Taylor Couette Simulations

By
Krygier

Numerical Scheme

- Spectral Solver
- Parameters (Experimental Values)
- Viscosity : v=1.39 (mm^2/sec) @ 21.5 Celsius
- Height of Cylinders : h=40mm
- Inner Radii : $r_{i}^{*}=72.4 \mathrm{~mm}$
- Outer Radii : $r_{o}^{*}=80 \mathrm{~mm}$
- Gap Length : $d=r_{o}^{*}-r_{i}^{*}=7.6 \mathrm{~mm}$
- Non-dimensionize using a length and time scale
- Length Scale : d
- Time Scale : $\frac{d^{2}}{v}$

Numerical Scheme Continued...

- Geometry Parameters
- Aspect Ratio: $\quad \Gamma=\frac{h}{d}$
- Radius Ratio: $\eta=\frac{r_{i}^{*}}{r_{o}^{*}}$
- Renolds Number
- $\mathrm{Re}_{i}=\frac{\Omega_{i} r_{i}^{*} d}{v}$

$-\operatorname{Re}_{o}=\frac{\Omega_{o} r_{o}^{*} d}{v}$
- Flow governed by the incompressible Navier-Stokes equations. In cylindrical coordinates (r, θ, z) the non-dimensional Navier-Stokes equations are

$$
\begin{aligned}
\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v} & =-\nabla p+\nabla^{2} \vec{v} \\
\nabla \cdot \vec{v} & =0
\end{aligned}
$$

- $\vec{v}=(u, v, w)$ and p are the non-dimensional velocity vector and pressure

Methods

- Navier Stokes Equations are solved using a second order time splitting method
- Spatial Discretization
- Chebyshev Collocation in r \& z
- $r_{i}=\frac{1}{2}\left(\cos \left(\frac{i \pi}{N_{r}}\right)+r_{i}+r_{o}\right) \quad i=0, \ldots, N_{r}$
- $z_{j}=\frac{\Gamma}{2} \cos \left(\frac{j \pi}{N_{z}}\right) \quad j=0, \ldots, N_{z}$
- Galerkin-Fourier Expansion in θ
- Note: Nr and Nz are the dimensions of the radial and axial Chebyshev points respectively
- $F(r, \theta, z)=\sum_{l=0}^{L} \sum_{n=0}^{N} \sum_{m=0}^{M} a_{l, m, n} T_{n}(x) T_{m}(y) \mathrm{e}^{i m \theta}$
- With $x=2 \mathrm{r}-r_{i}-r_{o}$ and $y=\frac{2 \mathrm{z}}{\Gamma}$. The three velocity components and pressure are represented by $f=r e a l(F)$.

Methods Continued...

- The Helmhotz and Poisson Equations for each fourier mode are solved efficiently using a complete diagonalization of the operators in the radial and axial directions

Boundary Conditions

- Implemented the GT experiment boundary conditions
- The outer cylinder is connected to the end plates.
- This corresponds to the following boundary conditions:
- $\quad v\left(r_{i}, \theta, z, t\right)=\left(0, \mathrm{Re}_{i}, 0\right)$
- $\quad v\left(r_{o}, \theta, z, t\right)=\left(0, \mathrm{Re}_{0}, 0\right)$
- $\quad v\left(r, \theta, \pm \frac{\Gamma}{2}, t\right)=\left(0, \operatorname{Re}_{0}, 0\right)$
- There is a discontinuity where the inner cylinder meets the end plates. For an accurate use of spectral techniques, the discontinuity is implemented using the form below

$$
v\left(r, \theta, \pm \frac{\Gamma}{2}, t\right)=\operatorname{Re}_{i} \mathrm{e}^{\frac{r_{i}-r}{\epsilon}}+\operatorname{Re}_{o} \frac{\left(r-r_{i}\right)}{d}
$$

- Note: Epsilon is a parameter that mimics the small physical gap between the inner cylinder and plate boundary. It is $\varepsilon=0.005$ in the program.

Comparison between Simulations \& Experiments

- Verification was done using different values for the Reynolds number. The numbers were predetermined by Daniel.
- Interesting Case: Rei=870 \& Reo=0.
- Description given by Daniel: "4 Taylor rolls with spiral-like defect"
- Less interesting case: Rei=746 \& Reo=550
- Description: "4 Taylor rolls"

Simulation Video

- See video

Current \& Future Projects

- Double checking the correctness of the Recurrence Plots
- Implement GMRES into FORTRAN
- Begin finding periodic orbits once GMRES is finished.
- Impliment an algorithm to find relative periodic orbits.

Special Thanks

- Marc Avila - Author of original FORTRAN code
- Daniel Borrero - Experimental values and comparison between Simulation and Experiment.
- Dr. Grigoriev - Greatly appreciated advise on overcoming constant hurdles within the program.

