and computers have become faster and gained more
memory, so that the Navier-Stokes equations may be integrated accurately
for more and more flows. Indeed, computational fluid dynamics has now
reached a stage where it can rival laboratory investigation of hydrodynamic
stability by simulating controlled experiments.

(3) Linear and weakly nonlinear theory. Linearization for small perturbations
of a given basic flow is the first method to be used in the theory of hydro-
dynamic stability, and it was the method used much more than any other
until the 1960s. It remains the foundation of the theory. However, weakly
nonlinear theory, which builds on the linear theory by treating the leading
nonlinear effects of small perturbations, began in the nineteenth century,
and has been intensively developed since 1960.

(4) Qualitative theory of bifurcation and chaos. The mathematical theory of
differential equations shows what flows may evolve as the dimensionless
parameters, for example the Reynolds number, increase. The succession of
bifurcations from one regime of flow to another as a parameter increases
cannot be predicted quantitatively without detailed numerical calculations,
but the admissible and typical routes to chaos and thence turbulence may
be identified by the qualitative mathematical theory. Thus the qualitative
theory of dynamical systems, as well as weakly nonlinear analysis, pro-
vides a useful conceptual framework to interpret laboratory and numerical
experiments.
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(5) Strongly nonlinear theory. There are various mathematically rigorous
methods, notably Serrin’s theorem and Liapounov’s direct method, which
give detailed results for arbitrarily large perturbations of specific flows.
These results are usually bounds giving sufficient conditions for stability
of a flow or bounds for flow quantities.

The plan of the book is to develop the major concepts and methods of the
theory in detail, and then apply them to the instability of selected flows, relating
the theoretical to the experimental results. This plan is itemized in the list of
contents. First, in this and the next chapter, many concepts and methods will
be described, and illustrated by simple examples, Then, case by case, these
methods and concepts, together with some others, will be used in the later
chapters to understand the stability of several important classes of flows. The
theory of hydrodynamic stability has been applied to so many different classes
of flow that it is neither possible nor desirable to give a comprehensive treatment
of the applications of the theory in a textbook. The choice of applications below
is rather arbitrary, and perhaps unduly determined by tradition. However, the
choice covers many useful and important classes of flow, and illustrates well
the five classes of general method summarized above.

1.3 Further Reading and Looking

It may help to read some of the following books to find fuller accounts of
many points of this text. Many of the books are rather out of date, being
written before the advent of computers had made much impact on the theory of
hydrodynamic stability. (Perhaps computational fluid dynamics has led to the
most important advances in recent years, and perhaps the theory of dynamical
systems or applications of the theory has led to a wider physical range of new
problems.) However, the subject is an old one, with most of the results of
enduring importance, so these books are still valuable.

Betchov & Criminale (1967) is a monograph largely confined to the linear
theory of the stability of parallel flows, covering numerical aspects especially
well. Chandrasekhar (1961) is an authoritative treatise, a treasure house of
research results of both theory and experiment. It emphasizes the linear stability
of flows other than parallel flows, with influence of exterior fields such as
magnetohydrodynamic, buoyancy and Coriolis forces. Its coverage of the lit-
erature is unusual, informative and of great interest. Drazin & Reid (1981) is
a monograph with a broad coverage of the subject. It has several problems
for students, but few of them are easy. Huerre & Rossi (1998) is a set of
‘lecture notes’, though at an appreciably higher level than this book. It is an
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account, mostly of linear stability of mostly parallel flows, with good modern
coverage of numerical and experimental as well as theoretical results. J oseph
(1976) is a monograph which emphasizes nonlinear aspects, especially the
energy method, but has a broad coverage of basic flows. Landau & Lifshitz
(1987) is a great treatise masquerading as a textbook; it summarizes the phys-
ical essentials of hydrodynamic stability with masterly brevity. Lin (1955) is
a classic monograph, largely confined to the linear stability of parallel flows
of a viscous fluid, the complement of Chandrasekhar’s treatise. Schmid &
Henningson (2001) is an up-to-date comprehensive research monograph on
instability and transition of parallel flows.

We have already referred to pictures to enrich understanding of Reynolds’s
experiment. Such pictures are, of course, as valuable in the understanding of
many other hydrodynamic instabilities. Van Dyke (1982) is a beautiful collec-
tion of photographs of flows, including hydrodynamic instabilities. Nakayama
(1988) is another fine collection of photographs of flows, including hydrody-
namic instabilities. Look at the photographs relevant to hydrodynamic stability,
think about them, and relate them to the theory of this book. However, hydro-
dynamic instability is a dynamic phenomenon, best seen in motion pictures.
So, many relevant films, film loops and videos, and the compact disk of Homsy
et al. (CD2000), are listed in the Motion Picture Index at the end of the list of
references. It is appropriate to add some words of caution here. The results of
visualization of unsteady flows are liable to be misinterpreted. Be careful. In
particular, make sure that you understand the difference between streamlines,
streaklines and particle paths before you jump to too many conclusions.
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Therefore
u'(t) = u(0)e*,

where the exponent s = a, = k(R — R;) for k > 0 (in realistic applications).
Then there is linear stability, with exponential decay, if R < R. and linear
instability, with exponential growth, if R > Rc. This solution of the linearized
equation which grows exponentially with time is an example of a normal mode.

