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The present work examines semiquantum chaos in vibrating quantum billiards,
which may be used to explore nonadiabatic behavior in polyatomic molecules. A d-
mode Galerkin expansion of a quantum billiard whose boundary has s mechanical
degrees-of-freedom is interpreted physically as a molecule with s excited nuclear
modes and a d-fold electronic near-degeneracy.

After introducing the problem, we consider in detail the derivation of semi-
quantum physics from the Born-Oppenheimer approximation, its application to
molecular systems, and its relation to vibrating quantum billiards. We also re-
view the notions of quantum chaos and quantum billiards to further connect this
dissertation with the literature.

We then formulate the infinite-dimensional problem describing vibrating quan-
tum billiards and consider its symmetries. Using Bloch variables for the quantum-
mechanical degrees-of-freedom, we derive equations of motion for finite-dimensional
truncations. We consider the cases d = 1, d = 2, and d = 3 in detail. We also
analyze the radially vibrating spherical quantum billiard and vibrating rectangular
quantum billiard as special cases.

Using an adiabatic action-angle formulation, which we prove to be equivalent
to the Bloch formulation, we apply Melnikov’s method to examine chaos and a
priori unstable Arnold diffusion in this system analytically. We also study the
relative facility of chaotic onset of the classical and quantum-mechanical degrees-
of-freedom when perturbing from an integrable configuration.

Finally, we summarize the present work and conclude with a discussion of future



research concerning vibrating quantum billiards, other semiquantum systems, and

other areas of quantum chaos and Hamiltonian dynamics.
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Nothing defines humans better than their willingness to do irrational
things in the pursuit of phenomenally unlikely payoffs. This is the prin-
ciple behind lotleries, dating, and religion.

— Scott Adams

If you laugh at yourself often enough, you might make the world think
you understand its private joke.

— Mason Porter

When you come to a fork in the road, take it.

— Yogi Berra

Mason Porter was born February 10, 1976 in Los Angeles, California. He has
an older brother (Adam), a younger sister (Tammy), and several wonderful stuffed
animals. His father (Samuel) practices obstectrics and gynecology; his mother
(Judith) helps his father and has a few projects of her own. Mason graduated
from Temple Emmanuel Nursery School in 1981, Hawthorne Elementary School in
1990, and Beverly Hills High School in 1994. (He was the Salutatorian of his class
at Beverly High.)

In 1994, Mason enrolled at Caltech, where he was soon initiated as a member
of Lloyd House. His activities at “Tech” included one year as co-editor of Caltech’s
weekly newspaper ( The California Tech), four years as a writer for this newspaper,
and two years as co-editor of Caltech’s literary magazine (The Totem). Mason’s
misadventures with the school newspaper legendary. Additionally, he was jokingly
named “Terrorist of the Week” by The California Tech during final’s week of his
senior year for his crimes against humanity and baseball. He is justafiably proud

of this accomplishment.
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Mason’s escapades, a few of which will be mentioned in passing, were not limited
to his involvement with The Tech. (As you may have already guessed, Mason was
a fairly stereotypical Techer.) He played a minor role in a few pranks, including
organizing the infamous junior Lloydie Ditch Day prank that was a complete flop.
He also participated in three Lloyd movies and played an instrumental role in
several Airband skits. He hosted a radio show on Lloyd radio, specializing in 80’s
music. As part of his radio show, Mason held several “All Cynical and Depressing
Song Specials”—including one on Valentine’s Day 1998 that began with “Black
Celebration” and ended with “Blow Your Brains Out” (or whatever that song is
actually called). Mason and his primary group of friends, now known collectively
as “The Usual Bastards,” constructed a stack for Ditch Day, perhaps Caltech’s
most precious tradition. Their theme was The Pink Panther, and Mason had the
opportunity to play Inspector Clouseau. While at Caltech, The Usual Bastards
logged myriad hours playing Mario Kart and frequented Carrow’s for late-night
dinners. Additionally, Mason was an enthusiastic participant in playing “The
Ride of the Valkyries” (followed by “Ride Chasers”) at 7 am every day of every
finals week.

As a member (and UCC for two thirds of the year) of Kaos Alley his Senior
year, he instituted table takeover night. (Valhalla was the primary target.) He
helped synergize the Kaos residents’ natural obnoxiousness by encouraging them
to exhaust the dinner supply of chocolate milk. He also helped start a couple
traditions without trying to do so. (He thought other things were more memorable,
but these are the ones that are probably going to survive the longest.) Nevertheless,
Mason will perhaps be remembered best by his fellow Lloydies for overplaying the
song “Tarzan Boy” beyond acceptability.

Despite his misadventures at Caltech, Mason was an extremely dilligent stu-
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dent. As a sophomore, he won Caltech’s Zeigler award for math and applied math
majors. The next year, he was awarded Caltech’s Bell prize for mathematics re-
search in recognition for his work under Jerrold Marsden. He won Caltech merit
awards during both his Junior and Senior years and was nominated for Caltech’s
Froehlich award during his Junior year. He also served two years as a teacher’s
assistant in the math department. In June 1998, Mason earned his Bachelors of
Science degree (with Honors) in Applied Mathematics with one of the top GPAs in
that year’s graduating class. Mason was also recognized at Caltech for his literary
skill.

Armed with a Department of Defense (NDSEQG) fellowship, Mason enrolled in
Cornell University’s Center for Applied Mathematics in August 1998. He soon
started working for Richard Liboff on some problems in quantum chaos. The
story of Mason’s fascination with nonlinear dynamics and chaos is an interesting
one. He first heard about fractals at Beverly High and wanted to find out more
about them because of the beautiful pictures associated with them. These pictures,
moreover, reminded him of the myriad doodles he used to produce as a child (which
consisted mostly of fractal-like structures) as well as the intricate patterns he had
occasionally seen while afflicted with migraine headaches. At Caltech, he had
the opportunity to learn more about fractals and chaos throughout coursework,
research, and independent reading. During this process, he somehow became more
interested in continuous systems rather than discrete ones. He was particularly
intrigued by how one could use nonlinear dynamics to model and explain natural
(and man-made) phenomena. He chose to study quantum chaos for his dissertation
because he wanted to discover how chaos manifested in the quantum regime. A
devout pool player, Mason elected to use billiard systems to explore quantum

chaos.



Still just 26, Mason has already presented his research (in the form of short
talks and posters) at several international conferences. Two of his research articles
constituted the cover story of the September 2001 issue of International Journal of
Bifurcation and Chaos. Additionally, the November-December 2001 issue of Amer-
ican Scientist highlights one of his popular science articles as its cover story. Mason
co-authored all three of these articles with Richard Liboff, his thesis advisor. Ma-
son was one of three recipients of STAM’s 2001 Student Paper Prize. Additionally,
he is a contributing editor for Complexity Digest, an online newsletter concerning
complex systems.

Mason’s interests outside academics are quite diverse. He is an avid baseball
fan—he roots for the Los Angeles Dodgers as loudly and often as possible. He also
enjoys Dungeons and Dragons (and other role-playing games), ping pong, pool,
creative writing, fantasy novels, video games, ultimate frisbee, witticisms, satire,
and myriad board games. He also enjoys booting his friends in the head.

Mason’s future may not be so bright that he has to wear shades, but it isn’t
exactly murky either. At the very least, there is now a light at the end of the
tunnel. Beginning August 2002, Mason will be a Visiting Assistant Professor of
Mathematics and a Research Associate Member of the Center for Nonlinear Science
(which is run by the School of Physics) at Georgia Institute of Technology. He will
also be in residence at MSRI for their program on semiclassical analysis during the
Spring 2003 semester.

Mason has promised to continue his misadventures and remain someone who is
distinctive and easily-remembered (even if not always fondly so). Meanwhile, he

plans to go outside and frolic.
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CHAPTER 1
INTRODUCTION

1.1 Statement of the Problem

Vibrating quantum billiards describe the wavefunctions associated with a quantum-
mechanical particle (of mass mg) confined in a time-dependent domain D C X,
where (X, g) is a finite-dimensional Riemannian manifold with metric g.[159] This
particle collides elastically against the boundary 9D, which has mass M > my.
A vibrating quantum billiard is described mathematically using the Schrodinger

equation,

m@%?ﬁzﬁM&m(xwerR, (1.1)

with homogeneous Dirichlet boundary conditions on the boundary 9D (so ¢ van-

ishes when x € 9D).[112,158-160] The Hamiltonian operator H is given by
H=K+V(a(l),t), (1.2)

where V' is an external potential, a(t) € R® describes the (a priori unknown)

time-dependence of 9D and

N h2
K=-—v (1.3)

2m0

is the kinetic energy of the confined particle.

This thesis is concerned with the special case in which

V(a(l),t) = V(a(l)), (1.4)



so that V' does not depend explicitly on time. As we shall discuss, this allows
the mathematical problem of interest to be connected with important problems in
atomic and molecular physics.[23, 137,154, 156] This includes Jahn-Teller distor-
tions[19, 20, 126, 189, 202] and the manifestation of such distortions in nanomechan-
ical devices,[90, 98,145,185, 190] as well as the dynamics of atoms in a resonant
cavity,[11] collective nuclear motion,[25] hadrons,[10] spin-particle interactions,[5]
and solvated electrons.[179,180] Of particular interest to us is the connection of
vibrating quantum billiards to nonadiabatic dynamics in polyatomic molecules and
its relation to Jahn-Teller theory.

In the literature concerning quantum systems with time-dependent potentials,

it is more common to consider problems described by the special case
Via(t),t) = V(1) (1.5)

for which different mathematical techniques are required.[4, 6,23, 24,27,29, 70,71,
114,141,160,176] In particular, this latter situation is ordinarly studied in the
semiclassical or high quantum-number regimes,[23, 70, 112, 159] but molecular data
indicate that even low-lying states can behave chaotically.[189] The problem stud-

ied in this thesis addresses such situations.

1.2 Main Results

The primary results of this thesis are as follows:

a. The full vibrating quantum billiard problem described in the previous section
has a Hamiltonian structure and is well-posed provided an initial wavefunc-
tion ¢ (x(0),0), an initial boundary a(0), and the initial momentum of the
boundary P(0) are all specified.[160] Any d-dimensional Galérkin truncation
of this problem (where d is finite) is likewise well-posed provided the same

initial data is specified. Such truncations also have a Hamiltonian structure.



b. Ifa € R?, then a d-mode Galérkin expansion of ¢)(a(t),t) describes the wave-
function of a polyatomic molecule with s excited nuclear modes (yielding s
classical degrees-of-freedom) and a d-fold electronic near-degeneracy (yield-
ing d — 1 quantum-mechanical degrees-of-freedom). The potential V(a(t))
describes the stiffness of the spring used to model the intramolecular bonds.
The physical problem of interest is related to Jahn-Teller distortions.[154,
160] For the case s = 1, the examples d = 1, d = 2, and d = 3 are extensively
studied numerically.[112, 155, 158-160)]

c. When s = 1, every equilibrium configuration corresponds to a pure state, in
which a single eigenstate is present. (This is exactly what one would expect
physically.) Each equilibrium is elliptic (and hence stable) provided £ =
V + K has exactly one minimum with respect to a at that point. Using this
result, which is derived in Chapter 5 and illustrated in subsequent chapters,
one may draw an analogy between molecular systems and quantum field-
theoretic ones. The similarity between some systems in quantum field theory
and molecular physics has been hinted by some authors but not explored in

detail.[20]

d. When s = 1 and d = 1, saddle-center bifurcations can occur for potentials
V(a) with at least two local minima.[155] This is illustrated in particular
for the “Landau transition” case in which V(a) is a quartic, double-well
potential. Such bifurcations cannot occur if V(a) has a single minimum.

(This result expands on the analogy discussed in (c).)

e. Suppose the Schrodinger equation (1.1) is globally separable in D and that
D is convex and r-dimensional. Let s = 1. Consider the superposition of

the eigenstate 1, with the vector of quantum numbers n = (ny,--- ,n,) and



the eigenstate 1, with the vector of quantum numbers n’ = (nf,--- ,n’).
Suppose without loss of generality that the rth quantum number is associ-
ated with the time-dependent portion of the boundary and that the others
are associated with stationary portions of the boundary. Then 1, and 1,
have a nonzero “interaction coefficient” p,,,» (which measures how strongly
they are coupled) if and only if n; = nj for all I € {1,--- ,r — 1}.[159] This
theorem, which is stated and proved in Chapter 6, may be termed the Quan-

tum Number Symmetry Theorem. This result is conforms to our physical

expectations.[137, 154, 159, 189]

. The radially vibrating spherical quantum billiard is considered in detail as a

particular example of the s = 1 case.[112, 158]

. The vibrating rectangular quantum billiard is considered in detail as a par-

ticular example of the s = 2 case.[157]

. Suppose that s = 1 and d = 2. Suppose also that the coupling coeffi-
cient i, = 0, so that the configuration under consideration is integrable.
Then, if one increases or decreases fi,,, the quantum degrees-of-freedom
become chaotic far sooner than do the classical degrees-of-freedom. This
result follows from the Born-Oppenheimer approximation, so it is a general

phenomenon in semiquantum systems.

. Suppose s = 1. When d = 2, we apply a scalar Melnikov technique to
verify the presence of homoclinic tangles when V(a) is a quartic, double-
well potential. For d = 3 and this same potential, we apply a vectorial

Melnikov technique as a plausibility argument for a priori unstable Arnold

diffusion.[74, 82,114, 115]



1.3  Outline of the Thesis

Chapters 2-4 provide essential background information. Chapter 2, which is the
most directly pertinent to this thesis, covers semiquantum physics. Chapter 3
connects the present work to the literature on quantum chaos, and Chapter 4
discusses quantum billiards.

