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 A B S T R A C T

This paper establishes a novel theoretical connection between the operator-theoretic description of a dynamical 
system and its local geometric properties. We demonstrate that the local Jacobian determinant, which governs 
state-space expansion and contraction, can be directly related to the entries of the transition matrix that 
approximates the system’s Perron–Frobenius operator. Specifically, we derive expressions that link measures of 
local instability and dissipation to the matrix elements, revealing that these geometric features are intrinsically 
encoded in the statistical operator. We illustrate the validity of this relationship through numerical experiments 
on several one- and two-dimensional chaotic maps, where these derived measures are validated against the 
exact analytical Jacobians of these test systems. This work establishes a direct, quantitative link between 
the global, statistical view of dynamics provided by the Perron–Frobenius operator and the local, geometric 
perspective described by the Jacobian.
1. Introduction

The challenge of characterizing a dynamical system from observed 
data is fundamental across theoretical and applied physics. This en-
deavor is not only academically significant but also has practical im-
plications in diverse scientific disciplines, where understanding the 
underlying mechanisms of observed phenomena is paramount [1]. 
Even if the dynamical systems under consideration are exceedingly 
high-dimensional, making an accurate description of the interactions 
between all scales and variables unfeasible, low-order representations 
can often be constructed to retain the most important statistical and 
dynamical features of the system, effectively capturing the essential 
behavior without the need for exhaustive detail [2–5]. These simpli-
fied models provide a practical means of analyzing core dynamics 
and allow for meaningful analysis and prediction, even in complex, 
high-dimensional contexts [6–11].

Reduced-order models play a crucial role, for example, in cli-
mate physics by effectively describing interacting degrees of freedom 
and capturing key feedback mechanisms across spatial and temporal 
scales [12–22]. In finance, reduced-order models are used to under-
stand market dynamics and to develop robust economic models, such 

∗ Corresponding author.
E-mail addresses: ludogio@mit.edu (L.T. Giorgini), sandre@mit.edu (A.N. Souza), lippolis@tmu.ac.jp (D. Lippolis), predrag.cvitanovic@physics.gatech.edu 

(P. Cvitanović), peter.schmid@kaust.edu.sa (P. Schmid).
URLs: https://ludogiorgi.github.io (L.T. Giorgini), https://sandreza.github.io (A.N. Souza), https://ChaosBook.org (P. Cvitanović).

as the Black–Scholes model [23], a key tool in financial mathematics. 
In biology, particularly in the study of ecosystems, disease propagation, 
and epidemiology, reduced-order models like the Lotka–Volterra equa-
tions provide insights into complex interactions, such as predator–prey 
dynamics [24]. The success of these approaches often hinges on their 
ability to capture not just trajectories, but also fundamental properties 
like long-term statistical distributions and local measures of stability.

Despite remarkable success, reconstructing low-order models from 
observed data becomes particularly challenging in highly nonlinear 
and chaotic systems, where the inherent complexity and sensitivity to 
initial conditions make it difficult to accurately capture the essential 
dynamics using simplified models [25–27]. Nonetheless, although a 
precise mathematical model driving observed data remains elusive, 
the statistical features of the dynamical system can often be robustly 
estimated from data, provided a statistically significant amount of 
observations is available [22,28–35].

A classical data-driven approach to estimate local dynamics and 
their derivatives, such as the Jacobian, involves identifying k-nearest 
neighbors (k-nn) to a point in the state space and then performing 
a local regression. This method, rooted in the early days of chaos 
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theory, leverages the idea that the evolution of nearby points can be 
approximated by a linear map, representing the local tangent map 
or its derivative, the Jacobian [36]. By collecting a set of neighbors 
for a point 𝒙(𝑖), one can use their subsequent states 𝒙(𝑗 + 1) to fit a 
linear model that estimates the Jacobian matrix. This is often achieved 
through a least-squares fit of the differences 𝒙(𝑗 + 1) − 𝒙(𝑖 + 1) against 
𝒙(𝑗)−𝒙(𝑖). The number of neighbors, 𝑘, acts as a smoothing parameter: a 
larger 𝑘 increases robustness to noise but introduces bias by averaging 
over a larger region, while a smaller 𝑘 offers higher accuracy in smooth 
regions but is more sensitive to noise. This direct regression approach 
has been a cornerstone for forecasting and controlling chaotic systems 
for decades [37–39].

In this paper, we establish and investigate a novel connection 
between the global statistical properties of a dynamical system and 
its local geometric features. We demonstrate that information about 
the Jacobian determinant is intrinsically encoded within the transition 
matrix that approximates the Perron–Frobenius operator. This operator 
describes how a probability density of states evolves in time and is 
the adjoint to the more widely known Koopman operator [40,41]. 
By assuming a Markovian process on a partitioned state space, the 
infinite-dimensional Perron–Frobenius operator can be approximated 
by a finite transition matrix learned directly from observed data [42–
44]. Our work shows how this standard operator-based perspective, 
already effective in fields like network science [45] and computational 
neuroscience [46], can be leveraged to extract valuable local dynam-
ical information as an intrinsic by-product of the construction of the 
Perron–Frobenius operator.

The Jacobian determinant is a fundamental quantity describing 
local stretching, contraction, and dissipation. We show that the con-
nection between the transition matrix and the system’s dynamics allows 
for the derivation of two data-driven observables which provide bounds 
on local dissipation and instability rates. This offers a unique means of 
probing the Jacobian without direct regression, offering insight into the 
underlying dynamics from purely statistical information. This approach 
bridges the gap between statistical descriptions of dynamics and the 
local geometric properties of the flow.

