Chapter 6

Partial Differential Equations

Most differential equations of physics involve quantities depending on both
space and time. Inevitably they involve partial derivatives, and so are par-
tial differential equations (PDE’s). Although PDE’s are inherently more
complicated that ODE’s, many of the ideas from the previous chapters — in
particular the notion of self adjointness and the resulting completeness of the
eigenfunctions — carry over to the partial differential operators that occur
in these equations.

6.1 Classification of PDE’s

We focus on second-order equations in two variables, such as the wave equa-
tion

L T — f(x,1), (Hyperbolic) (6.1)

Laplace or Poisson’s equation
Py | Py

., + -
ox?  Oy?
or Fourier’s heat equation
0? 0
a—xf - ﬁa—f = f(z,t).  (Parabolic) (6.3)
What do the names hyperbolic, elliptic and parabolic mean? In high-
school co-ordinate geometry we learned that a real quadratic curve

= f(z,y), (Elliptic) (6.2)

az® + 2bxy + cy® + fr+gy+h =0 (6.4)
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represents a hyperbola, an ellipse or a parabola depending on whether the
discriminant, ac — b, is less than zero, greater than zero, or equal to zero,
these being the conditions for the matrix

[Z i’} (6.5)

to have signature (4, —), (+,+) or (+,0).
By analogy, the equation
2 2 o2

— +2 + — + (lown = .
a(x,y) 2 b(x,y) w0y c(z,y) " (lower orders) = 0, (6.6)

is said to be hyperbolic, elliptic, or parabolic at a point (x,y) if

alz,y) bz,y)| _ o
b(z,y) C($,y)‘_(ac )| @), (6.7)

is less than, greater than, or equal to zero, respectively. This classification
helps us understand what sort of initial or boundary data we need to specify
the problem.

There are three broad classes of boundary conditions:

a) Dirichlet boundary conditions: The value of the dependent vari-
able is specified on the boundary.
b) Neumann boundary conditions: The normal derivative of the de-
pendent variable is specified on the boundary.
¢) Cauchy boundary conditions: Both the value and the normal deriva-
tive of the dependent variable are specified on the boundary.
Less commonly met are Robin boundary conditions, where the value of a
linear combination of the dependent variable and the normal derivative of
the dependent variable is specified on the boundary.

Cauchy boundary conditions are analogous to the initial conditions for a
second-order ordinary differential equation. These are given at one end of
the interval only. The other two classes of boundary condition are higher-
dimensional analogues of the conditions we impose on an ODE at both ends
of the interval.

Each class of PDE’s requires a different class of boundary conditions in
order to have a unique, stable solution.

1) Elliptic equations require either Dirichlet or Neumann boundary con-
ditions on a closed boundary surrounding the region of interest. Other
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boundary conditions are either insufficient to determine a unique solu-
tion, overly restrictive, or lead to instabilities.

2) Hyperbolic equations require Cauchy boundary conditions on a open
surface. Other boundary conditions are either too restrictive for a
solution to exist, or insufficient to determine a unique solution.

3) Parabolic equations require Dirichlet or Neumann boundary condi-
tions on a open surface. Other boundary conditions are too restrictive.

6.2 Cauchy data
Given a second-order ordinary differential equation

poy" +p1y +poy=f (6.8)

with initial data y(a), y'(a) we can construct the solution incrementally. We
take a step dx = ¢ and use the initial slope to find y(a + ) = y(a) + ey’ (a).
Next we find 3”(a) from the differential equation

1
y'(a) = —p—o(ply’(a) +pay(a) — f(a)), (6.9)
and use it to obtain y'(a 4+ ¢) = y'(a) + €y”(a). We now have initial data,
y(la+e), y'(a+e), at the point a+ ¢, and can play the same game to proceed

to a + 2¢, and onwards.

Figure 6.1: The surface I' on which we are given Cauchy Data.

Suppose now that we have the analogous situation of a second order
partial differential equation

2
a(x) &igx” + (lower orders) = 0. (6.10)
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in R™. We are also given initial data on a surface, I', of co-dimension one in
R™.

At each point p on I' we erect a basis n, t{,ts,...,t,_1, consisting of the
normal to I' and n — 1 tangent vectors. The information we have been given
consists of the value of ¢ at every point p together with

90 et nua_go
on Ozt

the normal derivative of ¢ at p. We want to know if this Cauchy data
is sufficient to find the second derivative in the normal direction, and so
construct similar Cauchy data on the adjacent surface I' + en. If so, we can
repeat the process and systematically propagate the solution forward through
R™.

From the given data, we can construct

(6.11)

82@ def jrnZ a2go
= n . s
onot; " QxtOxY
92 . 92
L iy (6.12)
ot;0t; T Ozt Oz
but we do not yet have enough information to determine
82 o 82
L g (6.13)
onon oxHoxv

Can we fill the data gap by using the differential equation (6.10)? Suppose
that
D
OxrozY
where ¢f” is a guess that is consistent with (6.12), and ® is as yet unknown,
and, because of the factor of n*n”, does not affect the derivatives (6.12). We
plug into

=" +n*n"® (6.14)

2
aw,(:ci)% + (known lower orders) = 0. (6.15)

and get
a,,n'n”® + (known) = 0. (6.16)

We can therefore find ® provided that

a,,mt'n” # 0. (6.17)
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If this expression is zero, we are stuck. It is like having po(x) = 0 in an
ordinary differential equation. On the other hand, knowing ® tells us the
second normal derivative, and we can proceed to the adjacent surface where
we play the same game once more.

Definition: A characteristic surface is a surface ¥ such that a,,n*n” =0
at all points on . We can therefore propagate our data forward, provided
that the initial-data surface I' is nowhere tangent to a characteristic surface.
In two dimensions the characteristic surfaces become one-dimensional curves.
An equation in two dimensions is hyperbolic, parabolic, or elliptic at at a
point (x,y) if it has two, one or zero characteristic curves through that point,
respectively.

Characteristics are both a curse and blessing. They are a barrier to
Cauchy data, but, as we see in the next two subsections, they are also the
curves along which information is transmitted.

6.2.1 Characteristics and first-order equations

Suppose we have a linear first-order partial differential equation
ole. )+ bag) 5 + el = fa.y). (6.18)

We can write this in vector notation as (v - V)u + cu = f, where v is the
vector field v = (a,b). If we define the flow of the vector field to be the
family of parametrized curves z(t), y(t) satisfying

dx - dy B
- =awy), o =by), (6.19)

then the partial differential equation (6.18) reduces to an ordinary linear
differential equation

du
- Teult) = f(t) (6.20)
along each flow line. Here,
u(t) = u(z(t),y(t)),

f) = flat),y(t)). (6.21)
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bad!