Chapter 5 is concerned with vibrating quantum billiards and its connection
with molecular systems. We define this class of infinite-dimensional Hamilto-
nian systems, examine the symmetries of such systems, and then consider finite-
dimensional Galerkin truncations of vibrating quantum billiards and their physical
interpretation.

In Chapter 6, we state and prove the Quantum Number Symmetry Theorem.

Chapters 7-9 respectively treat 1-mode, 2-mode, and 3-mode Galérkin expan-
sions of vibrating quantum billiards with one nuclear degree-of-freedom. The ra-
dially vibrating spherical quantum billiard is discussed in Chapter 10, and the
rectangular vibrating quantum billiard is discussed in Chapter 11. This latter
billiard has two nuclear degrees-of-freedom.

In Chapter 12, we show that all finite dimensional Galérkin truncations of vi-
brating quantum billiards are Hamiltonian by using action-angle variables in an
adiabatic basis and showing (with a momentum shift) that this formulation is
equivalent to that derived in Chapter 5. We also apply scalar and vectorial Mel-
nikov methods to consider, respectively, homoclinic tangles and a priori unstable
Arnold diffusion.

In Chapter 13, we examine the relative facility of chaotic onset of a vibrating
billiard’s classical and quantum dof when perturbing from integrable configura-

tions.



1.4 Significance of the Thesis

In this document, we connect the study of nonadiabatic phenomena (such as Jahn-
Teller effects), which is of considerable interest to chemical physicists, to abstract
mathematical models such as vibrating quantum billiards.[19, 20, 126, 154, 189, 202]
We also examine chaos and Hamiltonian diffusion in such systems.

This study serves three purposes:

a. It connects the quantum chaos and theoretical chemical physics literatures.
The problems that are studied in these two fields are very similar in spirit,

but there is insufficient communication between these two communities.[41]

b. It applies a dynamical systems approach to problems in chemical physics and
thereby helps fill an important gap in this literature. Notions such as separa-
trices (and approximate separatrices), the KAM transition from integrability

to chaos, and Hamiltonian diffusion are of great interest in molecular systems.

c. It examines the incorporation of quantum effects in classical Hamiltonian
systems, which is an essential step to study and understand the dynamics of

single-molecule devices.[90, 145, 154, 185]



CHAPTER 2
SEMIQUANTUM DYNAMICS*

In this chapter, we discuss nonadiabatic behavior in semiquantum physics. When
treated semiquantally, systems are studied using by a mixture of classical and quan-
tum descriptions.[5, 137,154, 156] Semiquantum descriptions arise naturally upon
application of the Born-Oppenheimer approximation,[7,19, 20,126,154, 189, 198]
which provides a widely accepted procedure for dividing quantum-mechanical sys-
tems into slow and fast components. Among the systems that can be modeled
semiquantally are Jahn-Teller molecules,[19, 20,126, 189, 202] nanomechanical de-
vices,[90, 98,135, 145, 185,190, 197] solvated electrons,[179, 180] atoms in a reso-
nant cavity,[11] collective nuclear motion,[25] hadrons,[10] spin-particle interac-

tions,[5] micromasers,[75] and superconducting quantum interference devices.[44,

156]

2.1 Introduction

Every physical regime approximates reality in some form or another. In continuum
mechanics, one ignores the fact that a solid or fluid is composed of a finite number
of discretely spaced particles, as it is not necessary to consider this at the scale
under consideration. In classical mechanics, one does consider discrete objects,
but quantities such as energy and light are permitted to vary continuously. In
quantum physics, these quantities are treated as discrete-they have been quantized-

and one expresses quantities such as position and momentum as operators rather

*This chapter is based on reference [154].



than simply vectors. This regime is an approximation of the even more finely
grained domain of quantum field theory, which may, in turn, approximate even
more fundamental regimes.

The picture painted above is far from complete, as there are several regimes
we neglected to mention as well as others that lie at the borders between those
discussed above. For example, semiclassical, quasiclassical, and semiquantum de-
scriptions lie between classical and quantum physics. Despite their nomenclature,

they are not the same.[5, 154]

2.2 A Semiquantum Approach to Nonadiabatic Phenomena

In this approach, one assumes that the classical nuclear motion of a molecular
system is determined by its interaction with the electronic subsystem in a self-
consistent manner.[137,154,189] Using the vibrational and rotational coupling
terms in a molecular Hamiltonian, one obtains a time-dependent electronic Hamil-
tonian, which causes transitions in the molecule’s electronic states because of its
dependence on the nuclear dof. Time-dependence in these electronic states leads to
a time-dependent nuclear potential, as the molecular Hamiltonian depends on the
nuclear coordinates.[19, 20] This type of self-consistent coupling occurs in vibrating
quantum billiards, which we discuss extensively in subsequent chapters.

To analyze a system semiquantally, one posits a priori that some of its dof are
classical and others are quantum-mechanical. In contrast to semiclassical physics,
one cannot simplify quantize a system fully and apply an appropriate asymptotic
procedure to obtain such a description.[5, 154] Nevertheless, there are several situ-
ations for which semiquantum physics is appropriate. One may obtain a semiquan-
tum description, for example, by directly coupling a classical system to a quantum-

mechanical one. Additionally, semiquantum systems arise naturally when one ap-



plies the Born-Oppenheimer approximation to molecular systems.[7, 19,20, 189]
The first step in a Born-Oppenheimer scheme is to quantize a system’s fast
(“electronic”) components. If one obtains well-separated energy levels, then one
may also quantize its slow (“nuclear”) components. If, however, the eigenenergies
of the fast components of a d-state system are close to each other, one ignores the
rest of the spectrum and thereby obtains a system described by d electronic en-
ergy levels (each of which corresponds to the full contribution of a single eigenstate)
that are coupled to a multitude of nuclear states. The semiquantum approximation
consists of treating the nuclear dof classically. Because the electronic dof depend
continuously on the nuclear subsystem, one obtains an effective classical Hamil-
tonian describing the system of interest. The quantum-mechanical information is
incorporated into this Hamiltonian using the electronic eigenvalues.[154, 160, 189]
Although self-consistent coupling of classical and quantum dynamics has ap-
peared often in the chemical physics literature, there remain conceptual difficulties
and inconsistencies in the semiquantum approximation.[189] In this chapter, we
discuss how one may study nonadiabaticity starting from the Born-Oppenheimer
approximation. We discuss semiquantum chaos from a phenomenological perspec-

tive in Chapter 3.

2.3 Back-of-the-Envelope Calculations

Before we delve into the Born-Oppenheimer approximation, we perform some pre-
liminary calculations.[7, 20, 154]

It is more difficult to find electron orbits in molecules than in atoms because the
effective potential felt by the electrons is no longer well-approximated as spherically
symmetric. One pictures the molecular nucleus as having classical equilibrium

positions about which it slowly oscillates. The electrons travel rapidly around the
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nucleus and are affected by the oscillations of the latter.
This perspective is effective because a nucleus (with mass M) is much more
massive than electrons (each of which have mass mg). The mass ratio mo/M is

typically about

% ~ 107% or 1074, (2.1)

so the magnitude of the zero-point motion of the nucleus is far smaller than that of
the electrons. (Zero-point motion describes the minimal motion due to Heisenberg’s
Uncertainty Principle.[7, 105,136, 174])

From the perspective of an electron, the nucleus is practically stationary. As
long as the electronic energy levels are sufficiently far apart, the only effect of the
slow nuclear vibrations is to adiabatically deform the electronic eigenstates. As a
molecule with typical radius a has electrons with approximate momenta //a, the
energetic spacing of these electrons is about h?/mga®.

From the perspective of a nucleus, the electrons are a blurry cloud. The
electronic wavefunctions distort as nuclei move, leading to small changes in the
electronic energies. Nuclei, in turn, tend to move towards positions of minimum
electronic energy and thus oscillate about energy minima.[7] (Two examples of
vibrational motion in molecular systems are pulsing, which occurs in vibrating
quantum billiards,[112,157-160] and “bouncing” of the center-of-mass, which has
been proposed as a mechanism for energy transfer in buckyballs.[90, 145, 154]).

One can estimate the frequency w of nuclear oscillations by assuming that the
nucleus resides in a harmonic potential Mw?r?/2, where r is the displacement of
the nucleus from equilibrium. If this displacement is given by the distance a, then
the electronic energy experiences a change of about %i*/2mga®. Roughly,

Mw?a? h?
m~

~ )
2 2moa?

(2.2)
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so the nuclear frequency is given by[7]

mo h
W — .
M mga?

(2.3)

The nuclear vibration energies hw are consequently a factor of \/mo/M smaller

than the electronic excitation energies and are on the order of tenths or hundredths

the size of an electron volt.

The zero-point nuclear energy in a harmonic potential is

Pzth
oM 27

so its corresponding zero-point momentum is

M\ h
()
mo a

which is about ten times larger than the momentum of an electron.

nuclear velocity is thus

PN(@>%E

UN:_N .
M ma

M
The nuclear deviation from equilibrium ¢ satisfies

Mw?§? - hw

L

SO

which implies that[7]

§ T
()~

(2.4)

(2.5)

A typical

(2.6)

(2.8)

(2.9)

In addition to undergoing vibrations as described above, a molecule can rotate

about its center-of-mass. However, the energy due to such excitations is very small
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since the molecule does not distort very much as a result of this motion.[7, 154]
If the angular momentum of the rotational motion is hl, then its accompanying

energy is

RN 1) mg

B~ ~-2f 2.1
¢ 2M a2 M (2.10)

In general, a molecular excited state can be decomposed into electronic, vibrational,
and rotational excitations. Together, the vibrational and rotational excitations
comprise the nuclear (or rovibrational) contribution to the energy of a molecule.
The total molecular energy is given by the sum of the contributions from its three

components:

E=F.+Ex+E, ;. (2.11)

2.4 The Born-Oppenheimer Approximation

Semiquantum descriptions of nonadiabatic phenomena are frequently obtained
amidst the breakdown of the Born-Oppenheimer approximation.[5, 22, 23,137, 154,
189] In particular, this is often associated with degenerate or nearly degenerate
electronic states in polyatomic molecules. Such near-degeneracies (and sometimes
exact degeneracies) among several states, which are often due to symmetries, is a
common phenomenon in molecules-especially at higher energies.[189] The energy
spectrum and intramolecular dynamics can both vary substantially from those
observed during adiabatic behavior.[202] However, it is not easy to incorporate
nonadiabatic behavior into simple models of molecular dynamics, in which the
canonical portrait of nuclear motion is described on a single well-defined surface
of potential energy near the electronic degeneracy. Consequently, it is important
to develop a semiquantum description of such systems that incorporates essential

features of the nonadiabatic coupling.
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To apply the Born-Oppenheimer approximation to a molecular system, one first
quantizes its fast components, which comprise the system’s electronic degrees-of-
freedom (dof). If one obtains well-separated energy levels, then one may also
quantize the slow components, which constitute the system’s nuclear degrees-of-
freedom. If the electronic eigenenergies of a system with d electronic states are
sufficiently close to each other, then one ignores the rest of the spectrum, thereby
obtaining a system described by d electronic energy levels (each of which corre-
sponds to the full contribution of a single eigenstate) that are coupled to a mul-
titude of nuclear states. When using a semiquantum description, these nuclear
states are treated classically. Recall that one does not fully quantize a molecular
system and then pass to an appropriate asymptotic limit. Rather, one assumes a
priori that a semiquantum description is appropriate.[154, 160, 189]

Nonadiabatic behavior occurs in simple molecules with symmetry-based de-
generacy in their electronic eigenstates.[19, 20, 154] Without such degeneracy, one
may approximate the molecular wavefunction using the Born-Oppenheimer ap-
proximation, in which the wavefunction is expressed as a product of electronic and
nuclear wavefunctions. Near a d-fold degeneracy, on the other hand, one expands
the molecular wavefunction in a d-dimensional electronic basis. Such degeneracies
are common in the space spanned by nuclear coordinates.[189]

The stationary, spinless Schrodinger equation for a single molecule is[7, 19, 20,

189]

[I(N + HG(CLQ)] ¢d(Q7Q) = Ed¢d(Q7Q)7 (212)

where Ky is the nuclear kinetic energy operator and

H(q,Q) = Ke + Uee + Uen + Unn +V (2.13)
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is the electronic Hamiltonian. The molecular Hamiltonian H is given by
H=Ky+ H., (2.14)

which represents the sum of the nuclear and electronic components. Because of
vibronic coupling, H. depends on the nuclear coordinates (). Its components are
the electronic kinetic energy K., the interelectron repulsion potential U, the
electron-nuclear attraction U.y, the internuclear repulsion Uypy, and an external
potential V. The nuclear kinetic energy Ky is proportional to 1/M and is thus a
small term in the molecular Hamiltonian (2.14).

In Born-Oppenheimer schemes, one calculates the eigenenergies and eigenstates

of (2.14) by treating Ky as a small perturbation with expansion parameter[7, 19,

20, 154]
K= (mo/M)F, (2.15)

the ratio of nuclear vibrational displacement to the spacing between nuclei.