I U==[k(R—-R.)/1? for I>0,R>R., then we similarly find
' (t) = u(0)e™*, but where now

s=a—3lU%=-2k(R—Rc) <0

and so gives supercritical stability, as indicated in Figure 2.12(a).
All these results may be confirmed by use of the ‘exact’ explicit solution of
the Landau equation. []

Example 2.9: A Hopf bifurcation. Consider

e 2.2 dy _ 22
i y+(a—x*—y)x, i =x+(a —x*—y*)y,

where a = k(R — R¢), k > 0. The only steady solution of this system is the null
solution x = y = 0. To find its stability we linearize the system with respect
to small perturbations of the null solution, finding

— = +ax Sl—)i—-x-i-a
dt— Yy 4 dt— Y.

We solve this linearized system by again using the method of normal modes,
that is, by supposing that x, y o e, and deducing that

sXxX=ax -y, sy = x +ay,

and therefore that s is an eigenvalue of the matrix
ta -1
I= [1 a ] ' :

0 =det(J —sI) = (a — 5)® + 1.

Therefore

Therefore

s=axi=k(R—-Rc) ki
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2.12 - Bifurcation diagrams in the (R, u)-plane for the Landau equation:
itical stability, ! > 0; (b) subcritical instability, I < 0. -

plex constant A, which may be determined by use: ,
ns, where an asterisk is used as a superscript to. denote
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conjugation. This gives stability, with exponential decay, if Re(s) < 0 for both
eigenvalues, that is, if R < R, and similarly instability if R > R..

In fact it is informative to transform to polar coordinates r, §, where r > 0,
x =rcosf, y = rsinf, in which the system decouples as

dr_ y ¥ _
E?‘r(a_r)’, dr
and thence to find the exact solution. The solution (in Example 2.8) implies
that 7(r) - O ast — oo forall r(0) if R < Rc and r(t) — a'/? = [k(R —
R:))/2 ast — oo for all 7(0) if R > R.. Also 6(¢) = 6o + ¢ for all 8(0) =
o. This gives, for all R > R, a nonlinear solution x = rcos@,y = rsiné
of period 27 as t — oo. Such a periodic solution of a differential equation
which is approached by neighbouring solutions as time increases is called a
limit cycle. Two typical orbits in the phase plane of (x, y), as ¢ increases, are
shown in Figure 2.13 for the case R > R,; note how the limit cycle attracts
neighbouring orbits.

This example is typical of Hopf bifurcations, in which the real part Re(s) of
a complex conjugate pair of eigenvalues increases through zero as a parameter
increases or decreases through a critical value, here as R increases through
Rc, and an oscillatory solution bifurcates from the steady solution where it
becomes unstable. Of course, it is no accident that a real system often has a
complex conjugate pair of eigenvalues, so we meet Hopf bifurcations for partial
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Figure 2.13 Two orbits in the (x, y)-plane for the system dx/dt = dx/dt =
—y+(@a—x*— yH)x, dy/dt =x+4+(a—x -—yz)y of Example 2.9 when R > R.. (After
P. Drazin & T. Kambe, Ryutai Rikigaku — Anteisei To Ranyu (Fluid Dynamics — -
Stability and Turbulence), University of Tokyo Press, 1989, Fig. 2.10. Reproduced by -
permission of the University of Tokyo Press.) 'f
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differential systems governing flows as well as for this simple example of an
ordinary differential equation. So it is important to determine from the linear
problem whether the exponent s is zero or purely imaginary at the margin
of stability: in the former case a turning point, a transcritical or pitchfork
bifurcation typically occurs, and in the latter case a Hopf bifurcation. In the
JSluid dynamical context, it is sometimes said that the principle of exchange of
stabilities is valid when the time exponent of the least stable normal mode is
zero at the margin of stability. [J

Before moving on, note that we have used a complex representation of a
real solution of a real problem in Example 2.9. This idea, based on the property
that if a complex function satisfies a real homogeneous equation, then the
real and imaginary parts of the function satisfy the equation separately, will be
exploited often in the pages that follow. We shall write the complex solution of a
real linearized equation or system of equations, meaning implicitly that its real
part represents the appropriate physical quantity such as a perturbation of a
velocity component or the pressure; for example, we may write x () = Ae(@+D?,
where A is some complex constant, to mean its real part %(Aei’ +A*e i)e? =
|Ale®* cos(t + arg A). This is the traditional way to use the method of normal
modes. -

These examples have been chosen for their simplicity rather than to illustrate
all aspects of hydrodynamic stability. One common phenomenon they do not
illustrate is the instability of the supercritically stable bifurcated flow itself
as the Reynolds number increases substantially above the critical value for a

 pitchfork or Hopf bifurcation. Then we call the first flow the primary flow, its
 instability the primary instability, the supercritically stable flow the secondary
- flow and its instability the secondary instability. These successive instabilities
.~ are discussed further in §9.1.
This section as a whole serves to introduce some important concepts (basic
. solution, stability, bifurcation) and methods (linearization, normal modes) of
the theory of hydrodynamic stability by use of simple ordinary differential
- equations. Ordinary differential equations will be used later to illustrate other
important concepts (such as quasi-periodic solutions and chaos) and methods
/(weakly nonlinear perturbation) of hydrodynamic stability. However, it should
t be forgotten that the motion of a fluid involves space as well as time,
‘and that it is modelled by partial differential equations. This means that the
e of ordinary differential models is limited, albeit valuable pedagogically.
‘More realistic models with the partial differential equations of hydrodynamics
-are treated in the next section, which covers some fundamental concepts and
‘methods of the theory of hydrodynamic stability, especially the linear theory.