X

Figure 6.2: Initial data curve I', and flow-line characteristics.

Provided that a(z,y) and b(z,y) are never simultaneously zero, there will be
one flow-line curve passing through each point in R2. If we have been given
the initial value of u on a curve I" that is nowhere tangent to any of these flow
lines then we can propagate this data forward along the flow by solving (6.20).
On the other hand, if the curve I' does become tangent to one of the flow
lines at some point then the data will generally be inconsistent with (6.18)
at that point, and no solution can exist. The flow lines therefore play a role
analagous to the characteristics of a second-order partial differential equation,
and are therefore also called characteristics. The trick of reducing the partial
differential equation to a collection of ordinary differential equations along
each of its flow lines is called the method of characteristics.

Exercise 6.1: Show that the general solution to the equation

is
o(r,y) =V f(z+y),

where f is an arbitrary function.

6.2.2 Second-order hyperbolic equations

Consider a second-order equation containing the operator
2 82 82

(6.22)
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We can always factorize
aX?4+20XY +cY? = (aX + BY)(yX +6Y), (6.23)

and from this obtain
0? 0? 0? 0 0 0 0
a8x2 + 2b8:c8y + 08—y2 = <a8_:c + ﬁﬁ_y) (Va—x + 58_y> + lower,

- g+5g ozg—irﬁﬁ + lower
- Vb oy Ox oy ‘

(6.24)

Here “lower” refers to terms containing only first order derivatives such as

Q@ 8_7 g 16} @ ﬁ etc
Ox ) Ox’ oy ) oy’ '

A necessary condition, however, for the coefficients «, (3, v, § to be real is that

1
ac—b* = afyo— 1(&5 + 7)?

—%(ac? —By)? <. (6.25)
A factorization of the leading terms in the second-order operator D as the
product of two real first-order differential operators therefore requires that
D be hyperbolic or parabolic. It is easy to see that this is also a sufficient
condition for such a real factorization. For the rest of this section we assume
that the equation is hyperbolic, and so

ac— b = —=(ad — Bv)* < 0. (6.26)

1
4
With this condition, the two families of flow curves defined by

o dr dy
Cl . E - 04(%1/); dt - ﬁ(l’,y), (627)
and p J
. T Y9 _

are distinct, and are the characteristics of D.
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A hyperbolic second-order differential equation Du = 0 can therefore be
written in either of two ways:

0 0
(Oéa—x—i—ﬁa—y) U1+F1 —O, (629)
or 8 a
where
ou ou
U1 = ”}/% + 5a—y,
ou ou
U2 = Oéa—x + ﬁa—y, (631)

and F) o contain only Ou/0x and Ou/dy. Given suitable Cauchy data, we
can solve the two first-order partial differential equations by the method
of characteristics described in the previous subsection, and so find U;(x,y)
and Us(z,y). Because the hyperbolicity condition (6.26) guarantees that the
determinant

YO0 _ s

o Bl V6 — ad

is not zero, we can solve (6.31) and so extract from U » the individual deriva-
tives Ou/0zx and Ou/0y. From these derivatives and the initial values of u,
we can determine u(x,y).

6.3 Wave equation

The wave equation provides the paradigm for hyperbolic equations that can
be solved by the method of characteristics.

6.3.1 d’Alembert’s solution

Let o(z,t) obey the wave equation

Po 1 0%
w—ng(), —00 < & < 0. (6.32)
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We use the method of characteristics to propagate Cauchy data ¢(z,0) =
wo(x) and $(x,0) = vo(x), given on the curve I' = {x € R, ¢ = 0}, forward
in time.

We begin by factoring the wave equation as

2 2
Thus,
(% + %%) U -V)=0, (6.34)
where
Uzdzg% v:%¢:%%ﬁ (6.35)

The quantity U — V' is therefore constant along the characteristic curves
x — ct = const. (6.36)

Writing the linear factors in the reverse order yields the equation
o 10
(— — ——) (U+V)=0. (6.37)
c

This implies that U 4+ V' is constant along the characteristics
x + ct = const. (6.38)
Putting these two facts together tells us that

Viat) = SWV(et)+ Ul )]+ 5V, t) - Ul 1)

N — N~

1
(V(z+ct' 0)+Ulx+ct'0)] + §[V(1’ —ct',0) = U(x — ct',0)].
(6.39)
The value of the variable V' at the point (z,t’) has therefore been computed

in terms of the values of U and V on the initial curve I'. After changing
variables from t' to £ = x &+ ct’ as appropriate, we can integrate up to find
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that

t
o(x,t) = go(:v,O)+c/ V(x,t')dt

0

z+ct r—ct r+ct
— p(@.0) 41 / S(6,0) de + + / S(6,0) de + = / B(€.0) d

2 2 2C Jorut
1 x+ct
= S {plr+ct,0) +plx —ct,0)} + 2—6/ H(E,0) de. (6.40)
x—ct
This result
1 1 x+ct
plo.t) =5 {anle )+ nlo =) + 5o [ w(@ds (64)
x—ct

is usually known as d’Alembert’s solution of the wave equation. It was actu-
ally obtained first by Euler in 1748.

t

(x,1)
X—ct=const. X+ct=const.
N <
xX—ct xX+ct
X

Figure 6.3: Range of Cauchy data influencing p(x,t).

The value of ¢ at x,t, is determined by only a finite interval of the initial
Cauchy data. In more generality, ¢(z,t) depends only on what happens in
the past light-cone of the point, which is bounded by pair of characteristic
curves. This is illustrated in figure 6.3

D’Alembert and Euler squabbled over whether ¢, and vy had to be twice
differentiable for the solution (6.41) to make sense. Euler wished to apply
(6.41) to a plucked string, which has a discontinuous slope at the plucked
point, but d’Alembert argued that the wave equation, with its second deriva-
tive, could not be applied in this case. This was a dispute that could not be
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resolved (in Euler’s favour) until the advent of the theory of distributions. It
highlights an important difference between ordinary and partial differential
equations: an ODE with smooth coefficients has smooth solutions; a PDE
with with smooth coefficients can admit discontinuous or even distributional
solutions.