Some authors distinguish the adiabatic and Born-Oppenheimer approxima-
tions.[19,20] The two approaches in question are linked by a unitary transforma-
tion of the electronic basis and are thus equivalent for exact solutions. However,
their convergence rates differ, as the small parameter for the (proper) adiabatic

approximation is
K3 = (mo/M)7. (2.16)

There exist situations in which the adiabatic approximation is valid but the Born-
Oppenheimer approximation is not.[19, 20]
Coupled vibrational equations can be derived using either diabatic or adiabatic

formulations.[19, 20, 189] We discuss this below. Additional detail may be found

in reference [20].
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Using a diabatic basis, a molecular wavefunction is given by

va(q,Q) =D er(a; Qo)xx(Q), (2.17)

where the orthonormal electronic states ¢ are calculated by solving the electronic

Schrodinger equation at a chosen reference configuration Qo:

H.(Qo)pr(q) = ERer(q)- (2.18)

One then determines the vibrational wavefunctions y; using a set of coupled

equations with Hamiltonian matrix elements given by

Hkk’ = ](N(Skk’ + <S«9k|He(Q)|S«9k’> (219)

(Note that the nuclear kinetic energy Ky is diagonal in this basis.) One expands

the matrix elements of the electronic Hamiltonian H.(Q) to obtain
Hyp = ([X’N + E]? + AUNN)(Skk/ + <S«9k|AUeN|S«9k'>, (220)

so each diagonal element defines an effective vibrational Hamiltonian that consists
of the sum of the nuclear kinetic energy operator K and the Hellman-Feynman
potential for nuclear motion.[53,189] This latter potential has one term due to
internuclear repulsions Uypy and another due to the attraction to the electronic
charge distribution ¢y, * . Such a vibrational Hamiltonian neglects any response
that the electronic state may have to the changing nuclear configuration. The off-
diagonal coupling terms that have been neglected arise from the AU.x component.

It is the change in the potential describing electronic-nuclear attraction as a
function of the changing nuclear configuration that induces mixing in diabatic basis
states. This yields both adiabatic and nonadiabatic correlations of electronic and

nuclear motion.[189]
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Alternatively, one may expand (g, Q) using a basis of adiabatic electronic

states:

Vi(q:Q) =Y om(;Q)xm(Q), (2.21)

where ¢,,(q; Q) is a solution of the electronic Schrodinger equation

Ho(Q)Ym(q; Q) = En(Q)m(q; Q). (2.22)

Equation (2.21), the Born-Huang expansion, consists of the Born-Oppenheimer ex-
pansion plus the diagonal nuclear nonadiabatic coupling. The electronic eigenval-
ues, which depend on the nuclear configuration, determine the adiabatic potential
surfaces. One derives equations of motion for the adiabatic vibrational amplitudes
Xm 10 which the coupling is now due to the off-diagonal matrix elements of the

nuclear kinetic energy.

2.5 Jahn-Teller Distortions

The relevance of Jahn-Teller theory to the present work lies in the fact that the
dynamical behavior that occurs in vibrating quantum billiards resembles the nona-
diabaticty observed in Jahn-Teller distortions.[154]

Jahn-Teller distortions and related phenomena constitute an important class
of nonadiabatic behavior that can occur in molecular systems.[19, 20, 126, 154] The
Jahn-Teller theorem implies that if the adiabatic potential of a molecular system
(which is a formal solution to the electronic part of the Schrodinger equation) has
several crossing sheets, then at least one of these sheets has no extremum at the
crossing point.[19,20] Consequently, degenerate and nearly degenerate electronic
energy levels cannot be analyzed directly using the Born-Oppenheimer approxi-

mation. (In the case of electronic near-degeneracies, the term pseudo-Jahn-Teller
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effect is often employed.) The nuclear and electronic subsystems are nonadiabati-
cally coupled. In the vicinity of electronic degeneracies and near-degeneracies, it is
therefore appropriate to use a semiquantum description to study the dependence
of the electronic eigenenergies on the system’s nuclear dof.

Jahn-Teller deformations are relevant to the study of vibrations in crystals,
numerous types of spectroscopy (NMR, Raman, ete.), multipole moments, the
stereochemistry and instability of molecules, mechanisms of chemical reactions,
and catalysis.[19,20, 154] Effects analogous to Jahn-Teller distortions have also
been observed in other physical systems—including the pion-nucleon interaction in
quantum field theory, the a-cluster description of light nuclei, and the resonant
interaction of light with matter.

Jahn-Teller distortions are classified according to their tensorial construction,
which describes their (nuclear and electronic) symmetries and degeneracies. The
canonical example of the Jahn-Teller effect involves an F x e molecule, in which one
doubly degenerate vibrational mode e interacts with a (symmetry-induced) dou-
ble electronic degeneracy F£.[19,20,126,189,202] The simplest molecular systems
in which this type of distortion occurs are triangular molecules X3, tetrahedral
molecules M L4, and octahedral molecules M Lg.

Jahn-Teller deformations can be extremely complicated, and even the simplest
such effects are dynamically interesting.[19, 20, 126, 154, 189, 202] Higher-order elec-
tronic degeneracies are often important, and multiple Jahn-Teller distortions can
occur in the same molecule or crystal. Moreover, individual deformations in a
given molecule need not possess the same symmetry. Multiple distortions can oc-
cur in crystals with point defects, as their energy spectra contain discrete, nearly-
degenerate electronic eigenenergies well-separated from other energy levels.

Both theoretical and experimental analyses are vital to the study of nuclear-
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electronic coupling in molecules. Treatments with few active modes—that is, low-
mode Galerkin projections—have been particularly useful, as they ease the analyti-
cal difficulty of theoretical studies. One may then consider a fully quantum varia-
tional treatment of the nuclear part of the Hamiltonian, so that model parameters
can be fit to experimental data. As one increases the order of the Galérkin approx-
imation, however, this procedure becomes increasingly difficult both analytically
and computationally. Hence, using a fully quantum description to study nona-
diabaticity in molecular systems quickly becomes untenable. In order to analyze
molecular systems, it is thus important to develop semiclassical and semiquantum

techniques even for few-term superposition states.[154,189]

2.5.1 Nanomechanical devices

A particular class of systems for which semiquantum modeling is relevant are
nanomechanical devices,[90,98, 145,154,185, 190] as their electronic and nuclear
subsystems interact nonadiabatically.

Electronic-nuclear coupling heavily influences molecular motion, even though
electrons are much less massive than entire molecules.[145] The mechanical control
of nanoscale structures (“NEMs”) will allow smaller, faster, and more efficient ver-
sions of existing micro-electro-mechanical devices (MEMs).[90, 145] For example,
a single-electron current can both detect and excite mechanical oscillations in a
buckyball. It has been shown experimentally that an electron with surplus energy
precisely equal to the vibrational energy of the buckyball can cause the buckyball
to begin bouncing due to spontaneous emission of this energy.[145] The electron
then continues to hop on and off the buckyball, thereby yielding an “electron turn-
stile” that allow electrons to pass one at a time. Jahn-Teller theory comes into play

because the buckyball experiences internal distortions while it bounces.[154, 156]



CHAPTER 3
QUANTUM CHAOS*

One of the goals in the field of quantum chaos is to marry the scientific paradigms of
nonlinear dynamics and quantum mechanics into one theory to describe situations
in which both subjects are relevant. Loosely speaking, quantum chaos is the study
of chaotic structure in the quantum regime. Though still in its infancy, this field
has seen much activity during the past quarter century. The notion of quantum
chaos is not yet fully developed—there remains substantial disagreement among
physicists, mathematicians, and chemists about what types of behavior constitute
quantum chaos. The purpose of the present chapter is to clarify what is meant
by the term “quantum chaos.” To do this, we must first clarify what we mean by

“(classical) chaos.”

3.1 Definition of Chaotic Behavior

A (classical) trajectory is said to be chaotic if it satisfies the following three prop-
erties:[41,43, 70]

a. Boundedness: There exists a ball of sufficiently large radius that contains the

trajectory.

b. Poincaré Recurrence: Consider an arbitrarily small neighborhood about the
initial point of a trajectory. The trajectory returns to the neighborhood

infinitely many times.

*This chapter is based on portions of references [160], [158], and “An Introduction to Quantum
Chaos,” which won a STAM Student Paper Prize in 2001.
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c. Sensitive Dependence on Initial Conditions: Two trajectories that emanate
arbitrarily close together diverge from each other at an exponential rate.

(More precisely, they are characterized by positive Lyapunov exponents.[67,

114, 194])

Chaos can be defined in numerous other manners.[42, 67, 194] Additionally, it is
often appropriate to relax some of the requirements in its various definitions as well
as to extend the notion of chaotic dynamics to other regimes (such as quantum me-
chanics and spatially extended systems) that necessitate other modifications to the
definition. The essential purpose of chaos is to provide a notion of unpredictability

in deterministic systems.

3.2 Quantum Chaos

There are three types of quantum chaos.[23,158] Quantized chaos (or quantum
chaology) refers to the study of the quantum signatures of classical chaos in the
semiclassical or high quantum-number regimes. Semiquantum chaos, which is the
primary concern of this thesis, refers to rigorously chaotic dynamics in semiquan-
tum systems. Genuine quantum chaos, whose existence is an open question, refers
to rigorously chaotic behavior in fully quantum systems. In the next two sub-
sections, we briefly discuss quantum chaology and semiquantum chaos in a phe-

nomenological manner.

3.2.1 Quantum Chaology

Quantum chaology is the most commonly studied type of quantum chaos. In this
subject, one quantizes classically chaotic systems, just as one would a classically
integrable system. When studying quantum systems semiclassically, one observes

that those whose classical counterparts are chaotic exhibit far different behavior
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than those whose classical counterparts are integrable. The systems that exhibit
so-called quantized chaos are not rigorously chaotic, however, as the concept of
Lyapunov exponents breaks down in the quantum regime.[70,71] Nevertheless,
configurations obtained via quantization of classically chaotic systems retain many
of the features of their classical counterparts. Their behavior is quite irregular,
and they still satisfy the properties of boundedness and infinite recurrence that
are present in the definition of classical chaos.[41,70] Techniques used to study
quantum chaology include random matrix theory, level dynamics, and periodic

orbit expansions.[23, 71]

3.2.2  Semiquantum Chaos

Semiquantum chaos refers to chaos in systems with both classical and quantum
components.[23] Although typically studied in the context of conservative systems
(so that one is considering Hamiltonian chaos in the semiquantum regime), semi-
quantum chaos can occur in dissipative systems as well.[44, 154, 156]

Semiquantum descriptions typically arise from the dynamic Born-Oppenheimer
approximation, which we discussed in Chapter 2. Part of the value of semiquantum
physics is that one may study chaos even in low-energy systems, such as nuclei that
have been coupled to two-level electronic systems consisting of the ground state and
the first excited state of appropriate symmetry.[112, 154, 158] Quantum chaology,
on the other hand, typically focuses on highly energetic states.[23,70,71] Thus,
the notion of semiquantum chaos is important for capturing the chaotic dynamics
of low-energy states of molecular systems. As behavior that is best described as
“chaotic” has been observed experimentally in such systems,[189] semiquantum
chaos is an important type of quantum chaos.

Both the classical and quantum components of semiquantum systems can be-

have chaotically. Chaos in the quantum subsystem manifests in the quantum
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probabilities. Even the chaotic dynamics of the classical subsystem has quan-
tum consequences, however, as the quantum normal modes (i.e., eigenstates) and
eigenenergies of a semiquantum system depend on its classical dof. Hence, the
wavefunctions of semiquantum chaotic systems exhibit quantum-mechanical wave
chaos.[22,23,158] Additionally, as the lengthscales of the wavefunctions are deter-
mined by the classical degrees-of-freedoms, semiquantum chaos leads to a chaotic
superposition of chaotic normal modes.[160] The signature of semiquantum chaos
in real space is the sequence of intersections with a fixed displacement that the
wavefunction’s nodal surfaces make at any instant subsequent to a number of
transversal times.[112,160]

In the language of Bliimel and Reinhardt[23] as well as that in our previous
work,[112, 157-160] vibrating quantum billiards can exhibit semiquantum chaos, as
they consist of a classical system (the walls of the billiard) coupled to a quantum-
mechanical one (the particle confined within the billiard). When a vibrating bil-
liard’s classical and quantum components interact, both subsystems can behave
chaotically even in cases in which the individual components are integrable. Note fi-
nally that quantizing the motion of the billiard walls leads to a higher-dimensional,

fully-quantized system that exhibits so-called quantized chaos.[23]



CHAPTER 4
QUANTUM BILLIARDS*

Quantum billiards describe the wavefunctions of particles confined in a domain
D C X (where X is a finite-dimensional Riemannian manifold) and colliding per-
fectly elastically against the domain’s boundary dD.[70,105] Their behavior is de-
termined by solutions to the Schrédinger equation (1.1) with homogenous Dirichlet
boundary conditions on the given domain. In the present chapter, it assumed that
the billiard boundaries are time-independent.

Two-dimensional, closed quantum billiards may be used to model ballistic mi-
crostructures such as quantum dots.[118,125] However, the theory of quantum
billiards pertains to any situation that is describable by the Helmholtz equation
with Dirichlet boundary conditions.[27,107] Such systems occur in optics, acous-
tics, electromagnetics, and numerous other disciplines.[71, 93]

Just like their classical counterparts, quantum billiards can be integrable, pseu-
dointegrable, pseudochaotic, and chaotic.[65, 70, 71,80,119, 120, 167, 193] Their dy-
namical behavior, which we do not discuss here, is determined by the geometry
of D. We instead introduce the notion of globally separability, as it is needed in

subsequent chapters.