We focus here on discrete-time dynamical systems of form 𝒙𝑛+1 =
𝒇 (𝒙𝑛), where 𝑛 ∈ N is the 𝑛th discrete time step, 𝒙 = {𝑥1,… , 𝑥𝐷}
is a 𝐷-dimensional vector representing the state of the system, and 
𝒇 ∶ R𝐷 → R𝐷 is the forward map that characterizes the evolution of the 
system in time. For non-autonomous dynamical systems, we augment 
the dimension of the state vector, in order to incorporating external 
time-dependent changes.

The key observation to connect the dynamics with the Jacobian is 
that a density of trajectories at time 𝑛, 𝜌𝑛(𝒙), is transformed by the 
Perron–Frobenius operator as [47]

𝜌𝑛+1(𝒙) =
𝑀
∑

𝑘=1

𝜌𝑛(𝒇−1
𝑘 (𝒙))

|𝐽 (𝒇−1
𝑘 (𝒙))|

.

As explained below, in the evolution of a density by the Perron–
Frobenius operator (our means), which is in general a contraction [48], 
one can identify the local dissipation with the Jacobian 𝐽 of the map 
(our goal), computed on the 𝑀 preimages 𝒇−1

𝑘 (𝒙). We shall show that 
a lower bound for the local Jacobian 𝐽 (𝒙) may also be estimated 
from the entries of the transfer matrix (in one dimension, 𝐽 (𝒙) is the 
derivative of the map). The transfer matrix can be constructed directly 
from observed data, and hence the Jacobian determinant can also 
be estimated without knowing the system’s governing equations. The 
methodology proposed here is therefore data driven.

Knowledge of dissipation and of instability fields is essential for 
analysis, forecast, and control. In particular, potential applications of 
our methodology include stabilizing an unstable system [49], enhanc-
ing the sensitivity to initial conditions in chaotic systems [50], or 
ensuring that conservation laws are adhered to in physical models [51,
52], when direct evaluation of the Jacobians is unavailable due to 
computational challenges, or ignorance of the governing equations, 
2 
as in experimental time series. This knowledge is invaluable not only 
for understanding of the intrinsic properties of the system, but also 
in facilitating the design of more effective and controlled dynamical 
models. This paper aims to demonstrate the utility of this approach 
through a detailed theoretical analysis and application to simulated 
data, highlighting its potential impact across a broad spectrum of 
scientific disciplines.

The article is structured as follows. Section 2 explains how the 
Jacobian of the map can be inferred from the transition matrix, in 
Section 3 we apply this methodology to one- and two-dimensional 
chaotic maps, and Section 4 presents our conclusions.

2. From the transition matrix to the Jacobian

The Perron–Frobenius operator  encapsulates how a probability 
density function 𝜌𝑛(𝒙) at time step 𝑛 evolves under the flow induced 
by the forward map 𝒇 ,
𝜌𝑛+1(𝒙) =

(

𝜌𝑛
)

(𝒙) .

To construct a discrete approximation of this operator, we partition the 
state space into 𝑁 equally sized control volumes, 
𝑿 = [𝑿1,… ,𝑿𝑁 ] . (1)

Each control volume has measure
𝜇(𝑿𝑖) = 𝛺

𝑁
,

where 𝛺 is the total volume of the explored region. We denote the 
probability mass in each control volume at time 𝑛 by

𝑞𝑛𝑖 = ∫𝑿𝑖

𝜌𝑛(𝒙) 𝑑𝒙.

Since  acts linearly on 𝜌𝑛, its discretization is a time-independent
transition matrix 𝑷 ≡ (𝑃𝑖𝑗 ) that evolves the discretized state-space vector 
{𝑞𝑛𝑗 }

𝑁
𝑗=1 to {𝑞𝑛+1𝑖 }𝑁𝑖=1 according to 

𝑞𝑛+1𝑖 =
𝑁
∑

𝑗=1
𝑃𝑖𝑗 𝑞

𝑛
𝑗 . (2)

By construction, the transition matrix 𝑷  satisfies:
𝑁
∑

𝑖=1
𝑃𝑖𝑗 = 1 for each 𝑗.

Moreover, since 𝑃𝑖𝑗 represents the probability of transition from cluster 
𝑗 to cluster 𝑖, it also holds that 
0 ≤ 𝑃𝑖𝑗 ≤ 1. (3)

When each control volume 𝑿𝑗 is mapped forward by the underlying 
flow, the probability mass is reallocated to possibly multiple volumes 
𝑿𝑖. Thus, the entries of 𝑷  encode the local stretching or contraction of 
volumes under the flow map, which is directly linked to the Jacobian
of the forward map 𝒇 . As we refine the partition the transition matrix 
𝑷  approaches the action of the continuous Perron–Frobenius operator, 
and each transition 𝑃𝑖𝑗 may be interpreted as a (coarse-grained) repre-
sentation of volume expansion/contraction governed by the Jacobian. 
We present next an explicit derivation of how these matrix elements 
relate to the underlying Jacobian structure of the dynamical system.