An alternative route to d’Alembert’s solution uses a method that applies
most effectively to PDE’s with constant coefficients. We first seek a general
solution to the PDE involving two arbitrary functions. Begin with a change
of variables. Let

& = x+ct,
n = x—ct. (6.42)
be light-cone co-ordinates. In terms of them, we have
1
1
b= o(E-n). (6.43)
c
Now,
o Jdro odo 1[0 10
Similarly
0 170 10
Thus
2 2 2
O 1O _ (9 19N\(9 10N _, O (6.46)
ox? 2 ot? Jdr cot Jdr cOt 0&0n
The characteristics of the equation
Al
48{877 =0 (6.47)

are & = const. or 1 = const. There are two characteristics curves through
each point, so the equation is still hyperbolic.
With light-cone coordinates it is easy to see that a solution to

21 9
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is
p(x,t) = f(&) +9(n) = flz+ct)+glz—ct). (6.49)
It is this this expression that was obtained by d’Alembert (1746).
Following Euler, we use d’Alembert’s general solution to propagate the
Cauchy data ¢(z,0) = po(z) and ¢(z,0) = vo(x) by using this information
to determine the functions f and g. We have

f(@) +9(x) = @ol),

o(f'(x) —g'(x)) = wol). (6.50)
Integration of the second line with respect to z gives
1 x
fla) = g(0) = ¢ [ we)ds+ A (6:51)
0

where A is an unknown (but irrelevant) constant. We can now solve for f
and g, and find

fla) = goule)+ 5 [ @) de+ 34,

2 2c
1 Y 1
ole) = genlo) =g [ w(e)de—3A (6.52)
and so
1 T+ct
oz, t) = 3 {po(z +ct) + oz —ct)} + % /x_ct vo(€) dE. (6.53)

The unknown constant A has disappeared in the end result, and again we
find “d’Alembert’s” solution.

Exercise 6.2: Show that when the operator D in a constant-coefficient second-
order PDE Dy = 0 is reducible, meaning that it can be factored into two
distinct first-order factors D = Py P, where

0 0
Pi=aig- +ﬂia—y + i

then the general solution to Dy = 0 can be written as ¢ = ¢1 + ¢2, where

P11 = 0, Pogpo = 0. Hence, or otherwise, show that the general solution to

the equation
2 2
P Po O 00
Oxdy oy Ox oy
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(p(x,y) = f(2a: - y) + eyg(ac),

where f, g, are arbitrary functions.

Exercise 6.3: Show that when the constant-coefficient operator D is of the
form )
0 0
D=P=(a—+(—
<‘“ax *%”) ’
with a # 0, then the general solution to Dy = 0 is given by ¢ = ¢1 + z¢2,
where P¢1o=0. (If =0 and 3 # 0, then ¢ = ¢1 + y¢.)

6.3.2 Fourier’s solution

In 1755 Daniel Bernoulli proposed solving for the motion of a finite length L
of transversely vibrating string by setting

S t
y(x,t) = ZA" sin (?) cos (m;c ) , (6.54)
n=1

but he did not know how to find the coefficients A,, (and perhaps did not
care that his cosine time dependence restricted his solution to the intial
condition ¢(z,0) = 0). Bernoulli’s idea was dismissed out of hand by Euler
and d’Alembert as being too restrictive. They simply refused to believe that
(almost) any chosen function could be represented by a trigonometric series
expansion. It was only fifty years later, in a series of papers starting in
1807, that Joseph Fourier showed how to compute the A, and insisted that
indeed “any” function could be expanded in this way. Mathematicians have
expended much effort in investigating the extent to which Fourier’s claim is
true.

We now try our hand at Bernoulli’s game. Because we are solving the
wave equation on the infinite line, we seek a solution as a Fourier integral.
A sufficiently general form is

> dk —_ L
o) = [ T alR)et et (655)
oo 2T

where wy, = c|k| is the positive root of w? = ¢*k*. The terms being summed
by the integral are each individually of the form f(z—ct) or f(x+ct), and so
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o(z,t) is indeed a solution of the wave equation. The positive-root convention
means that positive k corresponds to right-going waves, and negative k to
left-going waves.

We find the amplitudes a(k) by fitting to the Fourier transforms

(k) / ol t = 0)e ™ dz,

x(k) = / pla,t = 0)e *da, (6.56)

plot=0) = / TR et (6.57)

(k) = iwk<a*(—k)—a(l€)). (6.58)

Solving, we find

a'(k) = = ((I)(—k)——x(—k)>. (6.59)

The accumulated wisdom of two hundred years of research on Fourier
series and Fourier integrals shows that, when appropriately interpreted, this
solution is equivalent to d’Alembert’s.

6.3.3 Causal Green function
We now add a source term:

1 0% %
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We solve this equation by finding a Green function such that

19
c2ot2  Ox?

) Gz, t;€,7) =0z — &)o(t — 7). (6.61)

If the only waves in the system are those produced by the source, we should
demand that the Green function be causal, in that G(z,¢;&,7) =0if t < 7.

t

(%)

X

Figure 6.4: Support of G(x,t;&, T) for fixed £, T, or the “domain of influence.”

To construct the causal Green function, we integrate the equation over
an infinitesimal time interval from 7 — € to 7 + ¢ and so find Cauchy data

Glx,T+¢e¢&71) = 0,

SO rraET) = Aor-g) (6.62)

We insert this data into d’Alembert’s solution to get

x4c(t—T)
Gl ti&7) = o=y [ e g

— ge(t—T) {e(x—uc(t—f)) —9(93—5‘6“‘7))}'
(6.63)

We can now use the Green function to write the solution to the inhomo-
geneous problem as

o(z,t) = // G(x,t;€,7m)q(&, 7) drd€. (6.64)
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The step-function form of G(x,t; ¢, 7) allows us to obtain
o) = [ Glatse e arde
z4c(t—T)
= / dT/ T) d¢
x—c(t—)
= 5[] ae.rarde (6.65)
2J)Ja

where the domain of integration € is shown in figure 6.5.

T

(x.1)

\

x-c(t-T) - X+c(t-T)

(S

Figure 6.5: The region €2, or the “domain of dependence.”