*This chapter is based, in part, on portions of “The Transition From Integrability to Chaos
in Classical and Quantum Billiards,” which has been submitted for publication.
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4.1 Global Separability

A quantum billiard is said to be globally separable (or simply separable) when
solutions t(x,t) to the Schrodinger equation (1.1) are expressible in all parts of

the domain D as sums of eigenfunctions that may be written in a product form:

00x,0) = Y exo (<52) Aiflon) -+ Fion), (@)

where x € R” and A; is a constant complex amplitude. The time-dependent phase

factor exp (—iF;t/h) may always be separated with

o
Y; = exp (— h] ) (%), (4.2)
where p(x) satisfies the Helmholtz (“Stationary Schrodinger”) equation
Vi 4 A*p =0 (4.3)

for some constant A. Hence, a quantum billiard is separable on D when its asso-
ciated Helmholtz equation is separable on D. The adjective ‘global’ is applied to
signify that for each j, the set of functions {f{, -«+, f7} is the same throughout
the entire domain D.

The main result of this chapter is the following:

Theorem 4.1 A globally separable quantum billiard with time-independent bound-
aries is not chaotic in the sense that it does not experience quantum signatures of

classical chaos.

Proof: Separate the eigenfunctions ¢; of (1.1) as in equation (4.1). In (1.1),

N h2
H=——"V2+V(a), (4.4)

my

where mg 1s the mass of the particle confined within the billiard and

V(z) = {go XXZDI’). (4.5)
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Additionally,
Vo L zn: 9 <@i> (4.6)
V9 S Ouj \ gj5 Ou;
is the Laplace-Beltrami operator on (X, ¢).[159, 205]

Each component function f,i(xk) in (4.1), where & € {1,---,n} is an eigen-
function of a Sturm-Liouville ordinary differential equation.[178] The form of these
Sturm-Liouville problems is determined by using a Stackel determinant, an analy-
sis of which determines the geometries on which the Helmholtz operator is separa-
ble.[9, 142,159, 205] As Sturm-Liouville equations are second order, the dynamics
of the individual component functions are not chaotic. Consequently, neither their
product ; nor any linear combinations thereof are chaotic. Hence, the wavefunc-

tions associated with the quantum billiard are not chaotic. QKD

Theorem 4.1 essentially says that global separability produces a decoupling in
the dynamics of the eigenstates of vibrating quantum billiards. Note, morever,
that globally separable quantum billiards can be integrable, pseudointegrable, or
pseudochaotic.[65,70,71,80,119,120,167,193] In this thesis, we consider vibrat-
ing quantum billiards whose associated stationary configurations are completely
integrable. Examples of such configurations include spherical, cylindrical, and
rectangular quantum billiards.[142, 159, 205]

Another way to prove Theorem 4.1 is to consider quantum billiards semiclassi-
cally (by using the WKB approximation).[8,39, 81,105,136, 174] In so doing, one
obtains Hamilton-Jacobi equations corresponding to a classical billiard with the
same geometry.[70,71,114] For a given domain D, the Hamilton-Jacobi equation is
separable if and only if the Schrodinger equation is also separable. Separability of
these equations guarantees that no classical chaos occurs. Together, these results

indicate that the concept of global separability provides a deep characterization
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of the complexity of the dynamics of classical and quantum billiards of a given
geometry.[71]
Finally, as inseparable systems can be fully integrable (e.g., Toda lattices),[70,

114], the inverse of Theorem 4.1 is not true.



CHAPTER 5
VIBRATING QUANTUM BILLIARDS*

5.1 Hamiltonian Structure

Theorem 5.1 Vibrating quantum billiards have a Hamiltonian structure given by
the union of an infinite-dimensional component describing its quantum subsystem
and a finite-dimensional component describing its classical subsystem. Vibrat-
ing quantum billiards are also well-posed provided initial data is given for both

subsystems.

Proof: Recall that vibrating quantum billiards are described by the Schrodinger

equation,

maﬂgﬁtzﬁ¢ﬁﬁx(&ﬂel)xR, (5.1)

with homogeneous Dirichlet boundary conditions on the boundary 9D.[112, 158~

160] The Hamiltonian operator H is given by
H=K+V(a()), (5.2)

where V' is an external potential, a(t) € R*® describes the (a priori unknown)

time-dependence of 0D, and

. h?
K=—-—V (5.3)

2m0

*This chapter is based in part on portions of reference [160].
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is the kinetic energy of the confined particle (i.e., the “electronic” kinetic energy).
Additionally, D C X, which is an r-dimensional Riemannian manifold (where r is
finite).

The Lagrangian density £ corresponding to Schrodinger’s equation (5.1) for

a(t) = a = constant is[128, 184]

L= = b07) — o (V0. T4}
ih * * h?
= ?(?Z) lbt_?b@bt)_ 4

mo

(Vip - V™ 4+ V™ - Vi)
th R?
= S5 = 90) - 5 VY, (54)

where t; denotes the derivative of ¢ with respect to time and {X, Y} is the anti-
commutator of X and Y.[136, 150, 174] In (5.4), the wavefunction ¢ and its complex
conjugate ¥* are treated as independent variables.

As a(t) is time-dependent, one obtains the Lagrangian
L= / Ldx — Ky(2)— V(a)=T -V, (5.5)
D

where T' is the sum of the vibrating quantum billiard’s nuclear and electronic
kinetic energies, the external potential V' is its potential energy, and the nuclear

kinetic energy Ky is given by

s M- ‘
5 (5.6)

j=1
where a; is the jth time-dependent constiluent of the boundary and M; is its
mass. A single distance dimension of the boundary of a billiard constitutes one of
its “constituents”. For example, a planar rectangular billiard has two constituents:
its length and its width. The radius of a spherical billiard is its only constituent. A
three-dimensional cylindrical billiard has both radial and longitudinal constituents.

An annular spherical billiard has two constituents: its inner and outer radii.
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This yields the action

S[ep, %] = /: { /D Ldx — Ky(a) — V(a)| dt, (5.7)

which is a functional on all admissible functions v satisfying the prescribed con-
ditions ¥ (x, o) = ¥ and t(x,t;) = ¢;. Admissible wavefunctions ¢ are elements

of the Hilbert space
Hy = Li(D,dX) (5.8)

of square-integrable waves 1 with Lebesgue measure dz.[160,172] In (5.8), we
use ¥ as a subscript to differentiate the notation for Hilbert spaces and square-
integrability from that for Hamiltonians and Lagrangians.

One computes the variation of (5.7) to be

oo (L5 ()5 () v

ac 1"
+ {8—%&4 . + c.c., (5.9)

where c.c. denotes the complex conjugate of all the preceeding terms in (5.9 and

oL _ (oL . oL
3<W>:<8<61w>’ ’a@rm)’ (5.10)

where 0,9 = 0y /0x;.

The wavefunction ¥ (x, 1) is an extremum of (5.7) provided the Euler-Lagrange
equations are satisfied.[1, 128,150, 184] Computing these equations with the Lan-
grangian (5.5) reproduces Schrodinger’s equation (5.1). Consequently, vibrating
quantum billiards possess a Hamiltonian structure with Hamiltonian given by[184]
ih
2
= /DHdX + Kn(P) 4+ V(a), (5.11)

H= /Dw e — ) — L
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where P; = M;a; (57 € {1,---,s}) is the momentum of the jth constituent of the

billiard boundary and
ih h? )
= (V*, — P — L = —— A2
H=T - pun) - £= 1wy (5.12)

is the Hamiltonian density. The Hamiltonian H has an infinite-dimensional com-
ponent (encoded by the Hamiltonian density ) as well as a finite-dimensional
component (due to the time-dependent boundary a(t)). (Associated with the
Hamiltonian is a symplectic structure.[128])

Applying Hamilton’s equations yields a partial differential equation describing
the infinite-dimensional component,

0H  &H
ht), = — = =
i o oy

K, (5.13)

which we recognize as Schrodinger’s equation (5.1), and coupled ordinary differen-

tial equations describing the finite-dimensional component

P

AV

R * v 2 oV

by = —m/@{v%vﬁ/} pdo(z) — B0, - —%/QD VY] do(x) — B0, (5.14)

where do(z) is a Lebesgue measure on the boundary of the billiard. The poten-
tial V(a) need not be included in Schrodinger’s equation (5.13), as it shifts all
eigenvalues of K by the same value.[159, 160] It is included, however, in the finite-
dimensional component (5.14) of Hamilton’s equations describing the motion of
the billiard boundary.

Quantum billiards with time-independent boundaries are well-posed provided
an initial wavefunction 9 (x(0),0) is specified.[128] Quantum billiards with time-
dependent boundaries are also well-posed as long as the initial size a(0) and mo-

mentum P(0) of the boundary are also given. (The finite-dimensional Hamiltonian
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structure of the classical subsystem provides a unique way to determine a(At) and
P(A?) for a time-step At.) QED
An alternate perspective on the results discussed in this section is examined in

reference [160].

5.2 Symmetries

To further study the structure of vibrating quantum billiards, we consider the
symmetries of the full system and its d-mode truncations.[160]

Expand the solution ¢ to (5.1) as a d-mode Galérkin projection of eigenstates:

v = A1) (5.15)

Equation (5.15) is often called a superposition state in the context of quantum
mechanics. In (5.15), d may be either finite or infinite. If d is infinite, it is
assumed that the expansion (5.15) contains every possible eigenstate rather than
a subset of these states. The amplitude A;(t) € C is time-dependent because the
boundary a(t) is time-dependent. (We will discuss this in more detail later in the
present chapter.)

One may define ¢ as an element of its invariant Lie group, as on the normalized
Hilbert space H, it is completely determined by the coefficients A; in its eigen-
function expansion (5.15) once a basis set {¢;} has been chosen.[160] The initial
wavefunction is then determined by its initial complex amplitudes A;(0). If d is
finite, the initial wavefunction is determined by finitely many such amplitudes.
(The others all vanish.) As the ensuing finite-dimensional system retains a Hamil-
tonian structure (see Chapter 12), it follows that given a(0), P(0), and A(0) for
all 7 € {1,--+ ,d}, a d-mode Galérkin expansion of a vibrating quantum billiard is

well-posed.[160]
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Consider a wavefunction (5.15), where d might be infinite and each of the
coefficients A;(t) € C. Because of their scale-invariance—two wavefunctions are
equivalent if one is a constant multiple of the other-wavefunctions may be treated
as elements of the complex projective space CP?~", which is the set of lines in C?,
or equivalently the set C?/{change of scales}.[1, 160]

If d = oo, then one must consider the group C* and hence CP*. The infinite-
dimensional projective space CP™ is given by the union

CP> = | JCP’. (5.16)
i>0
It is well-defined because of the embedding CP/ «—s CP/*', which is defined by
appending a 0 to the last coordinate of (¥ € CP.

Wavefunctions are normalized and expressed as eigenfunction expansions of
orthonormal bases, so (¢;|¢x) = d; for any pair of eigenfunctions ¢; and ¢y in
the expansion. Hence, 1 € U(C?), the unitary group on C*. By invariance under
global phase shifts, 1 and exp(i)y describe equivalent physical systems for any
Y € R, so wavefunctions ©» may be further restricted by being treated as elements
of the group U(C%)/{e""I}, where {¢"’I}, the set of all global phase shifts, is the
center of the group U(C?).

Note that for a given basis {¢;}, a wavefunction is determined by its amplitude

tuple A(t) = {Au(t), -, A;(1),--- }. Conservation of probability,

d
Z |AJ4|2 =1, (517)
7=1

follows from the fact that ¢» € U(C?)/{e""I} C U(C?). This entails restrictions on

the density matrix py; = AxAj, which may be written as a projection operator

p =P, (5.18)

where P = (1, p)p for the {¢}-basis.
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If d is finite, then ¢ € U(d)/{e""I}. It then follows from the invariance of wave-
functions under scaling that there is a natural action of the group U(d)/{e"’ I} :
C? — € that induces an action from CP*™" to CP*"'. The set U(d)/{e”I} is
the invariance group of the action described above. When d = oo, there is similarly

an action
U(CY)/{e” I} : CP* —s CP* (5.19)

under the invariance group U(C?)/{e"I}.

When d = oo, the action of U(C?)/{e"’I} is generally an oo : 1 map. By re-
stricting one’s attention to the finite-dimensional subgroup U(n)/{e" I}, however,
one instead obtains a n : 1 map. This procedure is equivalent to taking an n-term
Galérkin projection. In general, for d > n (including d = o), one obtains an n : 1
map by restricting the wavefunction ¢ to be an element of U(n)/{e®"I}.) This, in
turn, is accomplished by restricting the coefficient tuple A to be an element of C*
(and retaining the invariance properties of the coefficients that are consequences
of the invariance properties of ).