Following Refs. [26,53], we have

𝜌𝑛+1(𝒙) = ∫𝑿
𝑑𝒚 𝛿(𝒙 − 𝒇 (𝒚))𝜌𝑛(𝒚) =

𝑀
∑

𝑘=1

𝜌𝑛(𝒇−1
𝑘 (𝒙))

|𝐽 (𝒇−1
𝑘 (𝒙))|

,

for each 𝒙 ∈ 𝛺, where 𝒇−1
𝑘  denotes the 𝑘 ∈ {1,… ,𝑀} preimages of 

the forward map 𝒇 (𝒙), and 𝐽 is the Jacobian of the transformation. 
Integrating both sides of the equation in state space over the cluster 𝑿𝑖
yields 

𝑞𝑛+1𝑖 = ∫ 𝜌𝑛+1(𝒙) 𝑑𝒙 = ∫

𝑀
∑ 𝜌𝑛(𝒇−1

𝑘 (𝒙))
−1

𝑑𝒙. (4)

𝑿𝑖 𝑿𝑖 𝑘=1 |𝐽 (𝒇𝑘 (𝒙))|
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Now suppose that the partition 𝑿 is sufficiently fine, and that the 
Jacobian is sufficiently smooth, so that in the integral of Eq. (4) it can 
be approximated by its value at the centroid 𝑪 𝑖 of 𝑿𝑖. Under these 
assumptions, we obtain 

𝑞𝑛+1𝑖 ≈
𝑀
∑

𝑘=1

1
|

|

|

𝐽
(

𝒇−1
𝑘 (𝑪 𝑖)

)

|

|

|

∫𝑿𝑖

𝜌𝑛
(

𝒇−1
𝑘 (𝒙)

)

𝑑𝒙

=
𝑀
∑

𝑘=1

1
|

|

|

𝐽
(

𝒇−1
𝑘 (𝑪 𝑖)

)

|

|

|

𝑁
∑

𝑗=1
𝑝𝑘𝑖𝑗 𝑞

𝑛
𝑗 ,

(5)

where in the second step we have defined
𝑁
∑

𝑗=1
𝑝𝑘𝑖𝑗 𝑞

𝑛
𝑗 ∶= ∫𝑿𝑖

𝜌𝑛
(

𝒇−1
𝑘 (𝒙)

)

𝑑𝒙 .

The coefficients 𝑝𝑘𝑖𝑗 are the elements of a non-negative matrix repre-
senting the Koopman operator (the adjoint of the Perron–Frobenius 
operator) of 𝒇−1

𝑘

𝜌𝑛
(

𝒇−1
𝑘 (𝒙)

)

= ∫𝑿
𝑑𝒚 𝛿(𝒚 − 𝒇−1

𝑘 (𝒙))𝜌𝑛+1(𝒚) ,

on a discretized state space. The Koopman operator evolves the prob-
ability densities backward in time through the inverse map 𝒇−1

𝑘 . Con-
cretely, each 𝑝𝑘𝑖𝑗 encodes the probability that the 𝑘th preimage of the 
𝑖th cluster centroid, i.e. 𝒇−1

𝑘 (𝑪 𝑖), lies in cluster 𝑿𝑗 . In addition, the 𝑝𝑘𝑖𝑗
obey the normalization conditions and bounds:

𝑁
∑

𝑗=1
𝑝𝑘𝑖𝑗 = 1 for all 𝑖, 𝑘, (6)

0 ≤ 𝑝𝑘𝑖𝑗 ≤ 1 for all 𝑖, 𝑗, 𝑘. (7)

Rewriting Eq. (5) as

𝑞𝑛+1𝑖 ≈
𝑀
∑

𝑘=1

1
|𝐽 (𝒇−1

𝑘 (𝑪 𝑖))|

𝑁
∑

𝑗=1
𝑝𝑘𝑖𝑗𝑞

𝑛
𝑗

=
𝑁
∑

𝑗=1

( 𝑀
∑

𝑘=1

1
|𝐽 (𝒇−1

𝑘 (𝑪 𝑖))|
𝑝𝑘𝑖𝑗

)

𝑞𝑛𝑗 =
𝑁
∑

𝑗=1
𝑃𝑖𝑗𝑞

𝑛
𝑗

we obtain the relation between the deterministic forward map 𝒇 and 
the transition matrix of Eq. (2)

𝑃𝑖𝑗 =
𝑀
∑

𝑘=1

1
|𝐽 (𝒇−1

𝑘 (𝑪 𝑖))|
𝑝𝑘𝑖𝑗 .

If 𝑀 = 1 for all 𝑖, 𝑝𝑖𝑗 coincides with the transpose of the adjoint of the 
transition matrix. At this point it is noted that the entries 𝑃𝑖𝑗 can be 
inferred from the statistics of the discretized dynamics or from available 
time series. By means of the above expression, the transition rates 𝑃𝑖𝑗
may then be used for our purpose of estimating the Jacobian, or any 
observable of interest that depends on it. For instance, we define, for 
𝑘 > 1, 

𝐴𝑖 =
𝑁
∑

𝑗=1
𝑃𝑖𝑗 =

𝑀
∑

𝑘=1

1
|𝐽 (𝒇−1

𝑘 (𝑪 𝑖))|

𝑁
∑

𝑗=1
𝑝𝑘𝑖𝑗 =

𝑀
∑

𝑘=1

1
|𝐽 (𝒇−1

𝑘 (𝑪 𝑖))|
, (8)

where we used Eq. (6) in the last identity.
Let 𝑘∗(𝑖, 𝑗) be the index of the largest entry of 𝑝𝑘𝑖𝑗 for given 𝑖, 𝑗. We 

can then write:

𝐵𝑗 = max
𝑖

𝑃𝑖𝑗 = max
𝑖

𝑀
∑

𝑘=1

1
|𝐽 (𝒇−1

𝑘 (𝑪 𝑖))|
𝑝𝑘𝑖𝑗

≈ max
𝑖

𝑀
∑

𝑘=1

1
|𝐽 (𝑪𝑗 )|

𝑝𝑘𝑖𝑗 ≈
1

|𝐽 (𝑪𝑗 )|
max
𝑖

𝑝𝑘
∗(𝑖,𝑗)

𝑖𝑗 ≤ 1
|𝐽 (𝑪𝑗 )|

,

where we approximated with 𝑪𝑗 all the preimages of 𝑪 𝑖 falling in 𝑿𝑗
and we used Eq. (7). Furthermore, since 𝐵𝑗 is bounded by probability 
bound Eq. (3), we have that 
𝐵 = max𝑃 ≤ min{|𝐽 (𝑪 )|−1, 1} . (9)
𝑗 𝑖 𝑖𝑗 𝑗

3 
For an alternative derivation of the expressions for 𝐴𝑖 and 𝐵𝑗 , see Ap-
pendix.

The Perron–Frobenius operator  is often characterized as a con-
traction, satisfying ‖𝜌‖ ≤ ‖𝜌‖. Thus, 𝐴𝑖 defined in Eq. (8) can be 
viewed as the local inverse dissipation rate of the state-space volume 
centered at 𝑪 𝑖. In one dimension, 𝐵𝑗 defined in Eq. (9) is an upper 
bound on the derivative of the forward map.

An addition of noise to each 𝒙 does not alter 𝐴𝑖 (Eq. (8)) because 
each 𝑝𝑘𝑖𝑗 remains normalized. However, noise increases the variance of 
𝑝𝑘𝑖𝑗 , thereby reducing its maximal values. In regions where 𝒇−1 contracts 
the state space, 𝑝𝑘𝑖𝑗 ≈ 1 are weakly affected if the noise remains small 
compared to the control volumes. Consequently, certain entries 𝐵𝑗
(Eq. (9)) will stay close to 1∕|𝐽 (𝑪𝑗 )|, allowing for the extraction of the 
Jacobian.

The expressions for 𝐴𝑖 and 𝐵𝑗 represent a novel quantitative rela-
tionship between the transition matrix and the local Jacobian determi-
nant. This relationship allows us to estimate dissipation and instability 
fields directly from observed dynamics without requiring knowledge of 
the underlying equations. To our knowledge, this connection between 
statistical descriptions of dynamics (via the transition matrix) and 
local properties of the underlying map (via the Jacobian) is a novel 
contribution to dynamical systems theory.

3. Jacobian of chaotic maps

In this section, we apply the method described above to a variety of 
one-dimensional and two-dimensional dynamical systems. Our primary 
objective is to relate the entries of the numerically estimated transfer 
operator to the Jacobian of the underlying system. It is important to 
emphasize that, while our examples utilize known maps for validation 
purposes, our methodology is fundamentally data-driven and does 
not require knowledge of the governing equations. In particular, the 
expressions obtained in this section for the observables 𝐴𝑖 and 𝐵𝑗
(upper bound) are to be considered ground truth to test their respective 
estimates from Eqs. (8) and (9) from the transition matrix 𝑃𝑖𝑗 .

3.1. One-dimensional chaotic maps

For detailed discussions of the dynamical systems that follow, the 
reader is referred to Chapter 17 of [53].

3.1.1. The Ulam map
The mapping

𝑥𝑛+1 = 1 − 2(𝑥𝑛)2,

on the interval 𝑥𝑛 ∈ (−1, 1] for all 𝑛 is known as ‘Ulam map’. The 
Perron–Frobenius evolution equation for the probability density is

𝜌𝑛+1(𝐶𝑖) =
1
4

(

2
1 − 𝐶𝑖

)
1
2 ⎡
⎢

⎢

⎣

𝜌𝑛
⎛

⎜

⎜

⎝

(

1 − 𝐶𝑖
2

)
1
2 ⎞
⎟

⎟

⎠

+ 𝜌𝑛
⎛

⎜

⎜

⎝

−
(

1 − 𝐶𝑖
2

)
1
2 ⎞
⎟

⎟

⎠

⎤

⎥

⎥

⎦

,

and, subsequently, 

𝐴𝑖 =
∑

𝑘

1
|𝐽 (𝑓−1

𝑘 (𝐶𝑖))|
=

√

2
2

(

1
1 − 𝐶𝑖

)
1
2
, (10)

with 

𝐵𝑗 ≤
1

|𝐽 (𝐶 )|
= 1

4|𝐶 |

. (11)

𝑗 𝑗



L.T. Giorgini et al. Physica D: Nonlinear Phenomena 481 (2025) 134865 
Fig. 1. Ulam, continued fraction and cusp maps: Plots of 𝐴𝑖 and 𝐵𝑗 (left and right column, respectively) derived from the transition matrix (depicted with red lines), along with 
their analytical estimates (shown in blue), for the Ulam, continued fraction, and cusp maps. Noise amplitudes of 𝜎 = 0, 0.001, 0.002, 0.003 have been applied to the maps.
Fig. 2. One-dimensional Chebyshev map: Plots of 𝐴𝑖 and 𝐵𝑗 derived from the transition matrix (red lines), along with their analytical estimates (blue lines), for the Chebyshev map 
defined in Eq. (16) with 𝑁 = 2, 3, 4, and 5, and 𝜎 = 0.
3.1.2. Continued fraction map
In the case of the continued fraction map, given by