We can write the causal Green function in the form of Fourier’s solution
of the wave equation. We claim that

—&) ,—iw(t—7)
Gz, t;€,7) = c?/_ / {@k? Fw+i5)2}, (6.66)

where the ¢ plays the same role in enforcing causality as it does for the
harmonic oscillator in one dimension. This is only to be expected. If we
decompose a vibrating string into normal modes, then each mode is an in-
dependent oscillator with w? = ¢?k?, and the Green function for the PDE is
simply the sum of the ODE Green functions for each £ mode. To confirm our
claim, we exploit our previous results for the single-oscillator Green function
to evaluate the integral over w, and we find

< dk

g 1
. _ 2 ikx
G(z,t;0,0) = 0(t)c /_OO 2.¢ okl sin(|k|ct). (6.67)
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Despite the factor of 1/|k|, there is no singularity at & = 0, so no ie is
needed to make the integral over k well defined. We can do the k integral
by recognizing that the integrand is nothing but the Fourier representation,

%sin ak, of a square-wave pulse. We end up with

G(z,10,0) = 9(75)% {0(x + ct) — 0(z — ct)}, (6.68)

the same expression as from our direct construction. We can also write

G(x,t;0,0) = g/_m % (é) {ethbemicklt _ grikeickll >0, (6.69)
which is in explicit Fourier-solution form with a(k) = ic/2|k|.
Hlustration: Radiation Damping. Figure 6.6 shows bead of mass M that
slides without friction on the y axis. The bead is attached to an infinite
string which is initially undisturbed and lying along the x axis. The string has
tension 7', and a density p, so the speed of waves on the string is ¢ = /7T'/p.
We show that either d’Alembert or Fourier can be used to compute the effect
of the string on the motion of the bead.

We first use d’Alembert’s general solution to show that wave energy emit-
ted by the moving bead gives rise to an effective viscous damping force on
it.

Figure 6.6: A bead connected to a string.

The string tension acting on the on the bead leads to the equation of
motion Mv = Ty'(0,t), and from the condition of no incoming waves we
know that

y(z,t) = y(z — ct). (6.70)

Thus y'(0,t) = —y(0,t)/c. But the bead is attached to the string, so v(t) =

9(0,t), and therefore
T
Mo = - <—) v. (6.71)
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The emitted radiation therefore generates a velocity-dependent drag force
with friction coefficient n = T'/c.

We need an infinitely long string for (6.71) to be true for all time. If
the string had a finite length L, then, after a period of 2L/c, energy will be
reflected back to the bead and this will complicate matters.

VAR

X

Figure 6.7: The function ¢o(x) and its derivative.

We now show that Fourier’s mode-decomposition of the string motion,
combined with the Caldeira-Leggett analysis of chapter 5, yields the same
expression for the radiation damping as the d’Alembert solution. Our bead-
string contraption has Lagrangian

p=Mgo.0p —vivo.0)+ [

0

po T
{2y 7Y }d$. (6.72)

Here, V'[y] is some potential energy for the bead.

To deal with the motion of the bead, we introduce a function ¢q(z) such
that ¢¢(0) = 1 and ¢g(z) decreases rapidly to zero as x increases (see figure
6.7. We therefore have —¢{(x) ~ 0(z). We expand y(x,t) in terms of ¢o(x)
and the normal modes of a string with fixed ends as

y(z,t) = y(0,t)po(z —|—an U—smkx (6.73)

Here k,L = nm. Because y(0,t)¢o(x) describes the motion of only an in-
finitesimal length of string, y(0,t) makes a negligeable contribution to the
string kinetic energy, but it provides a linear coupling of the bead to the
string normal modes, ¢, (t), through the T%?/2 term. Inserting the mode
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expansion into the Lagrangian, and after about half a page of arithmetic, we
end up with

L= SOV anqn+2( i~ )—52 (jj) y(0)",

n=1 n

(6.74)

Jn = T\/szkn. (6.75)

This is exactly the Caldeira-Leggett Lagrangian — including their frequency-
shift counter-term that reflects that fact that a static displacement of an
infinite string results in no additional force on the bead.! When L becomes
large, the eigenvalue density of states

= d(w—wy) (6.76)

where w,, = ck,,, and

becomes

plw) = —. (6.77)
The Caldeira-Leggett spectral function

1@ = 53 (£ - .79

n

is therefore

T 2T°k* 1 L T

where we have used ¢ = /T'/p. Comparing with Caldeira-Leggett’s J(w) =
nw, we see that the effective viscosity is given by n = T'/c, as before. The
necessity of having an infinitely long string here translates into the require-
ment that we must have a continuum of oscillator modes. It is only after the
sum over discrete modes w; is replaced by an integral over the continuum of
w’s that no energy is ever returned to the system being damped.

'For a finite length of string that is fixed at the far end, the string tension does add
1Ty(0)?/L to the static potential. In the mode expansion, this additional restoring force
arises from the first term of —¢{)(x) ~ 1/L+(2/L) Y, cosknz in $Ty(0)? [(¢))? dz. The
subsequent terms provide the Caldeira-Leggett counter-term. The first-term contribution
has been omitted in (6.74) as being unimportant for large L.
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For our bead and string, the mode-expansion approach is more com-
plicated than d’Alembert’s. In the important problem of the drag forces
induced by the emission of radiation from an accelerated charged particle,
however, the mode-expansion method leads to an informative resolution? of
the pathologies of the Abraham-Lorentz equation,

2 |
3 Me3 dme,

M(V - TV) = Fexta T (680)

which is plagued by runaway, or apparently acausal, solutions.

6.3.4 0Odd vs. even dimensions

Consider the wave equation for sound in the three dimensions. We have a
velocity potential ¢ which obeys the wave equation

P¢ ¢ ¢ 109%
——=—=0 6.81
Ox? * oy? * 0z2 2 ot? ’ (6:81)
and from which the velocity, density, and pressure fluctuations can be ex-
tracted as

U1 = V(b?
_ Po ;
P = _g )
P1 = C2p1. (682)

In three dimensions, and considering only spherically symmetric waves,
the wave equation becomes

0*(r¢) _ 1(ré) _

A — et =, (6.83)
with solution . .
T T
ort) = f (t—z) +-g (H—E). (6.84)

Consider what happens if we put a point volume source at the origin (the
sudden conversion of a negligeable volume of solid explosive to a large volume

2G. W. Ford, R. F. O’Connell, Phys. Lett. A 157 (1991) 217.
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of hot gas, for example). Let the rate at which volume is being intruded be
q. The gas velocity very close to the origin will be
q(t)

v(r,t) = y—s (6.85)

Matching this to an outgoing wave gives

Q) _ oty = 99 _ _7% (1-1) - %f’ (1-1). (6.86)

or c c

Close to the origin, in the near field, the term oc f/r? will dominate, and so

1

—d(t) = (). (6:87)

Further away, in the far field or radiation field, only the second term will
survive, and so
190, 1, r
= Lo p(t-1). 6.88
T oy rcf ( c (6.88)
The far-field velocity-pulse profile v; is therefore the derivative of the near-
field v; pulse profile.