Note that the Lie algebra u(9d)/{¢"’J} (of the Lie group U(d)/{e"’I}) is iso-
morphic to the Lie algebra su(d). However, the associated Lie groups are not
themselves isomorphic. When d is odd, for example, U(d)/{e"’ I} has a trivial cen-
ter, whereas —1 is in the center of SU(d). When d = 2, U(d)/{e"’ I} is isomorphic
to the rotation group SO(3), which differs from SU(2) because the latter is simply
connected whereas the former is not.[188] Nevertheless, because their Lie algebras

are isomorphic, U(d)/{e”’ I} and SU(d) are “locally isomorphic.”[38, 160]
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5.3 Galerkin Expansions

To consider a d-term Galérkin expansion, insert the wavefunction

d

Y(x,ta) =Y Ay (U, (2,1 2), (5.20)

7=1
which is a superposition of nyst through ngth eigenstates, into the Schrodinger
equation (5.1).
Taking the expectation of both sides of (5.1) for the state (5.20) when a € R®

yields[160]
R:
)

(o)

K <|An1|27 T |And|2; a) )

d
ih [ Y ALAL

koj=1,k#]
d d
+ > Vi A P Y v, An AL (5.21)
k=1 kg=1,k#j

Denoting A; = A,;, equating coefficients in the quadratic form (5.21) leads to the

amplitude equations
. d
A, =Y DA, (5.22)
7=1

which describe the electronic dof of vibrating quantum billiards.[154, 160, 189]

When s = 1, one defines the coupling parameler ji,,,, with the relation
a
Vngn; = E,unkn]. (5.23)

(When s > 2, the factor a/a is replaced by a sum of factors representing each
of the boundary constituents. This is illustrated for s = 2 in Chapter 11 using
the vibrating rectangular quantum billiard.) In (5.22), the diagonal terms of the

Hermitian matrix D = (Dy;) are

Dy = 2 (5.24)
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and the off-diagonal terms are given by
, a
Dk]‘ = —Z,LLnkn]E. (525)

The parameter pir; = fin,n, = —fnyn, # () is the coupling coefficient for the cross
term A, A;]. If a coupling coefficient vanishes, the present situation reduces to a
lower-dimensional case. The Quantum Number Symmetry Theorem, which is stated
and proved in Chapter 6, gives the conditions under which coupling coefficients
vanish when s = 1.

The equations of motion describing the nuclear dof are given by Hamilton’s

equations applied to the boundary:

. _OH
“Tap
. OH
P=——-: 5.26
90 (5.26)
Using a diabatic basis, the Hamiltonian H is given by
P 2 2
H= m+<|A1| P 7|Ad| ;CL)—I—V(G). (527)

We postpone writing equations (5.26) explicitly the complex amplitudes A;
have been transformed to real variables. This may be done using either Bloch

coordinates (described below) or action-angle coordinates (described in Chapter

12).

5.4 Bloch Variables

Tranforming to Bloch variables using equations (A.1) and simplifying using equa-
tions (A.4) yields a coupled system of d* + 1 nonlinear ordinary differential equa-
tions to describe a d-mode Galérkin expansion of a vibrating quantum billiard,
which is a d dof Hamiltonian system when written canonically.[160] There are

(d — 1)d/2 equations of motion for the z-Bloch variables, (d — 1)d/2 equations of
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motion for the y-Bloch variables, (d — 1) equations for the z-Bloch variables, and
Hamilton’s equations for a and P.

The equation for zj; takes the form

WY 2up Pz P i

. klYkl kl kl

Tp = — .2 — p, + . E :|:,LL}C]‘SZZJ'[,256 (528)
i=1, kg{k,l}

where the coupling frequency wi = (¢ — €)/h and the terms in the sum in the
equation for 15 all have negative signs. The signs of the terms in the other z-
Bloch variable equations are then determined from the constraints derived in the

Appendix. One differentiates equation (A.2) to obtain

d
Z [d (T + yuym) + 22k2k] = 0. (5.29)

k=1, k<l
In order to satisfy (5.29), the signs of the terms in the sum in equation (5.28) must
cancel each other out appropriately. One thereby determines all the appropriate
signs in the equations of motion for the z-Bloch variables from the known signs in
the equation for &2, as the terms in question (that are of the form z;;z4) all come
from dynamical equations for other z-Bloch variables.

The equations of motion for the y-Bloch variables take the form

d
. wpry P
i=1, j¢{k,1}

where all the terms are positive in the dynamical equation for y;5 and the signs of
the terms in the other equations are determined using equations (5.29,5.30).
The equations of motion for 2y ;41 take the form
d

Pk k1 Py g P
Ma + Ma Z

[k ks + w1041 (5.31)
i=1, j@{kk+1)

Zhpht1 = 2

as all terms with & as the left subscript or (k+1) as the right subscript are positive.

To obtain equation (5.31), one then uses the fact that p,;n, = —fin,n,-



Hamilton’s equations,

(5.32)

are derived using the kinetic and potential energies and the dynamical equations

for the z-Bloch variables (5.31).[160]

The kinetic energy is expressed as

k<l
where
_ €l — €
6kl = 2 5
1
6+ = § Z €;.
7=1
Hence,
d
oK 4 _
Ja  da® [ > e et
k=1, k<l
5 d
mbryell I R E > kime + sl
j:17 ]Q{k,l}

5.5 Equilibria

(5.33)

(5.34)

(5.35)

The equilibria of the present (d* + 1)-dimensional dynamical system (5.28, 5.30,

5.31, 5.32) satisfy P =0, 2y = ym = 0,

d
2 _
§ zig =d —1,
kI=1,k<l
and
d
ov 4 _
= o et + g Zki€g | -
da da
kl=1,k<I

(5.36)

(5.37)
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Using zix = pu — prk, the definition of density matrices, equation (5.36), and
constraints analogous to those given by equations (A.5)-(A.7) for the case d = 4
shows (after an extraordinarily tedious calculation that is most easily done after
one has specified the parameter d) that for each equilibrium, the jth complex
amplitude |A;| (where 5 € {1,--- ,d}) is unity and all the others vanish.[160] That
is, the jth equilibrium corresponds to the jth pure state (in which only the jth
eigenfunction is present). This is exactly what we expected physically.

The jth equilibrium eigenstate has energy
E;, ==L, (5.38)
where a, is the value of the displacement at equilibrium. Hence, the equilibrium
condition (5.37) may also be expressed as

ov 2¢; ,

90 =

The fact that each equilibrium of a vibrating quantum billiard must be a pure
state corresponds to our physical expectations of the simple molecular systems
they model. (This physical interpretation is discussed in more detail below.)

The equilibrium radii of pure states are determined by equation (5.39). If the

energy
E=V(a)+ K(zj,a) (5.40)

has exactly one minimum with respect to a, then the time-derivative of the mo-
mentum P vanishes precisely once if one varies a and holds the quantum variables
constant. In this situation, each equilibrium pure state has a single corresponding
equilibrium radius. Hence, these equilibria must be stable elliptic.[160] (An equilib-
rium is said to be elliptic if the real parts of its eigenvalues all vanish.[23,70,114])

As the kinetic energy K(a) > 0, the only way for F to have multiple minima

is to adjust the external potential V(a), which we interpret physically in section
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5.6.[160] If V(a) is has a single minimum (i.e., if V(a) is a “single-well potential”

in quantum-mechanical terminology), as is case with the harmonic potential,
V(a) = Vola — ao)?, (5.41)

then E necessarily has a single minimum.

The occurrence of multiple minima is reminiscent of the “symmetry breaking”
that occurs in quantum field theory and condensed matter physics.[40, 150] The
present model shows that this can occur in molecular physics as well, so vibrating
quantum billiards provide a further hint at the relationship between molecular sys-
tems and quantum field-theoretic systems at which some authors have hinted.[20]
In particular, if one uses a quartic, double-well potential (as is discussed in Chapter

7), one recovers the same Landau transition.[155]

5.6 Physical Interpretation

A d-mode Galérkin expansion of a vibrating quantum billiard with s time-dependent
boundary constituents models d-fold electronic near-degeneracies in a polyatomic
molecule with s excited nuclear modes. The potential V (a) describes the mechanical
motion of the molecule’s interatomic bonds.[154] The resulting vibronic interaction
between the nuclear and electronic dof of vibrating quantum billiards is reminiscent
of Jahn-Teller distortions.[19, 20, 126, 189, 202]

In the context of quantum-mechanical systems, d-mode Galérkin projections
correspond to d-term superposition states.[154,160] We wish to consider when
such a state occurs in physical systems relevant to vibrating quantum billiards in
light of the discussion of semiquantum physics in Chapter 2.

In a d-mode Galérkin expansion, the eigenstates that have been ignored are
assumed to contribute negligibly to the system’s dynamics. As vibrating quantum

billiards are Hamiltonian, this is not true mathematically in the systems of inter-
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est. Hence, a different choice of d yields a different physical system. In Jahn-Teller
theory, it is permissible to consider only d eigenstates when they are energeti-
cally close and are energetically isolated from the states being ignored. As the
problem of interest is a type of Jahn-Teller distortion, this physical justification
carries over to vibrating quantum billiards.[154,160] Hence, a d-fold electronic
near-degeneracy in a molecular system requires at least a d-mode Galérkin pro-
jection of the Schrodinger equation (5.1) to be described from the perspective of
this work. A common cause of such near-degeneracy is symmetry,[18,189] which
we will discuss in more detail in Chapter 6 when we state and prove the Quantum
Number Symmetry Theorem.[154, 157, 159]

The semiquantum regime aptly describes the dynamics of molecules when they
undergo nonadiabatic transitions.[154, 189, 202] In this regime, the nuclear degrees-
of-freedom are treated classically, whereas the electronic degrees-of-freedom are
treated quantum-mechanically.[36, 189] One uses a d-term Galérkin projection when
the (electronic) eigenenergy corresponding to the (d+1)st term is sufficiently larger
than that corresponding to the 1st through dth states that it may be ignored. As
the first d electronic energy levels are either degenerate or nearly so, the use of
d-mode Galérkin expansions allows one to explore the nonadiabatic transitions
involving their associated eigenstates.[20, 154]

From equation (5.33), observe that when s = 1, near-degeneracies occur as «a
becomes large. (This is also true for s > 2.) An exact degeneracy occurs at a = oo,
although the displacement variable a is always finite for real molecular systems.
Such near-degeneracies have been observed in the lowest ionic and covalent states
of alkali halides such as NaCl.[79] In terms of the present model, the resulting
nonadiabatic transitions in diatomic molecules are described by the case s = 1,

d = 2. 1t is noteworthy that the prediction of near-degeneracies at large radii was
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obtained before we were aware that this fact was known experimentally. Moreover,
analogous situations are known to occur in more complicated polyatomic molecules.

Molecular systems frequently exhibit degeneracies or near-degeneracies involv-
ing only a few eigenstates.[19, 20, 189] This, along with the results discussed in the
above paragraph, provides a rationale for the analysis of few-mode Galérkin expan-
sions and the resulting low-dimensional systems of ordinary differential equations.

The time-dependent constituents of the boundary of the vibrating quantum
billiard are treated classically, so they yield the billiard’s nuclear dof. Hence, the
s dof describing the motion of its boundary represent s excited nuclear modes in
a polyatomic molecule such as benzene.[154, 160]

Finally, the external potential V(a) represents the stiffness of the spring used
to model the interatomic bonds of the molecule of interest. When V' is harmonic,
the spring under consideration is a linear one.[155] In light of prior discussions, the
stability of equilibrium pure states is a consequence of the stiffness of the inter-
atomic bonds.[155,157] We consider the dynamical consequences of this stiffness

in Chapters 7 and 8.



CHAPTER 6
QUANTUM NUMBER SYMMETRY*

Theorem 6.1 Quantum Number Symmetry Theorem Suppose Schrodinger’s
equation (5.1) is globally separable in D and that D is convex and r-dimensional.
Consider a quantum billiard on D with s = 1 nuclear dof. Consider the superposi-
tion of the eigenstate v, with the vector of quantum numbers n = (nq,--- ,n,) and
the eigenstate 1, with the vector of quantum numbers n’ = (n},--- ,n.). Suppose
without loss of generality that the rth quantum number is associated with the
time-dependent portion of the boundary and that the others are associated with
stationary portions of the boundary. Then v, and ¥, have a nonzero “interaction

coefficient” pu,,,, if and only if ny =nj for all [ € {1,--- ,r — 1}.[159]

In words, the Quantum Number Symmetry Theorem implies that two eigen-
states {1, ¥, } in a Galérkin expansion of a globally separable quantum billiard
with one nuclear dof whose domain D is r-dimensional must have (r — 1) equal
quantum numbers (corresponding to the stationary dimensions of the billiard’s
boundary dD) to yield a nonzero interaction coefficient pi,,,,,.[159] If D is a sphere,
for example, this symmetry condition means that these eigenstates must have the
same angular-momentum quantum numbers.[112,158] (This special case is dis-
cussed in detail in Chapter 10.) Additionally, Theorem 6.1 yields a necessary

condition for a Galérkin expansion with d = 2 modes to behave chaotically.

*This chapter is based on portions of reference [159].

42
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Proof of Theorem 6.1: The wavefunction ¥ of a quantum billiard is given by
the Galérkin expansion

60,0 = 5ol L exp (=52 Aul0)puialt) (6.1

n

where x € D and the time-dependent phase exp(—iF,t/h) of the nth eigenstate
may always be separated as in equation (6.1). As in Chapter 5, A,(¢) is a com-
plex, time-dependent amplitude. Additionally, #(a(t)) is a normalization factor
associated with the billiard domain D. It is the same for all eigenstates.

As s = 1, the vibrating quantum billiard of interest is said to have one movable-
boundary (mb) quantum number and (r—1) fixed-boundary (fb) quantum numbers.
The components of the vector x associated with fb and mb quantum numbers
are given the same adjective. Without loss of generality, suppose that the rth
component n, of the vector of quantum numbers (nq,--- ,n,) corresponds to the
time-dependent boundary.

Absorbing the time-dependent phases into the complex amplitudes yields

o(x,1) = Bla(t) Y Au(t)en(x; a(t)), (6.2)

Because of global separability, one may write
on(x;a(t)) = [T £ (x)), (6.3)
7=1

where the component functions f]n] are the same throughout D.