𝒇 (𝑥) = 1
𝑥
−
⌊ 1
𝑥

⌋

, 𝑥𝑛 ∈ [0, 1] ∀𝑛 ,

we have

𝜌𝑛+1(𝐶𝑖) =
∞
∑

𝑘=1

1
(𝑘 + 𝐶𝑖)2

𝜌𝑛
(

1
𝐶𝑖 + 𝑘

)

,

𝐴𝑖 =
∑

𝑘

1
|𝐽 (𝑓−1

𝑘 (𝐶𝑖))|
= 𝛹 (1 + 𝐶𝑖), (12)

and 
𝐵𝑗 ≤

1
|𝐽 (𝐶𝑗 )|

= 𝐶2
𝑗 , (13)

where 𝛹 (𝑥) = 𝛤 ′(𝑥)
𝛤 (𝑥)  is the polygamma function (logarithmic derivative 

of the Gamma function), and ⌊𝑥⌋ denotes the integer part of 𝑥.
4 
3.1.3. Cusp map
The map

𝒇 (𝑥) = 1 − 2|𝑥|
1
2 , 𝑥𝑛 ∈ [−1, 1] ∀𝑛

is known as the ‘cusp map’, with the Perron–Frobenius evolution equa-
tion for the probability density

𝜌𝑛+1(𝐶𝑖) =
1 − 𝐶𝑖

2

[

𝜌𝑛
(

(1 − 𝐶𝑖)2

4

)

+ 𝜌𝑛
(

−
(1 − 𝐶𝑖)2

2

)]

,

𝐴𝑖 =
∑

𝑘

1
|𝐽 (𝑓−1

𝑘 (𝐶𝑖))|
= 1 − 𝐶𝑖, (14)

and 

𝐵𝑗 ≤
1

|𝐽 (𝐶 )|
=
√

|𝐶𝑗 |. (15)

𝑗
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Fig. 3. Two-dimensional coupled Chebyshev map. Heat maps and scatter plots comparing the 𝐴𝑖 values from the transition matrix with their analytical counterparts for the map in 
Eq. (19), using 𝑁 = 2, 3, 4 and coupling parameter 𝑎 = 0.01. Below the heatmaps, we compare 𝐴𝑖 as a function of the 𝑥 coordinate for different values of 𝑦 (𝑦 = −0.98,−0.9, 0.8 for 
𝑁 = 2 and 𝑦 = −0.98,−0.96, 0.8 for 𝑁 = 3, 4), obtained through the two different methods.
3.1.4. One-dimensional Chebyshev map
The one-dimensional Chebyshev map is defined as: 

𝑥𝑛+1 = 𝑇𝑁 (𝑥𝑛) , 𝑥 ∈ [−1, 1] , (16)

where 𝑇𝑁 (𝑥) is the 𝑁th Chebyshev polynomial 𝑇𝑁 (𝑥) = cos(𝑁 arccos(𝑥)) .
The Perron–Frobenius evolution equation for this map yields 

𝐴𝑖 =
𝑁−1
∑

𝑘=0

1
|𝐽 (𝑓−1

𝑘 (𝐶𝑖))|
=

𝑁−1
∑

𝑘=0

√

1 − 𝑥2𝑘(𝐶𝑖)

𝑁 |

|

sin(𝑁 arccos(𝑥𝑘(𝐶𝑖)))||
, (17)

and 

𝐵𝑗 ≤
1

|𝐽 (𝐶𝑗 )|
=

√

1 − 𝐶2
𝑗

𝑁 |

|

|

sin(𝑁 arccos(𝐶𝑗 ))
|

|

|

, (18)

where

𝑥𝑘(𝐶𝑖) = cos
(

arccos(𝐶𝑖) + 2𝜋𝑘
𝑁

)

, 𝑘 = 0, 1,… , 𝑁 − 1 .

3.1.5. Results
We partition the state space into 𝑁 = 100 equally sized control 

volumes, and assign every orbit point to its corresponding volume. 
Using this cluster of trajectories, we construct the transition matrix 
𝑷 , from which we extract our estimates for the inverse dissipation 
𝐴𝑖 =

∑𝑁
𝑗=1 𝑃𝑖𝑗 and the local instability rate 𝐵𝑗 = max𝑖𝑃𝑖𝑗 from the data 

collected by running the dynamics. We also repeat the procedure with 
additive Gaussian white noise of amplitude 𝜎.

In (Fig.  1, 2) we compare the expressions 𝐴𝑖 and 𝐵𝑗 obtained from 
the transition matrix with their analytical values, as defined in Eqs. (10) 
5 
to (17). In the panels representing 𝐵𝑗 we set to unity all values of 
the analytical estimate of 𝐵𝑗 larger than one, since the elements of 𝐵𝑗
obtained from the transition matrix cannot be larger than unity.

Upon varying the noise amplitudes in Fig. 1, we observe a consistent 
pattern: the ‘data’ estimate of 𝐴𝑖 accurately reproduces its expected 
value, without appreciable deviations, up to the precision of our numer-
ics, with or without additive noise. On the other hand, the data estimate 
of 𝐵𝑗 is less accurate, as well as more sensitive to noise. In particular, 
the local instability rate is often underestimated as the noise amplitude 
increases. However, the quality of the estimates of 𝐵𝑗 does follow a 
pattern that depends on the instability itself: it is in fact noted from the 
plots that the estimate for the instability rate 𝐵𝑗 is consistently the more 
accurate and noise-robust, the larger the Jacobian, or equivalently, the 
smaller 𝐵𝑗 .