AV vor P

Near field Far field

Figure 6.8: Three-dimensional blast wave.

The pressure pulse

. . r
=t (¢~ ;) (6.89)

is also of this form. Thus, a sudden localized expansion of gas produces an
outgoing pressure pulse which is first positive and then negative.
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This phenomenon can be seen in (old, we hope) news footage of bomb
blasts in tropical regions. A spherical vapour condensation wave can been
seen spreading out from the explosion. The condensation cloud is caused by
the air cooling below the dew-point in the low-pressure region which tails the
over-pressure blast.

Now consider what happens if we have a sheet of explosive, the simultane-
ous detonation of every part of which gives us a one-dimensional plane-wave
pulse. We can obtain the plane wave by adding up the individual spherical
waves from each point on the sheet.

Figure 6.9: Sheet-source geometry.

Using the notation defined in figure 6.9, we have

00 /2 2
gb(z,t)z27r/0 \/%Wf (t—#) sds

with f(t) = —q(t)/4m, where now ¢ is the rate at which volume is being
intruded per unit area of the sheet. We can write this as

0 A/ r2 2
27r/ f <t— u) dvx? + s?,
0 C

t—x/c

~ e / F(r)dr,

— 00

(6.90)
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c t—x/c
= ——/ q(7) dr. (6.91)

In the second line we have defined 7 = t — Va2 + s?/c¢, which, inter alia,
interchanged the role of the upper and lower limits on the integral.

Thus, v; = ¢/(z,t) = 1¢(t — z/c). Since the near field motion produced
by the intruding gas is vy(r) = %q’(t), the far-field displacement exactly re-
produces the initial motion, suitably delayed of course. (The factor 1/2 is
because half the intruded volume goes towards producing a pulse in the neg-
ative direction.)

In three dimensions, the far-field motion is the first derivative of the near-
field motion. In one dimension, the far-field motion is exactly the same as
the near-field motion. In two dimensions the far-field motion should there-
fore be the half-derivative of the near-field motion — but how do you half-
differentiate a function? An answer is suggested by the theory of Laplace

transformations as

(%) : Pl % /_; f’%dr. (6.92)

Let us now repeat the explosive sheet calculation for an exploding wire.

Figure 6.10: Line-source geometry.

Using the geometry shown in figure 6.10, we have

rdr
ds=4d <\/ r? — $2> = ﬁ’ (6.93)
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and combining the contributions of the two parts of the wire that are the
same distance from p, we can write

o) = [ (-7) A
_ 2/;Of<t—£) 7;’; = (6.94)

with f(t) = —q(t)/4m, where now ¢ is the volume intruded per unit length.
We may approximate r% — 2% & 2x(r —z) for the near parts of the wire where
r ~ x, since these make the dominant contribution to the integral. We also
set 7 =t —1/c, and then have

2¢ (t=a/e) dr
ba.t) = PO e

V2 /-
_ \/27 / - x/c ' t_iT/C) . (6.95)

The far-field velocity is the x gradient of this,

2 (t— IE/C
(r.1) / C/ ; dr , (6.96)
27TC Vit—z/e)—1

and is therefore proportional to the 1/2-derivative of ¢(t — r/c).

v v

Near field Far field

Figure 6.11: In two dimensions the far-field pulse has a long tail.

A plot of near field and far field motions in figure 6.11 shows how the
far-field pulse never completely dies away to zero. This long tail means that
one cannot use digital signalling in two dimensions.
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Moral Tale: One of our colleagues was performing numerical work on earth-
quake propagation. The source of his waves was a long deep linear fault,
so he used the two-dimensional wave equation. Not wanting to be troubled
by the actual creation of the wave pulse, he took as initial data an outgoing
finite-width pulse. After a short propagation time his numerical solution ap-
peared to misbehave. New pulses were being emitted from the fault long after
the initial one. He wasted several months in vain attempt to improve the
stability of his code before he realized that what he was seeing was real. The
lack of a long tail on his pulse meant that it could not have been created by
a briefly-active line source. The new “unphysical” waves were a consequence
of the source striving to suppress the long tail of the initial pulse. Moral:
Always check that a solution of the form you seek actually exists before you
waste your time trying to compute it.

Exercise 6.4: Use the calculus of improper integrals to show that, provided
F(—o00) =0, we have

d {1 [t F(r) 1t F()
@ (ﬁ L. ?-ﬁ”) =

This means that

d (d\? d\7 d
6.4 Heat equation
Fourier’s heat equation
op  0*¢

is the archetypal parabolic equation. It often comes with initial data ¢(z,t = 0),
but this is not Cauchy data, as the curve t = const. is a characteristic.
The heat equation is also known as the diffusion equation.

6.4.1 Heat kernel

If we Fourier transform the initial data

o(x,t=0) = / h d—ké(k)em, (6.100)

oo 2T
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and write
> dk -~ .
o(z,t) = / — (k,t)e””, (6.101)

oo 2T

we can plug this into the heat equation and find that

00 a-
5 = k. (6.102)

Hence,

Pz, t) = /w%~(k,t)eikw

oo 2m

— / g—f_ b(k, 0)ethe—rk?t (6.103)

—00

We may now express ¢(k,0) in terms of ¢(z,0) and rearrange the order of
integration to get

< dk ([ | o
oot = [ 5E ([ oteopenas ) v

= [ et ol o

_ /_ T Gl £ 1)6(€,0) de, (6.104)

where

& dk k)( _f)_ kzt 1 1 2
— __ e K e — _— —_ . 1
G(x,&,t) /_oo 27r6 T exp p (x —&) (6.105)

Here, G(x,&,t) is the heat kernel. It represents the spreading of a unit blob
of heat.
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1G(x, 8,1)

>~ X
&

Figure 6.12: The heat kernel at three successive times.

As the heat spreads, the total amount of heat, represented by the area
under the curve in figure 6.12, remains constant:

/_ \/z;rWeXp{_élimt(x_OQ} dr = 1. (6.106)

The heat kernel possesses a semigroup property

G(z,&,t + to) = /OO G(x,n,t2)G(n, &, ty)dn. (6.107)

—00

Exercise: Prove this.