Substitute the two-term superposition state

b= Au()n + A (D)tbr, (6.4)

into the Schrodinger equation (5.1) to yield the quadratic form (5.21) with d = 2.
To prove the Quantum Number Symmetry Theorem, we need to show that the

interaction coefficient fi,,,,,, which is defined in equation (5.23), vanishes unless

(nlv U 7n7”—1) = (n/17 e 7n;"—1)'
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Separate the eigenfunctions ¢, and ¥, as in (6.3). Each of the r component
functions of 1, and %, is the solution of a Sturm-Liouville boundary value prob-
lem.[27,159,178] Consequently, each of these component functions satisfies the

following orthogonality property:

(r fj3> = Gyt (6.5)

To calculate the inner products in equations (5.21), one integrates with respect
to all r spatial variables. The set of terms relevant to this argument are those in
the second equation with the prefactor v,,/, as—by definition-this quantity vanishes
exactly when fi,,,» does. These terms arise from (t|dv/0t) via the product rule as
follows.

Differentiating the wavefunction ¢ with respect to time yields

9 0, O

5 = Anton + Auwtp + A E 4 Ay, (6.6)
where
S = 21 (a0) . a0)]
= Fat)ivs + Bla(t) 2k
— i |t 5<a>aia<a>} . (6.7)
Consequently,

(o

a‘”k> . </3<a>¢j<a>

— (Ba)si(a) B (aiula)) + </)’( 45(a)
_ a [3(a)P <¢]<>

i (@onla) + 50 G20 )

() ) )
Do) (6.9

where (¢;|tx) = 0 when 5 # k by orthogonality. (The fact that j # k& was not

used in any other place in (6.8).)
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The dependence of ¢); on a arises only in the mb coordinates, so-with global

separability—this implies that

Y (sl | S a0 )

a[B(a))* (s a) [Wh(a)) = a [3(a) TT {7

=1

= Uik <f7g'r(;,;r; a(t)) ‘8;5 (2, a(t))>

= Hnn’ <f7zlr($r;a(t)) ‘%($r§a(t))> (6'9>

for j = nand n = n'.

Applying the orthogonality condition (6.5) to each of
the fb components in (6.9) then shows that g, = 0 unless f" = fln; for all I €
{1,---,r—1}. This, in turn, holds exactly when n; = nj forall [ € {1,--- ,r—1}.

This completes the proof of Theorem 6.1. QED



CHAPTER 7
ONE-MODE GALERKIN EXPANSIONS*

Applying a one-mode Galérkin expansion, in which one considers a single eigenstate
in the Schrodinger equation (5.1), yields the case of so-called Fhrenfest dynam-
ics.[160] Equivalently, this situation describes the nuclear (classical) degrees-of-
freedom of molecular systems after one has averaged over their electronic (quantum-
mechanical) degrees-of-freedom.[154, 189] When the number of nuclear dofis s = 1,

a billiard’s Ehrenfest dynamics are described by a one dof Hamiltonian system:.

7.1 Equations of Motion

Let d =1 in equation (5.20), so that one is considering a single eigenstate

Y(x,1) = ¢u(x, t; all)). (7.1)

The quantum probability |A,|* = 1, so one obtains a classical system with Hamil-

tonian[155, 160]

2

H(a,P) = QP;M + K(a)+ V(a), (7.2)

where the quantum-mechanical information (consisting of the nth electronic eigen-
value of the Schrédinger equation) is encoded in the electronic kinetic energy K.

The resulting equations of motion are

P O0H

M= 9P
YV | 2. _ OH 3)

Cda ' a® T da’

*This chapter is based on portions of references [155,159, 160].

P =
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where ¢, is the energy parameter corresponding to the nth eigenstate of (5.1).[159]
The influence of the quantum subsystem on the classical one is encompassed en-
tirely by the parameter ¢,.

An equivalent way of obtaining equations (7.3) is to consider multiple eigen-
states in (5.20) that fail to couple together. (See Chapter 6.) In this situation, 2,
is replaced by a reduced enerqy parameter

d
A=2 (Z ej|0j|2) : (7.4)
j=1

where C; is the jth complex amplitude, and

d
YloP=1 (7.5)
7=1

by conservation of probability. The parameter A is positive because ¢; > 0 and the
|C;* > 0 correspond to quantum probabilities.

For the remainder of this chapter, we consider the resulting equations of motion:

_ P _oi
M OP’
av. A oH
b= te= "% (7.6)

7.2 Saddle-Center Bifurcation

For some potentials V(a), bifurcations can occur in (7.6) as A is varied. Equilibria

of (7.6) are of the form (a.,0), where

oV A
%(a*) = —i) (7.7)

a

The corresponding eigenvalues are
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which are either real with opposite sign or are pure-imaginary, complex-conjugate
pairs. Hence, each equilibrium is either a center or a saddle point.[155]

Every equilibrium is a center when

0*V 3\
= W(a*) +—>0. (7.9)

4
a,

This is the case, in particular, when V(a) has a single minimum, such as for
the harmonic potential V' = V,(a — ag)*.[155] Another interesting situation is the
quartic potential V' = Vj(a — ag)*, in which the interatomic bonds of the molecule
of interest are stiffer.

Assuming V5 = V; and considering the same initial conditions for both po-
tentials, the phase-plane trajectory for the quartic potential has a larger radius
of curvature. For a given initial condition, the trajectory associated with the
quadratic potential tends to attain larger maximum a. For initial conditions with
sufficiently small a(0), the quadratic potential induces trajectories with smaller
maximum |P|, but the quartic potential eventually yields a larger maximum |P|
as a(0) is increased.

An equilibrium for which A < 0 is a saddle point. The dynamical system (7.6)
is invariant under reflection about the a-axis (P + —P) because it is Hamilto-
nian and hence reversible.[67,114,155,194] Hence, the local stable and unstable
manifolds of an equilibrium are mapped to each other under this reflection. By
symmetry, the dynamical system (7.6) has saddle connections whenever it has at
least one saddle point.

As X is increased, the quantity A also increases. Equilibria at which A =
0 correspond to saddle-center bifurcations. Such equilibria have two vanishing

eigenvalues with corresponding Jacobian matrix[67, 155, 194]

(g é) . (7.10)
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Billiards: Quartic, no cross

088042
0710602

Figure 7.1: Approximate cuspidal homoclinic orbit. The initial point used was
(0.7886751,0.001), which is just above the equilibrium.

Hence, saddle-center bifurcations have codimension two. Moreover, these local
bifurcations are accompanied by a global bifurcation corresponding to the breaking
of the separatrix.[67,72] At saddle-center bifurcations, the Hamiltonian (7.2) has

a double zero, so

H(a.,0) = %—Z (.,0) = 0. (7.11)

Hence, a saddle-center bifurcation occurs when

Ae = ai%—z (ax,0) (7.12)
at the point (a.,0) satisfying
av a, 0%V
P a0y = =222 (4.0). 1
5 (ax,0) W (ax,0) (7.13)

Any solution to (7.13) with A < 0 is discarded as nonphysical.

At the saddle-center bifurcation, the stable and unstable eigenvectors of the
equilibrium coincide along the a-axis, so the stable and unstable manifolds over-
lap near this stationary point. The resulting cusp causes difficulties in numerical

continuation attempts. The two homoclinic orbits that exist when A < 0 have



50

P
1.00

0.75,

0.50]

0.25,

0.004

-0.25] 6

-0.50]

-0.75

-1.00
T T T T T T T
0.25 050 075 1.00 125 15 175 200 225

Figure 7.2: Homoclinic orbits emanating from (0.8916637,0) for A = 0.15. The
label 12 refers to the right homoclinic orbit, and the label 6 refers to the left one.
coalesced into one. As A increases, the homoclinic orbit on the left shrinks, be-
coming a single point at the saddle-center. Trajectories have infinite derivative
with respect to arclength at the saddle-center point.

As a specific example of this phenomenon, consider the quartic potential
V(a) = Vi(a — ap)* + Va(a — ag)® + Va(a — ap)* + Vi(a — ag), (7.14)

which yields a Landau transition analogous to those that occur in quantum field
theory and condensed matter systems.[40, 150] Quartic potentials have either one
or two local minima. In the latter case, a single saddle-center bifurcation occurs.
Without loss of generality, suppose V3 = V; = 0. For our numerical simulations
purposes, we utilized the parameter values ag = 1,V2 = —1, and V4 = 1. (When
Vi = —V3, the potential V(a) is sometimes called a Duffing potential.) There is a
saddle-center bifurcation at A\, = % [3 + \/g]S V3 =~ 0.1888176. The correspond-
ing stationary point is (% + %, ()) ~ (0.7886751,0). Using DsTool[68], we plotted
an approximation of the homoclinic orbit emanating from this equilibrium (Figure

7.1).
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Figure 7.3: Continuation of the detuned system in the parameter A.
7.2.1 Continuation Past the Bifurcation

Suppose the initial value of the reduced energy parameter is A < A, and one wishes
to continue past the saddle-center point. Using AUTO,[47,48] we follow the two
homoclinic orbits for A = 0.15 (Fig. 7.2). The codimension of the saddle connection
in the present system is greater than one, as both regularity and nondegeneracy
conditions are violated.[32,33] Degeneracy is violated because for all A < A, there
are two homoclinic orbits emanating from the saddle point. Regularity is violated
because the saddle point’s two eigenvalues are negatives of each other.

As the dynamical system (7.6) is degenerate and irregular, one cannot continue
in A past the saddle-center directly, as described in the AUTO manual.[47] There
are several ways to resolve this problem.[32,33,155] In this work, we “detune” the
system by adding a dissipation term to destroy the genericity of homoclinic orbits.

Hamiltonian systems are described by
¢ =JVH(z,)), =R, (7.15)
where

J= (_0] é) (7.16)

is the canonical 2n x 2n symplectic matrix[128]. One can detune the system by

using a small perturbation parameter ¢ as follows.[32] The perturbed dynamical
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Figure 7.4: Right homoclinic orbit for A = 0.1887.
system,
&= JVH(z,\)+eVH(z,)), (7.17)

is no longer Hamiltonian, but—by construction—the location of all equilibrium points
is preserved. With this detuning, the saddle-center bifurcation becomes a saddle-
node bifurcation, as the eigenvalues of the stationary point are now of the form
a+ (a # 0) rather than of the form ++/b. One can then continue \ past this
point using AUTO.

With this technique, one can compute the value of A at which the saddle-center
bifurcation occurs as well as the cusp point of the homoclinic orbit corresponding
to that value. Once one has successfully continued past the cusp, one lets ¢ — 0
and recovers the system of interest in the regime A > A.. In our work, we used
€ < 0, since the equilibria that are centers for € = 0 become stable spirals for € < 0.
The continuation curve (in A) is shown in Figure 7.3.

In general, AUTO has difficulties near cusps. As with DSTool, one can approx-
imate the cuspidal homoclinic orbit using AUTO. To do so, one provides initial
values for the continuation parameters (corresponding to the initial point in the
(a, P)-plane) to the right of the saddle point (a*,0). This allows AUTO to continue
along the homoclinic orbit for values of A closer to A, than if one had started as

close to the saddle point as machine precision would allow. For the present exam-
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Figure 7.5: Left homoclinic orbit for A = 0.1887.

ple, the closest plot we obtained corresponds to A = 0.1887. The right homoclinic
orbit is shown in Figure 7.4, and the left one is shown in Figure 7.5. Observe that
the one on the right looks like it has a cusp at the saddle point because the left ho-
moclinic orbit is very small. As the saddle-center is approached, the left homoclinic

orbit shrinks to a single point and the right one becomes more cusplike.

7.3 Dynamics Near a = oo

To examine the Ehrenfest dynamics of quantum billiards with one nuclear dof near

a = 0o, one makes the transformation

P
U= —,
a
1
)= —. 1
w= - (7.18)
From (7.18), one obtains
A% 1 oV , 0V
— == —w —. 1
da a? dw Y Hw (7.19)
This yields the follow equations of motion:
2
v = —UM —|—w3g—‘; + dw?,
W= — (7.20)

M
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Equilibria of (7.20) satisfy either v = 0 or w = 0. Applying (7.18), we note
that @ = P when v = 0 and ¢ = oo when w = 0%. We are concerned with positive
values of the variable w because the displacement a must be positive. When v = 0,

the relation

A%

— 4+ \w = 21

g + A w =0 (7.21)
must also hold. When w = 0, one instead obtains

v? = Mw?’g—z, (7.22)

which forces the condition v = 0 for some choices of the potential V. The Jacobian

matrix is

_2v 29V 392V 3
J— < ar 3w o= + w o + 4 w ) (7.23)
M

_v
M

Poincare’ sphere: Harmonic Potential

50

Figure 7.6: Time series in v(t) for the Ehrenfest dynamics at infinity in a harmonic
potential. The initial conditions are v(0) = 0, w(0) = 0.2, ¢ = 7%/2 ~ 4.9348022,
€ = 2m? &2 19.7392088, ¢ = 0.75, c2 = 0.25, Vo = 5, and V; = 1.

Suppose V = Va(a —ag)* + Vi(a — ag) and let ag = 0 without loss of generality.

The equations of motion (7.20) become

2

i):—UM—QVQ—Vlw—I—/\w“,
= — (7.24)

M
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Poincare’ sphere: Harmonic Potential

Figure 7.7: Time series in w(?) corresponding to the same equations of motion,
initial conditions, and parameter values as in Figure 7.6.