3.2. Two-dimensional coupled Chebyshev maps

This section demonstrates the application of the proposed method-
ology to estimate the Jacobian for two-dimensional coupled Chebyshev 
maps [54]. We will compute coefficients 𝐴𝑖 and 𝐵𝑗 for small coupling 
strengths and polynomial orders 𝑁 = 2, 3, 4.

The two-dimensional coupled Chebyshev map is defined by: 
𝑥𝑛+1 = (1 − 𝑎) 𝑇𝑁 (𝑥𝑛) + 𝑎 𝑇𝑁 (𝑦𝑛),

𝑦𝑛+1 = (1 − 𝑎) 𝑇𝑁 (𝑦𝑛) + 𝑎 𝑇𝑁 (𝑥𝑛),
(19)

where 𝑇𝑁 (⋅) is the 𝑁th Chebyshev polynomial, and the parameter 𝑎 ∈
[0, 1] controls the coupling strength. For the particular cases 𝑁 = 2, 3, 4, 
the polynomials are
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Fig. 4. Two-dimensional coupled Chebyshev map. Same as Fig.  3, but for 𝐵𝑗 . The values of 𝑦 used in the plots in the last row are 𝑦 = −0.98,−0.5,−0.3 for 𝑁 = 2, 𝑦 = −0.98,−0.7,−0.4
for 𝑁 = 3 and 𝑦 = −0.4,−0.1,−0.04 for 𝑁 = 4.
• 𝑇2(𝑥) = 2𝑥2 − 1,
• 𝑇3(𝑥) = 4𝑥3 − 3𝑥,
• 𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1.

Coupled Chebyshev maps with a relatively weak coupling (here the 
parameter 𝑎 is set to 0.01 throughout the simulations presented) are 
ergodic and mixing like their uncoupled counterparts, yet they exhibit 
multidimensional features (e.g. their natural measure), whereas they 
tend to develop coherent structures and synchronization for stronger 
couplings [55]. Moreover, still in the regime of weak coupling, the dy-
namics is locally expanding (both eigendirections are unstable), rather 
than hyperbolic (only one is unstable) [54], which yields non-trivial 
dissipation and instability fields in the state space. For that reason in 
particular, the local Jacobian is still a measure of instability, and so is 
our observable 𝐵𝑗 .

The Jacobian of the forward map in Eq. (19) is:
|𝐽 (𝑥, 𝑦)| = |

|

|

(1 − 𝑎)2 𝑇 ′
𝑁 (𝑥) 𝑇 ′

𝑁 (𝑦) − 𝑎2 𝑇 ′
𝑁 (𝑦) 𝑇 ′

𝑁 (𝑥)||
|

,

where

𝑇 ′
𝑁 (𝑥) =

−𝑁 sin
(

𝑁 arccos(𝑥)
)

√

1 − 𝑥2
.

Although the inverse of the two-dimensional map does not admit a 
closed-form solution for arbitrary 𝑁 , it can be determined analytically 
for 𝑁 = 2:

𝑥𝑛 = ±

√

−1 − 𝑥𝑛+1 + 𝑎
(

2 + 𝑥𝑛+1 + 𝑦𝑛+1
)

,

−2 + 4𝑎

6 
𝑦𝑛 = ±

√

−1 − 𝑦𝑛+1 + 𝑎
(

2 + 𝑥𝑛+1 + 𝑦𝑛+1
)

−2 + 4𝑎
,

and 𝑁 = 4:

𝑥𝑛 = ± 1
2

√

√

√

√

2 ±

√

−2
(

1 + 𝑥𝑛+1
)

+ 2𝑎
(

2 + 𝑥𝑛+1 + 𝑦𝑛+1
)

−1 + 2𝑎
,

𝑦𝑛 = ± 1
2

√

√

√

√

2 ±

√

−2
(

1 + 𝑦𝑛+1
)

+ 2𝑎
(

2 + 𝑥𝑛+1 + 𝑦𝑛+1
)

−1 + 2𝑎
.

For 𝑇3, the inverse map is given by the solution to the cubic equations:

(𝑥𝑛)3 − 3
4 𝑥𝑛 + 𝑎

4(1−2𝑎) 𝑦𝑛+1 + 𝑎−1
4(1−2𝑎) 𝑥𝑛+1 = 0,

(𝑦𝑛)3 − 3
4 𝑦𝑛 + 𝑎

4(1−2𝑎) 𝑥𝑛+1 + 𝑎−1
4(1−2𝑎) 𝑦𝑛+1 = 0.

We simulate the Chebyshev map over 107 time steps for 𝑁 = 2, 3, 4, 
partitioning the state space into a 100 × 100 grid of equally size control 
volumes to construct the transition matrix. (Fig.  3, 4) present the results 
for 𝑁 = 2, 3, 4, comparing the numerical estimates of 𝐴𝑖, 𝐵𝑗 with 
their analytical counterparts. Similar observations to those made in 
previous examples apply here. Specifically, we observe that 𝐴𝑖 closely 
matches its analytical expectation across the state space. In contrast, 
the observable 𝐵𝑗 computed from data is accurate primarily in the more 
unstable regions of the state space, while it provides poorer estimates 
of the inverse of the Jacobian in the dynamically less unstable or nearly 
marginal regions.
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4. Conclusions

In this study, we have established a novel methodology for ex-
tracting information about the Jacobian determinant directly from 
the transition matrix of a discretized Perron–Frobenius operator. Our 
primary contribution is the demonstration that local dissipation and 
instability fields are intrinsically encoded in this matrix. This provides 
a new pathway to connect the global statistical features of a dynamical 
system with its local dynamics.