6.4.2 Causal Green function

Now we consider the inhomogeneous heat equation

ou  0*u

with initial data u(z,0) = ug(z). We define a Causal Green function by

(% - %) Gla,t6,7) = 6(a — €)5(t —7) (6.100)
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and the requirement that G(x,t;&,7) = 0 if t < 7. Integrating the equation
fromt=7—¢ctot=r7+ ¢ tells us that

Gz, 7+¢e&&1)=0d(x—¢). (6.110)
Taking this delta function as initial data ¢(x,t = 7) and inserting into (6.104)
we read off

Gz, t;¢,7)=0(t —17) ! )(a:—g)Q}. (6.111)

1
Ar(t — 1) P {_4(t -7

We apply this Green function to the solution of a problem involving both
a heat source and initial data given at ¢ = 0 on the entire real line. We
exploit a variant of the Lagrange-identity method we used for solving one-
dimensional ODE’s with inhomogeneous boundary conditions. Let

0 0?
and observe that its formal adjoint,
0 0?

is a “backward” heat-equation operator. The corresponding “backward”
Green function

Gt €,7) = 0(r — t)ﬁexp {—ﬁ(x - g)2} (6.114)

obeys
DI Gz, t;¢,7) = 6(x — £)o(t — 7), (6.115)

with adjoint boundary conditions. These make G anti-causal, in that GT(t — 7)
vanishes when ¢t > 7. Now we make use of the two-dimensional Lagrange
identity

/ Z da /0 it {u(e.)DL 6w t:6.7) - (Dasu(e.)) G (w36, }
:/_oo dx{u(x,O)GT(x,o;g,r>}—/_de{u(x,T)GT(x,T;g,T>}. (6.116)

o0
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Assume that (£, 7) lies within the region of integration. Then the left hand
side is equal to

u(€, ) — /_00 dx/o dt {q(z,t)G (z,t;&,7)} . (6.117)

On the right hand side, the second integral vanishes because G' is zero on
t =T. Thus,

w(, ) = /_0; dx /OT dt{q(x,t)GT(x,t;g,T)}jL/_(: {u(x,O)GT(x,O;g,T)}dx

(6.118)
Rewriting this by using

Gz, t;6,7) = G, 752,1), (6.119)

and relabeling x < £ and t <~ 7, we have

o] [ee] t
u(zx,t) = / G(z,t;€,0)ug(€) d +/ / Gz, t;€,7)q(&, T)dEdT. (6.120)
—00 —o0 J0

Note how the effects of any heat source ¢(x,t) active prior to the initial-data
epoch at t = 0 have been subsumed into the evolution of the initial data.

6.4.3 Duhamel’s principle

Often, the temperature of the spatial boundary of a region is specified in
addition to the initial data. Dealing with this type of problem leads us to a
new strategy.

Suppose we are required to solve

Ou 0?u

— =K 6.121

ot~ oa? (6.121)
for the semi-infinite rod shown in figure 6.13. We are given a specified tem-
perature, u(0,t) = h(t), at the end x = 0, and for all other points x > 0 we
are given an initial condition u(z,0) = 0.
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h(t)

:%\
Figure 6.13: Semi-infinite rod heated at one end.

We begin by finding a solution w(x, t) that satisfies the heat equation with
w(0,t) = 1 and initial data w(x,0) = 0, x > 0. This solution is constructed
in problem 6.14, and is

w=0(t) {1 — erf <2i\/f) } . (6.122)

Here erf(x) is the error function

erf(z) = % /0 e (6.123)

which has the properties that erf(0) = 0 and erf(z) — 1 as * — oo. See
figure 6.14.

erf(x)

Figure 6.14: Error function.

If we were given

h(t) = hof(t — to), (6.124)

then the desired solution would be

u(x,t) = how(z,t — to). (6.125)
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For a sum

h(t) = hab(t —t,), (6.126)

the principle of superposition (i.e. the linearity of the problem) tell us that
the solution is the corresponding sum

u(z,t) = Z hpw(z, t —1t,). (6.127)
We therefore decompose h(t) into a sum of step functions

ht) = h(0)+ / th(T)dT
= h(0) + / oo@(t—T)il(T)dT. (6.128)

It is should now be clear that

w(at) = /0 w(z, t — )h(r) dr + h(0)w(z, ?)

- —/Ot (%w(m,t—r)) h(r)dr

_ /0 t (%w(az,t _ T>) h(r) dr. (6.129)

This is called Duhamel’s solution, and the trick of expressing the data as a
sum of Heaviside step functions is called Duhamel’s principle.

We do not need to be as clever as Duhamel. We could have obtained
this result by using the method of images to find a suitable causal Green
function for the half line, and then using the same Lagrange-identity method
as before.

6.5 Potential theory

The study of boundary-value problems involving the Laplacian is usually
known as “‘Potential Theory.” We seek solutions to these problems in some
region 2, whose boundary we denote by the symbol 0.
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Poisson’s equation, —V2x(r) = f(r), r € 2, and the Laplace equation to
which it reduces when f(r) = 0, come along with various boundary condi-
tions, of which the commonest are

x=g(r) on 09, (Dirichlet)
(n-V)x=g(r) on 0. (Neumann) (6.130)

A function for which V2y = 0 in some region £ is said to be harmonic there.

6.5.1 Uniqueness and existence of solutions

We begin by observing that we need to be a little more precise about what
it means for a solution to “take” a given value on a boundary. If we ask for
a solution to the problem VZp = 0 within Q = {(z,y) € R? : 22 + y* < 1}
and ¢ = 1 on 0f2, someone might claim that the function defined by setting
o(z,y) =0 for 22 +y? < 1 and ¢(z,y) = 1 for 2% + y? = 1 does the job—
but such a discontinuous “solution” is hardly what we had in mind when we
stated the problem. We must interpret the phrase “takes a given value on the
boundary” as meaning that the boundary data is the limit, as we approach
the boundary, of the solution within €.