The condition w = 0 then implies that v* = —2MV,, which cannot occur since

V3 > 0. Hence, all equilibria satsify v = 0 and
—2Va — Viw + Aw* = 0. (7.25)
The Jacobian (7.23) becomes

v 3
J = (_g i+ D ) . (7.26)
M

The eigenvalues of this system’s equilibria consequently satisfy

3v 1 [ v? 4V 16\ 4
"“Wiﬁ\/W+ﬁw_ﬁw‘ (7.27)

One obtains saddles when 2v2/M —Viw+4 w* < 0, stable nodes when the reverse
inequality holds, and a saddle-node bifurcation if there is equality. Analogous to
the saddle-center in equation (7.6), this bifurcation occurs as one increases the
energy parameter A. The equilibria undergo a transition from a saddle to a sink
by decreasing V] since w = 1/a > 0. Note additionally that V; must be positive
for a saddle to occur. Moreover, the special case with A = 0 (zero energy) and

Vi = 0 (symmetric harmonic potential) yields the eigenvalues o0 = —v/M, —2v/M.
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Poincare’ sphere: Quartic Potential

1000

Figure 7.8: Time series in v(t) for the Ehrenfest dynamics at infinity in a quartic
potential. The initial conditions are v(0) = 0, w(0) = 0.2, ¢ = 7?/2 ~ 4.9348022,
€ = 2m% & 19.7392088, ¢ = 0.75, ¢2 =0.25, V4 =5, V3 =V, = 0, and V| = 1.

If w(0) = 0, then w = 0 for all time. This yields an invariant manifold that

solutions cannot cross. The flow on this manifold is given by solutions to

2

v

)= —— — 2V, < 0. 7.28

v M 2 (7.28)

As w = 1/a, we are interested in the case w > 0. To approach ¢ = oo (i.e.,

w = 0%), we examine solutions asymptotically as they approach the line w = 0
from above.

From equation (7.24), one obtains

dw v
— = ——dt 2
” i (7.29)

with separation of variables. Hence,

1 t
w = w’exp {—M/_ Uds} , (7.30)

[e.e]

where w° = w(0). One then inserts (7.30) into (7.24) to obtain

2 t ¢
S VAR 7O D S 0V exp |
v=—77 2V, — Viw exp{ M/_Oovds}—l—)\(w)exp[ M/_Oovds}.
(7.31)
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Poincare’ sphere: Quartic Potential

Figure 7.9: Time series in w(?) corresponding to the same equations of motion,
initial conditions, and parameter values as in Figure 7.8.

Near a = oo, w® = 1/a(0) ~ 0, so the last two terms in equation (7.31) become

increasingly negligible as the interatomic distance a becomes large. Consequently,

2

v
)~ —— — 2V 7.32
v i 2 ( )
as w® — 0. Therefore,
2V;
v~/ 2MVytan | — ﬁZt + ¢ (7.33)

as a(0) — oo. The parameter ¢q is a constant of integration reflecting the initial
condition v(0) = P(0)/a(0). The units of the variable v are mass/time, so its
initial value represents a frequency during the transition ¢ — oo. Figure 7.6
illustrates the tangent-like time-dependence in the variable v. Figure 7.7 shows
the corresponding bursting behavior in the inverse displacement w. (The mass M
was normalized to unity in both plots.)

Now consider the case V = Vja* + Vza® + V4a? + Via, for which the equations

of motion (7.20) become

b= e — —— — 22 9V, — Viw + A,

= — (7.34)
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As w = 0 is now singular, all equilibria satisfy v = 0 and
—4V, — 3Vaw — 2Vaw? — Viw® 4+ dw® = 0. (7.35)

The presence of powers of w in denominators in equation (7.34) prevents the
use of the simple asymptotic procedure we applied above. The time-dependence
obtained numerically in this case with V; = 0, V, = 0, and all other parameter
values and initial conditions the same as in Figures 7.6 and 7.7 is of a similar form
as that for harmonic potentials. However, the range of v is considerably larger and
the periodicity of both v and w is smaller. (The range of w is larger as well, but
the magnitude of its increase is much smaller than that of v.) Figures 7.8 and 7.9
respectively depict time series in v and w. (The mass M was normalized to unity

for these numerical calculations as well.)



CHAPTER 8
TWO-MODE GALERKIN EXPANSIONS*

Applying a two-mode Galérkin expansion, in which one considers two eigenstates
in the Schrodinger equation (5.1), allows one to examine nonadiabatic dynamics
in polyatomic molecules with double electronic near-degeneracies. When s =1, a

two-mode Galérkin expansion yields a two dof Hamiltonian system.[154, 159, 160]

8.1 Equations of Motion

Let d = 2 in equation (5.20), so that one is considering the superposition of two

eigenstates[160]

¢nn’(xv t) = An(t)d}n(xv t) + An’(t)¢n’(xv t)v (81)

which is inserted into the Schrodinger equation (5.1).

Taking the expectation of both sides of (5.1) for the state (8.1) yields
12

<77Z}nn’ _%V2¢nn’> =K <|An|27 |An'|27 ayy - ,CLS)
Zh <77Z)nn’ aﬂ}"”“

at
When s = 1, the electronic kinetic energy is given by

> — ik {AnA;, AA

+ I/nn|[4n|2 + V’rz’n’|[4n’|2 + Vnn’AnA; + Vn’nAn’A:L] . (82)

K = K (|A%, |An|%a) . (3.3)

*This chapter is based on portions of references [155,159, 160].
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Defining Ay = A, and Ay = A/, the quadratic form (8.2) yields

2
A=) DA, (8.4)
7=1
where
€1 N a
Dyj) = ( ez, 1% 8.5
(i) = (7, (85)
the parameter ¢; is the jth energy coefficient, and pi2 = i = —p21 # 0 is a

coupling coefficient for the cross term A, A%,.
The parameter g, , which describes the strength of the interaction between

Y, and 1, is defined by the relation
a
nn! = —MHnn'- 8.6
Vant = [t (8.6)

If ppn = 0, ¥, and ,» do not couple with each other, so one obtains the one dof
Hamiltonian system (7.6) studied in Chapter 7.[159,160] The Quantum Number
Symmetry Theorem, which we stated and proved in Chapter 6, gives the condi-
tions under which p,,, vanishes for a given pair of eigenstates {¢,, ¥, }. For the
remainder of this chapter, it is assumed that p9 # 0.

Using Bloch variables,[160] the kinetic energy K is given by
) 1
K(z,a) = ?(q + ze_), (8.7)
where

(e2 £ €1). (8.8)

€4 =

DN | —

Two-mode Galérkin expansions of vibrating quantum billiards with s = 1 nu-
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Figure 8.1: Poincaré section for the cut z = 0 showing both hard chaos and global
chaos.

clear dof are thus described by the following equations of motion:

P Wy 2012 Pz
a2 Ma
. W
Yy = ?7
. 2#12P$
z = ,
Ma
. P
a = R
: AV 2[er + e—(z — p127)]
P=—— 8.9
Jda + a’ ’ (8.9)
where
wo = 2 - a. (8.10)

The equilibria for the dynamical system (8.9) satisfy = = y = 0, z = +1,

a = a., and P =0, where the equilibrium radii {a.} are solutions of the equation

av 2
%(a*) = —(ep £e). (8.11)

a*
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Figure 8.2: Liapunov exponents computed over 1000 time steps for the trajectory
depicted in Figure 8.1. Observe the convergence of the largest Liapunov exponent,
indicating that the configuration under consideration exhibits (exponentially) sen-
sitive dependence on initial conditions.

Consequently,

oV %
%(a*):%, joeq{1,2. (8.12)

For the harmonic potential (5.41), the equilibrium radii a. = a4 satisfy

€k
Voa®’

ke{1,2}, (8.13)

a — dg =

where the subscript 4+ corresponds to z = +1. When 2z = +1, the system is
entirely in the 2nd state, whereas when z = —1, the system is entirely in the 1st
state. Each equilibrium has one identically zero eigenvalue that corresponds to
the row in the Jacobian matrix arising from the derivatives of Z(a, P,z,y,z) =
fs(a, P,z,y,z). Additionally, each equilibrium is elliptic provided V(a) + K(a)
has a single minimum with respect to a. For elliptic equilibria, the other four
eigenvalues constitute two pure imaginary complex conjugate pairs.
Generalizations of saddle-center bifurcations occur when this ellipticity condi-

tion is not satisfied.[155] In this event, some equilibrium pure states admit multiple
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Figure 8.3: Poincaré section for the cut = 0 showing global chaos. Note, however,
there are some islands of integrability.

corresponding radii, as for non-elliptic equilibria, equation (8.12) is satisfied for
multiple values of a, for the given eigenstate. We examined an example of such a

symmetry-breaking for the case d = 1 in Chapter 7.

8.2 Numerical Simulations

We investigate the dynamics of equation (8.9) numerically when the potential V'
is harmonic (5.41). In this situation (as discussed in Chapter 5), all equilibria are
elliptic.

One may examine the transitions from local to global chaos and from soft to
hard chaos in equations (8.9).[70] In accord with KAM theory,[67, 74,114,159, 194]
the number of nonresonant tori that have been broken up depends on the initial
condition of a given trajectory. Figure 8.1 and Figures 8.3-8.7 illustrate several
types of behavior. Each of these plots displays a = 0 Poincaré section projected
into the (a, P) plane. The parameter values in each figure are h = 1, M = 10,
6 = 72/2 ~ 4.9348022, €, = 2n% ~ 19.7392088, u = 4/3, Vo = 5, and ag = 1.25.
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Figure 8.4: Poincaré section for the cut z = 0 showing global but soft chaos.

The initial values of the Bloch variables are x(0) ~ 0.15643446504, y(0) = 0, and
z(0) &~ —0.987688340595.

Figure 8.1 exhibits both global and hard chaos, as no KAM tori have been
preserved. The initial radius in this plot is a(0) &~ 0.421559382, and the initial
momentum is P(0) ~ 4.108129046. Figure 8.2 shows a plot of the Liapunov
exponents (up to 1000 time steps) of the corresponding trajectory. (The algorithm
used to produce this data was formulated by Alan Wolf and co-workers[51,195] and
was implemented in Matlab by Steve Wai Kam Siu.) For each of the Liapunov
exponents calculated for (8.9), the initial conditions and parameter values discussed
above were truncated to five significant digits after the decimal point.

The computed Liapunov exponents (after 1000 time steps) in Figure 8.2 are
0.38405, 0.0013189, 0.0012954, —0.0030214, and —0.38365. In exact arithmetic,
the central three eigenvalues must always vanish, so they yield an estimate of the
level of precision of this calculation. The five-dimensional dynamical system (8.9)
can be represented canonically as a four-dimensional (two dof) Hamiltonian system

(see Chapter 12), so the middle eigenvalue must vanish. (Recall the related fact
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Figure 8.5: Poincaré section for the cut + = 0 showing local and soft chaos. Unlike
in Figure 8.4, the trajectory whose Poincaré cut is depicted in this plot has not
experienced large excursions outside the trapping region.

that each equilibrium point of (8.9) has an eigenvalue that always vanishes.) As the
present system is Hamiltonian, the other two central eigenvalues must also vanish in
exact arithmetic.[114] Moreover, the largest and smallest eigenvalues are negatives
of each other. Hence, we need only consider the largest Liapunov exponent. The
other exponents yield information about the precision of the calculation rather
than about the dynamical system itself.

The largest Liapunov exponent after 1000 time steps is o1 & 0.38405 > 0. Fig-
ure 8.2 indicates a nice convergence to this value (and a gradual decrease in value of
the other exponents), so one may confidently assert that Figure 8.1 demonstrates
exponential divergence and hence chaotic dynamics.

Figure 8.3 was produced with (a(0), P(0)) ~ (0.56446338,1.4483064979). It
exhibits global chaos, but some islands of integrability are present. The largest

Liapunov exponent for the corresponding trajectory is o; ~ 0.28152. Figure 8.4

has initial conditions (a(0), P(0)) ~ (0.834426762,2.741617601), whereas Figure
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Figure 8.6: Poincaré section for the cut x = 0 showing integrability (or at least
near-integrability).
8.5 has initial values (a(0), P(0)) = (0.9,2). Examining these two plots together
provides a good picture of the transition from local to global chaos, which occurs
before the transition from soft to hard chaos. The largest Liapunov exponent for
the trajectory in Figure 8.4 is oy ~ 0.084145, whereas that for the trajectory in
Figure 8.5 is o1 &~ 0.01564. Although their Liapunov exponents and consequently
their degrees of instability are of the same order of magnitude, their associated
Poincaré sections reveal contrasting behavior. Figure 8.4 depicts global soft chaos,
whereas Figure 8.5 shows local soft chaos. The configuration in the former figure
exhibits a trapping region, near which the trajectory spends a significant amount
of time. (Such trapping regions are related to structures known as cantori, which
refer to recently broken KAM tori.[70, 114])

The global nature of the chaotic dynamics in Figure 8.4 indicates that the tra-
jectory of interest exhibits large excursions from the trapping region. By contrast,
the trajectory in Figure 8.5 has not experienced such an excursion in the time-

frame under examination. Additionally, the manifestation of islands in a globally
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Figure 8.7: Poincaré section for the cut = 0 also showing near-integrability. This
trajectory is near a periodic orbit of higher period than is the one in Figure 8.6.
chaotic trajectory like that in Figure 8.4 signifies the presence of long-time correla-
tions. Such correlations are absent in ergodic configurations (such as that depicted
in Figure 8.1), so the transition from soft to hard chaos can be characterized by
the destruction of long-time correlations.[114]

Figures 8.6 and 8.7 show Poincaré maps of trajectories that appear integrable
when plotted numerically. By KAM theory, however, some invariant tori have been
broken up (even though the numerical calculations do not reveal this).[67, 114, 194]
The initial conditions for Figure 8.6 are (a(0), P(0)) ~ (1.30794702,2.15231788),
and the largest Liapunov exponent is oy &~ 0.0052902. This is about twice as
large as the magnitude of the largest exponent (o4 &~ —0.0025784) that is guar-
anteed to vanish in exact arithmetic. This trajectory is near-integrable, but
one requires better computations of Liapunov exponents to rely further on their
values in this instance. Figure 8.7, whose initial conditions are (a(0), P(0)) =~
(2.088567103,0.000829468) and largest Liapunov exponent is computed to be oy &~

0.0039474 (which is not much larger than the second largest exponent), shows a
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Figure 8.8: Poincaré section projected into the (a, P)-plane showing the remnants
of a homoclinic orbit.

near-integrable configuration near a periodic orbit of higher period. The closed
trajectories in these two surfaces of section indicate the presence of periodic and
quasiperiodic behavior in the regions they enclose.[67,114,159,194] One does not
observe the “fuzziness” that manifests in the locally, softly chaotic situation de-

picted in Figure 8.5.