The numerical simulations of both one-dimensional and two-dimen
sional chaotic maps demonstrate the robustness of our methodology 
– but also highlight specific challenges. In particular, in the two-
dimensional case, we observe that state-space regions, where the local 
Jacobian is accurately reproduced by the data-determined observable 
𝐵, are bounded.

One potential approach we aim to explore in the future involves 
synthesizing the less accurate information from the estimate 𝐵 for the 
local Jacobian, with the more precise data from the observable 𝐴 for 
the dissipation. This strategy would involve initially using 𝐵 to aid 
in the estimation of the deterministic flow/map 𝒇 . Subsequently, the 
inverse function 𝒇−1 could be calculated, allowing us to verify the 
accuracy of our estimation. This verification would be accomplished 
by using 𝒇−1 to estimate the dissipation 𝐴, followed by a matching 
of this result to 𝐴, this time as derived from the transition matrix via 
Eq. (8). This hybridized approach may help overcome the limitations 
associated with using the observable 𝐵 alone for the reconstruction of 
the Jacobian.

Another challenge can arise from errors in determining the entries of 
the transition matrix corresponding to regions of coordinate space that 
are rarely visited by the dynamical system, a common occurrence when 
only a limited amount of data is available. This introduces noise into 
both observables 𝐴 and 𝐵. The resulting effects are more pronounced 
in 𝐵, since each entry corresponds directly to an individual entry from 
the transition matrix, unlike 𝐴, where each entry is a sum of all the 
elements in each column, effectively averaging out the noise introduced 
by the finite amount of processed data.

To address these limitations, a key future direction is to enhance 
the estimation of the transition matrix itself. The Ulam method, which 
we have used here, is fundamentally a histogram-based estimator. 
As shown in [56], using more advanced techniques such as kernel 
density estimation (KDE) can yield a more statistically consistent and 
smoother approximation of the Perron–Frobenius operator. Adopting a 
KDE-based framework for constructing the transition matrix is expected 
to be beneficial for the evaluation of the Jacobian determinant, as it 
can mitigate the bias inherent in piecewise-constant histogram methods 
and provide a more accurate representation of the underlying proba-
bility densities, especially with sparse data. Furthermore, a thorough 
comparison of our proposed methodology with the classical k-nearest 
neighbors approach is essential. A systematic study, evaluating com-
putational efficiency and robustness to noise for both methods under 
various conditions, will be conducted to clarify the relative advantages 
and establish the viability of the Perron–Frobenius based approach in 
the broader context of data-driven dynamical systems analysis.

In summary, the methodology developed in this study provides 
a new pathway to connect statistical features of dynamical systems, 
specifically the transition matrix, with the local dynamics captured 
by the Jacobian. While our approach shows promise in effectively 
reconstructing the Jacobian from observed data, it also highlights 
challenges, particularly in higher-dimensional systems where the rela-
tionship between the transition matrix and the Jacobian becomes less 
straightforward. Future research will focus on refining the approach by 
combining the insights from both observables 𝐴 and 𝐵 to improve the 
accuracy and reliability of the Jacobian reconstruction. Additionally, 
expanding this methodology to handle more complex dynamical sys-
tems and exploring the effects of noise and other perturbations will 
be crucial for broadening the applicability of this approach and for 
demonstrating its potential.
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Appendix. Alternative derivation of the expressions for 𝑨𝒊 and 𝑩𝒋

Let us write a density in the state space as a sum of contributions 
over the discretization Eq. (1), 𝑿 = [𝑿1,… ,𝑿𝑁 ], 

𝜌𝑛(𝒙) =
∑

𝑗
𝛼𝑛𝑗 𝜌𝑗 (𝒙) , (20)

where the 𝜌𝑗 ’s are smooth functions peaked at the centroid 𝑪𝑗 of each 
interval, for example the Gaussians

𝜌𝑗 (𝒙) =
1

(2𝜋𝜎2)𝐷∕2
exp

(

−
‖𝒙 − 𝑪𝑗‖

2

2𝜎2

)

.

We set 𝜎2 = [𝛺∕𝑁]2∕𝐷∕2𝜋 to ensure that the support of 𝜌𝑗 approxi-
mately coincides with 𝑿𝑗 , thereby rendering the Gaussian basis nearly 
orthogonal. Consequently, we can write:

𝑞𝑛𝑖 = ∫𝑿𝑖

𝜌𝑛(𝒙) 𝑑𝒙 ≈ 𝛼𝑛𝑖 .