With this understanding, we assert that a function harmonic in a bounded
subset €2 of R™ is uniquely determined by the values it takes on the boundary
of Q. To see that this is so, suppose that ¢, and ¢, both satisfy V2o = 0 in
), and coincide on the boundary. Then xy = ¢; — @5 obeys VZy = 0 in Q,
and is zero on the boundary. Integrating by parts we find that

/Q IVx|*d"r = /m x(n-V)xdS =0. (6.131)

Here dS is the element of area on the boundary and n the outward-directed
normal. Now, because the second derivatives exist, the partial derivatives
entering into Vy must be continuous, and so the vanishing of integral of
|[Vx|? tells us that Vy is zero everywhere within €. This means that y is
constant — and because it is zero on the boundary it is zero everywhere.
An almost identical argument shows that if {2 is a bounded connected
region, and if ¢; and ¢, both satisfy VZp = 0 within  and take the same
values of (n- V)y on the boundary, then ¢ = ¢y + const. We have therefore
shown that, if it exists, the solutions of the Dirichlet boundary value problem
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is unique, and the solution of the Neumann problem is unique up to the
addition of an arbitrary constant.

In the Neumann case, with boundary condition (n - V)p = g¢(r), and
integration by parts gives

/V2g0d"r:/ (n-V)@dS:/ gds, (6.132)
Q Ge)

o0N

and so the boundary data g(r) must satisfy [,,gdS = 0 if a solution to
VZ2p = 0 is to exist. This is an example of the Fredhom alternative that
relates the existence of a non-trivial null space to constraints on the source
terms. For the inhomogeneous equation —V?2p = f, the Fredholm constraint

becomes
/ gdS + / fd'r=0. (6.133)
a0 9]

Given that we have satisfied any Fredholm constraint, do solutions to the
Dirichlet and Neumann problem always exist? That solutions should exist is
suggested by physics: the Dirichlet problem corresponds to an electrostatic
problem with specified boundary potentials and the Neumann problem cor-
responds to finding the electric potential within a resistive material with
prescribed current sources on the boundary. The Fredholm constraint says
that if we drive current into the material, we must must let it out somewhere.
Surely solutions always exist to these physics problems? In the Dirichlet case
we can even make a mathematically plausible argument for existence: We
observe that the boundary-value problem

Vip = 0, req
o = f, red (6.134)

is solved by taking ¢ to be the y that minimizes the functional

JIx] = /Q [V x[*d"r (6.135)

over the set of continuously differentiable functions taking the given boundary
values. Since J[x] is positive, and hence bounded below, it seems intuitively
obvious that there must be some function x for which J[x] is a minimum.
The appeal of this Dirichlet principle argument led even Riemann astray.
The fallacy was exposed by Weierstrass who provided counterexamples.
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Consider, for example, the problem of finding a function ¢(x,y) obeying
V2p = 0 within the punctured disc D' = {(z,y) € R? : 0 < 2% + ¢y* < 1}
with boundary data ¢(z,y) = 1 on the outer boundary at 22 + y*> = 1 and
©(0,0) = 0 on the inner boundary at the origin. We substitute the trial
functions

Xo(z,y) = (2* + 3%, a >0, (6.136)

all of which satisfy the boundary data, into the positive functional
J[x] = / \Vx|? dxdy (6.137)
D/

to find J[xa] = 2ma. This number can be made as small as we like, and so
the infimum of the functional J[x| is zero. But if there is a minimizing ¢,
then J[p] = 0 implies that ¢ is a constant, and a constant cannot satisfy the
boundary conditions.

An analogous problem reveals itself in three dimensions when the bound-
ary of {2 has a sharp re-entrant spike that is held at a different potential from
the rest of the boundary. In this case we can again find a sequence of trial
functions x(r) for which J[x| becomes arbitrarily small, but the sequence of
x’s has no limit satisfying the boundary conditions. The physics argument
also fails: if we tried to create a physical realization of this situation, the
electric field would become infinite near the spike, and the charge would leak
off and and thwart our attempts to establish the potential difference. For
reasonably smooth boundaries, however, a minimizing function does exist.

The Dirichlet-Poisson problem

~Vi(r) = f(r), req,
p(r) = g¢g(r), re o, (6.138)

and the Neumann-Poisson problem

~Vip(r) = f(r), z€,
(n-V)p(r) = g(r), x€d

supplemented with the Fredholm constraint

/fd"r+/ gdS =0 (6.139)
Q o0
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also have solutions when 0f? is reasonably smooth. For the Neumann-Poisson
problem, with the Fredholm constraint as stated, the region {2 must be con-
nected, but its boundary need not be. For example, {2 can be the region
between two nested spherical shells.

Exercise 6.5: Why did we insist that the region ) be connected in our dis-
cussion of the Neumann problem? (Hint: how must we modify the Fredholm
constraint when 2 consists of two or more disconnected regions?)

Exercise 6.6: Neumann variational principles. Let €2 be a bounded and con-
nected three-dimensional region with a smooth boundary. Given a function f
defined on 2 and such that fQ fd3r =0, define the functional

J[X]Z/Q{%IVxF—xf} d3r.

Suppose that ¢ is a solution of the Neumann problem

~Vip(r) = f(r), re,
(n-V)p(r) = 0, reo.

Show that
1 1 1
T = Jel+ [ 5190 Pz el = - [ JVeP =3 [ ot
Q Q Q

Deduce that ¢ is determined, up to the addition of a constant, as the function
that minimizes J[x] over the space of all continuously differentiable x (and
not just over functions satisfying the Neumann boundary condition.)

Similarly, for g a function defined on the boundary 92 and such that [, 90 9dS =
0, set

1
Kb = [ 3IvxPdr— [ xgds
Q oN

Now suppose that ¢ is a solution of the Neumann problem

—VZp(r) = 0, req,
(n-V)p(r) = g(r), reo.

Show that

K = Ko+ [ 590 dr = Kigl == [ Svolatr = =5 [ sgas.
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Deduce that ¢ is determined up to a constant as the function that minimizes
K|[x] over the space of all continuously differentiable y (and, again, not just
over functions satisfying the Neumann boundary condition.)

Show that when f and g fail to satisfy the integral conditions required for
the existence of the Neumann solution, the corresponding functionals are not
bounded below, and so no minimizing function can exist.

Exercise 6.7: Helmholtz decomposition Let €2 be a bounded connected three-
dimensional region with smooth boundary 9f2.

a) Cite the conditions for the existence of a solution to a suitable Neumann
problem to show that if u is a smooth vector field defined in €2, then
there exist a unique solenoidal (i.e having zero divergence) vector field
v with v - n = 0 on the boundary 0f2, and a unique (up to the addition
of a constant) scalar field ¢ such that

u=v+Vo.

Here n is the outward normal to the (assumed smooth) bounding surface
of Q.

b) In many cases (but not always) we can write a solenoidal vector field v
as v = curlw. Again by appealing to the conditions for existence and
uniqueness of a Neumann problem solution, show that if we can write
v = curlw, then w is not unique, but we can always make it unique by
demanding that it obey the conditions divw =0 and w-n = 0.

c) Appeal to the Helmholtz decomposition of part a) with u — (v - V)v to
show that in the Euler equation

ov

Fn +
governing the motion of an incompressible (divv = 0) fluid the instan-
taneous flow field v(x,y, z,t) uniquely determines dv/Jt, and hence the
time evolution of the flow. (This observation provides the basis of prac-
tical algorithms for computing incompressible flows.)

(v-V)v=-VP, v-n=0ondQ

We can always write the solenoidal field as v = curlw + h, where h obeys
V2h = 0 with suitable boundary conditions. See exercise 6.16.

6.5.2 Separation of variables
Cartesian coordinates

When the region of interest is a square or a rectangle, we can solve Laplace
boundary problems by separating the Laplace operator in cartesian co-ordinates.
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Let
Pyo o
i T .14
922 + By 0, (6.140)
and write
o =X(2)Y(y), (6.141)
so that
10°X 10%
X 02 + ?8—?;2 =0. (6.142)

Since the first term is a function of z only, and the second of y only, both
must be constants and the sum of these constants must be zero. Therefore

1 9°X
X 022
1 0%Y
Y 0y?

= k2

= kK (6.143)

or, equivalently

—— — kY = 0. (6.144)

The number that we have, for later convenience, written as k2 is called a
separation constant. The solutions are X = e™** and Y = ™. Thus

p = ety (6.145)

or a sum of such terms where the allowed k’s are determined by the boundary
conditions.

How do we know that the separated form X (z)Y (y) captures all possible
solutions?” We can be confident that we have them all if we can use the sep-
arated solutions to solve boundary-value problems with arbitrary boundary
data.
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Ay
L

Figure 6.15: Square region.

We can use our separated solutions to construct the unique harmonic
function taking given values on the sides a square of side L shown in figure
6.15. To see how to do this, consider the four families of functions

2 1 . nwx . . NTyY
PLn = \/;sinhmr ST Sth’
2 1 . . MTxT . NIy
Pon = \/;sinh nm stnh L T

/21 L —
P3n = — sin ~ sinh 7717?( v ,

L sinh nm L L
B 2 1 . .nm(L—x) . nmy
Oan = \/; Shon sinh 7 sin —=. (6.146)

Each of these comprises solutions to VZp = 0. The family ¢, ,(x,y) has been
constructed so that every member is zero on three sides of the square, but
on the side y = L it becomes ¢4 ,(z, L) = y/2/Lsin(nmxz/L). The ¢ ,(x, L)
therefore constitute an complete orthonormal set in terms of which we can
expand the boundary data on the side y = L. Similarly, the other other
families are non-zero on only one side, and are complete there. Thus, any
boundary data can be expanded in terms of these four function sets, and the
solution to the boundary value problem is given by a sum

P@,y) =D amnma(®, y). (6.147)

m=1 n=1
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The solution to VZp = 0 in the unit square with ¢ = 1 on the side y = 1
and zero on the other sides is, for example,

o(z,y) = Z on j;_ o sinh(Q:L e sin<(2n + 1)7rx) sinh((Qn + 1)7ry>
(6.148)

n=0

Figure 6.16: Plot of first thiry terms in equation (6.148).
For cubes, and higher dimensional hypercubes, we can use similar bound-
ary expansions. For the unit cube in three dimensions we would use

1
nm 'TJ ) x =
Prm (@Y, 7) sinh (m/ n? + m2)

sin(nmz) sin(mmy) sinh (7TZV n? + m2) :

to expand the data on the face z = 1, together with five other solution
families, one for each of the other five faces of the cube.

If some of the boundaries are at infinity, we may need only need some of
these functions.

Example: Figure 6.17 shows three conducting sheets, each infinite in the z
direction. The central one has width a, and is held at voltage Vj. The outer
two extend to infinity also in the y direction, and are grounded. The resulting
potential should tend to zero as |z, |y| — oo.
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Figure 6.17: Conducting sheets.

The voltage in the x = 0 plane is

> dk ,
QP(O?y?Z) = / _a(k)e_lkya (6149>
oo 2m
where o
s 2V
a(k) = Vy / e dy = Tosin(ka/Z). (6.150)
—a/2

Then, taking into account the boundary condition at large z, the solution to
Vip =0is
Fodk o ik —Iklle]
olx,y,z) = —a(k)e"™e . (6.151)
The evaluation of this integral, and finding the charge distribution on the
sheets, is left as an exercise.

The Cauchy problem is ill-posed

Although the Laplace equation has no characteristics, the Cauchy data prob-
lem is ill-posed, meaning that the solution is not a continuous function of the
data. To see this, suppose we are given V2 = 0 with Cauchy data on y = 0:

90(1'7 0) = 0,

ad = csinkx. (6.152)
Y |,—0
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Then .
olx,y) = % sin(kx) sinh(ky). (6.153)

Provided k is large enough — even if ¢ is tiny — the exponential growth of the
hyperbolic sine will make this arbitrarily large. Any infinitesimal uncertainty
in the high frequency part of the initial data will be vastly amplified, and
the solution, although formally correct, is useless in practice.

Polar coordinates

We can use the separation of variables method in polar coordinates. Here,

Px 1ox | 1%

2 _OX 1 —YX
VIX= g5t t aam (6.154)
Set
x(r,8) = R(r)©(0). (6.155)
Then V?y = 0 implies
) _ (PR 10RY 150
R \or2  ror © 00?
= m? — m?, (6.156)

where in the second line we have written the separation constant as m?.

Therefore,

— +m?0 =0, (6.157)
implying that © = €, where m must be an integer if © is to be single-
valued, and

rP—— +r— —m*R =0, (6.158)

whose solutions are R = r*™ when m # 0, and 1 or Inr when m = 0. The
general solution is therefore a sum of these

X = AO + BO ln/r’ —+ Z(Am,r.lm| + Bm/ra_|m|)6im9‘ (6159)
m#0

The singular terms, In7 and 7~™!, are not solutions at the origin, and should
be omitted when that point is part of the region where V?y = 0.
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