The evolution of the probability of each interval reads

𝑞𝑛+1𝑖 = 𝜌𝑛+1(𝒙)𝑑𝒙 = 𝑑𝒙 𝑑𝒚 𝛿(𝒙 − 𝒇 (𝒚))𝜌𝑛(𝒚)
∫𝑿𝑖
∫𝑿𝑖

∫𝑿
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where the Perron–Frobenius operator ∫𝑿 𝑑𝑦 𝛿(𝑥−𝒇 (𝑦))⋅ transports state-
space densities forward in time. Using the partition (20), the previous 
is rewritten as

𝑞𝑛+1𝑖 =
𝑁
∑

𝑗=1
𝛼𝑛𝑗 ∫𝑿𝑖

𝑑𝒙∫𝑿
𝑑𝒚𝛿(𝒙 − 𝒇 (𝒚))𝜌𝑗 (𝒙) (21)

≈
𝑁
∑

𝑗=1
𝑞𝑛𝑗 ∫𝑿𝑖

𝑑𝒙∫𝑿𝑗

𝑑𝒚𝛿(𝒙 − 𝒇 (𝒚))𝜌𝑗 (𝒙)

=
𝑁
∑

𝑗=1
𝑞𝑛𝑗

𝑀
∑

𝑘=1
∫𝑿𝑖

𝑑𝒙
𝜌𝑗 (𝒇−1

𝑘 (𝒙))

|𝐽 (𝒇−1
𝑘 (𝒙))|

.

Now suppose that the partition 𝑿 is sufficiently fine for the integrals 
to be well approximated by the value of the integrand at the centroid 
𝑪 𝑖 of 𝑿𝑖 times the measure of the interval. Recalling that the 𝜌𝑗 ’s are 
Gaussians, we write 

𝑞𝑛+1𝑖 ≃
𝑁
∑

𝑗=1
𝑞𝑛𝑗

𝑀
∑

𝑘=1

𝑒−‖𝒇
−1
𝑘 (𝑪 𝑖)−𝑪𝑗‖

2∕2𝜎2

|𝐽 (𝒇−1
𝑘 (𝑪 𝑖))|

, (22)

having chosen 𝜎2 = [𝜇(𝑿𝑖)]2∕𝐷∕2𝜋 for the normalization to be unity. 
One can then approximately identify the entries of the transition matrix 
with

𝑃𝑖𝑗 ≃
𝑀
∑

𝑘=1

𝑒−‖𝒇
−1
𝑘 (𝑪 𝑖)−𝑪𝑗‖

2∕2𝜎2

|𝐽 (𝒇−1
𝑘 (𝑪 𝑖))|

.

The probabilities 𝑃𝑖𝑗 to go from 𝑿𝑗 to 𝑿𝑖 in one iteration of the transfer 
operator are constrained by the condition
𝑁
∑

𝑖
𝑃𝑖𝑗 = 1 ,

so that
𝑁
∑

𝑖=1

𝑀
∑

𝑘=1

𝑒−‖𝒇
−1
𝑘 (𝑪 𝑖)−𝑪𝑗‖

2∕2𝜎2

|𝐽 (𝒇−1
𝑘 (𝑪 𝑖))|

≃ 1 ,

and, as every single 𝑖−th contribution is positive definite, we have
𝑀
∑

𝑘=1

𝑒−‖𝒇
−1
𝑘 (𝑪 𝑖)−𝑪𝑗‖

2∕2𝜎2

|𝐽 (𝒇−1
𝑘 (𝑪 𝑖))|

≲1 .

The largest entries of the transfer matrix are realized when 𝑿𝑗 maps 
into 𝑿𝑖, that is for a special 𝑘∗ such that ‖𝒇−1

𝑘∗ (𝑪 𝑖) − 𝑪𝑗‖
2 < 𝜎2, and so 

we have rederived Eq. (9), 

𝐵𝑗 ≡ max
𝑖

𝑃𝑖𝑗 ≃
1

|𝐽 (𝒇−1
𝑘∗ (𝑪 𝑖))|

≈ 1
|𝐽 (𝑪𝑗 )|

. (23)

All the previous expressions from (22) up to (23) rely on the assump-
tion of non-vanishing Jacobians |𝐽 (𝒇−1

𝑘∗ (𝑪 𝑖))| and |𝐽 (𝑪𝑗 )|. If, instead, 
the Jacobian does vanish somewhere in the intervals 𝑿𝑖 or 𝑿𝑗 , the 
approximation (22) no longer holds, and

∫𝑿𝑖

𝑑𝒙
𝜌𝑛𝑗 (𝒇

−1
𝑘 (𝒙))

|𝐽 (𝒇−1
𝑘 (𝒙))|

= ∫𝒇−1
𝑘 (𝑿𝑖)

𝑑𝒚 𝜌𝑛𝑗 (𝒚)

= ∫𝒇−1
𝑘 (𝑿𝑖)

𝑑𝒚
(2𝜋𝜎2)𝐷∕2

𝑒−‖𝒚−𝑪𝑗‖
2∕2𝜎2 ≤ 1

now provides an upper bound for max𝑖 𝑃𝑖𝑗 . On the other hand, the sum 
of the probabilities of landing in 𝑿𝑖 is, confirming Eq. (8),

𝐴𝑖 ≡
∑

𝑗
𝑃𝑖𝑗 ≃

𝑁
∑

𝑗=1

𝑀
∑

𝑘=1

𝑒−‖𝒇
−1
𝑘 (𝑪 𝑖)−𝑪𝑗‖

2∕2𝜎2

|𝐽 (𝒇−1
𝑘 (𝑪 𝑖))|

≈
𝑀
∑

𝑘=1

1
|𝐽 (𝒇−1

𝑘 (𝑪 𝑖))|
,

estimating that the only non-negligible contributions to the sum over 𝑗
are coming from the 𝑪𝑗 ’s such that ‖𝒇−1

𝑘 (𝑪 𝑖) − 𝑪𝑗‖ < 𝜎2.

Data availability

Data will be made available on request.
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