8.2.1 Evidence of Bifurcations

As discussed above, equilibria of (8.9) satisfy x = P =y = 0, z = +1, and equation

(8.11). The eigenvalues corresponding to these equilibria are of the form

- V—=2M(n £ VK)
o=0, * 2Ma? ’

(8.14)

where both n and ( have terms whose signs depend on whether z is 1 or —1. The
quantities ny and (4 are given by

2

Vv
ny =a' 92 +wgM —ApPe_ 4+ 6(ey +e),

2

0*Vv
n_ =a’ 9 —|—ng +4pte + 6(er —€),

(o =0+ I + I + I, (8.15)
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Figure 8.9: A homoclinic tangle projected onto the (z, y)-plane of the Bloch sphere.

where
*V'\*
I =d®
L _ 0V 4 217 4 4 2 4
Iy = £ (12@ €y —2wgMa® 4+ 12a" e — 8u”a 6_),

IF=16p*e — SwiMp® — 48 ® — 12wiMey + T2epe_ — 12wiMe_,

If = —48p ese_ +wgM? +36(2 + €2), (8.16)

and

(c=h+1;+1;+1;, (8.17)

where [; is as before and

1———82‘/(124 2wgMa* — 12ac_ + 8p’a'e_)
2 = 5.2 a €y —2wygMa” —12a e +8p~a‘e_),
I; =16p%e® + 8wiMp® — 48u*e® — 12wiMey — T2ee + 12wiMe_,

Iy =48p eye +wyM? +36(e5 +€2). (8.18)
Analogous to the s = 1 situation discussed in Chapter 7, only saddle-center

bifurcations and generalizations thereof can occur[155]. As the energy is increased,

bifurcations correspond to an increase in the dimension of the center manifold by
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Figure 8.10: Chaotic Poincaré maps in the (a, P)-plane for billiards in both a
quartic and a quadratic potential. The plot with the quartic potential is the one
with a smaller maximum value for the distance a. Notice that the trajectory
corresponding to the quartic potential generally has a larger radius of curvature.
Additionally, these Poincaré maps approximately overlap for small a.

two (or four) as a pair (or two pairs) of real eigenvalues of opposite signs become a
pair (or two pairs) of pure imaginary eigenvalues. As before, one can compute the
location of this bifurcation by finding the equilibria for which H(a, P) has a double
root. One again finds that the equilibrium point (0,0, £1, a,,0) at the bifurcation

satisfies

5A% a, 0%V
Fa\) = g ez (e

(8.19)

From a theoretical perspective, one can adjust the probabilities (i.e., complex
amplitudes) corresponding to different eigenstates just as we did when s = 1.[155]
One can also vary the form and coefficients of the potential V(a) to examine bifur-
cations corresponding to different bond stiffnesses in polyatomic molecules. Nu-
merical observations indicate that bifurcations occurs at low energies (correspond-
ing to superpositions of states with low quantum numbers), so that for a given
billiard, most superposition states have only elliptic equilibria. Saddle-center bi-

furcations (and generalizations thereof) then occur as one considers superpositions
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of increasingly excited states.

Figure 8.8 suggests that homoclinic orbits exist for (8.9) when V(a) is a quartic,
double-well potential. Approximate homoclinic orbits certainly exist.[67,194] For
the degenerate case of zero interaction coefficient p12 = 0, we rigorously demon-
strated the existence of homoclinic orbits in Chapter 7. Slight perturbations away
from homoclinic orbits, such as those represented by nonzero values of the coupling
coefficient pyz, lead to homoclinic tangles, which are depicted in Figure 8.9. We
explore the presence of homoclinic tangles in vibrating quantum billiards analyt-
ically using Melnikov techniques in Chapter 12. In preparation, we also (in the
same chapter) reformulate vibrating quantum billiards in terms of action-angle
coordinates.

Interest in homoclinic and heteroclinic orbits in chemical physics arises from
their nature as separatrices. In two dof systems, they divide phase space into re-
gions with qualitatively different nuclear dynamics exactly for integrable systems
and approximately for nonintegrable ones. Trajectories within the separatrix ex-
perience a smaller range of lengthscales than those outside it, analogous to the
division between librations and rotations in pendula.[64] Additionally, homoclinic
orbits define dividing surfaces in phase space, the flux across which provides an

optimal estimate of the rate of unimolecular disassociation processes.



CHAPTER 9
THREE-MODE GALERKIN EXPANSIONS*

As discussed in Chapter 5, three-mode Galérkin expansions may be used to study
molecular systems with triple electronic near-degeneracies.[160] As in Chapters 7

and 8, we consider the case s = 1 in which a single nuclear dof has been excited.

Billiards: 3-Term Superposition

Figure 9.1: Poincaré section for the cut z13 = 0 in the (a, P)-plane for a three-term
superposition state. This plot shows fully chaotic regions similar to those observed
in two-term superpositions.

9.1 Equations of Motion

Insert the wavelunction

D(x,1) = Ay (1)8n, (36, 8) + Ay ()10, (%, 1) + Ay (1)t (%, 1), (9.1)

*This chapter is based on portions of reference [160].

72
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Figure 9.2: Poincaré section for the cut z12 = 0 in the (a, P)-plane for a three-term
superposition state.

which is a superposition of nyst, nynd, and nsrd eigenstates, into the Schrodinger
equation (5.1). Equivalently, let d = 3 in equation (5.20).

Taking the expectation of both sides of (5.1) for the state (9.1) yields

(] g0 ) = K (A0 2 A P0)
ih <¢ ‘%—‘D = ih [ A A, 4 A Ay o Ay Ay A A3+ A, A, 4 A A,
+ Vg [Any [* F Vngg [ A [* + Vigna | Ans [
+ Vning Any An, + Vi Any AL+ Ungny Any Ay

% * *
+ Vn2n3An2An3 + VnsnlAnsAnl + Vn3n2An3An2:|

3 3 3
:m[ S A Y vl APt Y v A AL | (9:2)
k,j=1,k#j k=1 k,j=1,k#j

which corresponds to equation (5.21) with d = 3.

Defining A; = A, the quadratic form (9.2) gives

3
A= DA, (9.3)
=1
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Figure 9.3: A closer look at a portion of the Poincaré section for the cut x5 =0
in the (a, P)-plane for a three-term superposition state.

where
EE;2 —i,ulgd/a —i,ulgd/a
(Dyj) = | ipea/a 5 —ipgsala |, (9.4)
i,ulgd/a i,LL23d/a %

the parameter ¢; = ¢, is the jth energy coefficient, and pr; = pnyn, = —pinjn, #0
is a coupling coefficient for the cross term A, A7 .

Recall from Chapter 6 that pz; # 0 when the fb quantum numbers of the n;th
and n;th states are the same. When one or more of the interaction coefficients
vanish, the associated amplitudes decouple in equation (9.3). In this event, the
matrix (Dy;) is diagonal if all px; vanish or block-diagonal (with one 1 x 1 block
and one 2x 2 block) if only some of them do. In the first case, one obtains dynamics
like that studied in Chapter 7. In the second case, the dynamics corresponds to
that examined in Chapter 8. Hence, without loss of generality, we assume that
pr; # 0 for the remainder of this chapter.

Using generalized Bloch variables,[160] the kinetic energy K is given by

K = 3.2 ([z12€1y + 213673 + z23€33] + €4)

2
= 342 ([z12632 + (212 + 228) €03 + 2ae] +€4) (9.5)

(8]
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Figure 9.4: Poincaré section for the cut x93 = 0 in the (a, P)-plane for a three-term
superposition state. The initial conditions are the same as those for Figure 9.2.

where

_ g — €

€7 =

kl 2 ?

ot ngf_i;%gj;fzz. (9.6)

With Bloch variables, one obtains the following equations of motion to describe

three-mode Galérkin expansions of vibrating quantum billiards with s = 1 nuclear

dof:[160]
i _ w2 _2M12P212_P[ — 23]
12 P Y12 Ma Ma 2313 T [13T23];
i _ w3 _2M13P(212+Z23)_|_ P 2512 — 23]
13 0?2 13 Ma Ma H23L12 — H12X23],
. w3 2#23P223 P
Toz = ———Y23 — i Ma [f13212 + p12713]
. w1212 P
Y12 = P M [M13y23 - M23y13]
W13T13 P
Y13 = 4 + Va [(23Y12 — H12Y23]
. W23T23 P
Yoz = s T Ma [12y13 — p13Yi12)
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Figure 9.5: Poincaré section for the cut P = 0 in the (z12, y12)-plane for a three-
term superposition state. The initial conditions are the same as those for Figure

9.2.

) 2p12 P P
212 = fre 12 + (113213 — prasas]
Ma Ma

. 293 Px P
223 = M]i}a - Ma sy = el

. P OH

a = — = Aan

M 0
. ov. - 0K oH
po OV oK _ ol (9.7)

where

oK 4et 4

e = 307 347 (2260 + (212 223)65; + a6

2 2
+ 3?61_2(2M1251?12 + p13T13 — flo3Ta3) + %61_3 (12219 + 2p13%13 + fro323)
2
+ 3?62_3(—/!121?12 + 13213 + 2237 23). (9.8)

Equation (9.8) is obtained using

8212 . 8212 ot 212 . 2,11123312 1
— = ——=——+ P [13213 — paatas],

da Ot Oa a a
0z Oz3 0t 2 23 1
@;3 = 8;3% = % = % + P [13215 — p12w12] - (9.9)
Additionally, recall from Chapter 5 that
Wrl = ‘@ 6k. (910)

h
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Figure 9.6: Poincaré section for the cut P = 0 in the (x13, y13)-plane for a three-
term superposition state. The initial conditions are the same as those for Figure

9.2.

Finally, note that one may also obtain (9.7) by inserting d = 3 into equations
(5.28,5.30,5.31,5.32).

The equilibria of the 10-dimensional dynamical system (9.7) satisfy P = 0,
Tk = Yrj = 0, 215 + 212203 + 233 = 1, and

oV 4
% = 3? [6+ —|— 21261_2 —|— (212 —|— 223)61_3 —|— 22362_3] . (911)

Applying the constraints (5.29) with zx; = yx; = 0 yields three possible sets of

values for the z-Bloch variables:
(2127213 =zig+ 2237223) = (07 L, 1)7 (1707 —1)7 (—17 —170)- (9-12)

Each equilibrium of (9.7) is a pure state, as argued in Chapter 5. If z;5 = 0,
then |A;1]* = |A2|*> = 0 and |A3|*> = 1, so only the third eigenstate is present.
If 213 = 0, then only the state with complex ampltude A; gives a nonvanishing
contribution. Finally, for z935 = 0, only the first pure state is present. Recall that

when only the jth state is present at equilibrium, its kinetic energy is

E;, =-2 (9.13)
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Figure 9.7: Poincaré section for the cut 12 = 0 in the (a, P)-plane for a three-term
superposition state. The behavior in the plot appears quasiperiodic.

where a, 1s an associated equilibrium radius. Additionally,

oV %;
a(a,*):%, je{1,2,3). (9.14)

As before, the form of the external potential V(a) determines the number of
radii associated with each pure-state equilibrium,[160] every one of which is elliptic

provided
FE(a)=V(a) 4+ K(a) (9.15)

has a single minimum with respect to the displacement a. When this happens, P
vanishes exactly once if one varies a quasistatically by holding the z-Bloch variables
(and hence the probability amplitudes A;) constant. There is then exactly one
nuclear configuration corresponding to each pure-state equilibrium. At any non-

elliptic equilibrium, P vanishes at multiple displacements a..

9.2 Numerical Simulations

We investigate the dynamics of equation (9.7) numerically when the potential V'

is harmonic (5.41). In this situation (as discussed in Chapter 5), all equilibria
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Figure 9.8: A magnification of Figure 9.7. This zoomed view reveals a small region
that suggests the presence of some chaotic behavior.

are elliptic. As expected, the dynamics determined by equations (9.7) are more
intricate than those determined by equations (7.3). For some choices of parameters
and initial conditions, however, one obtains plots whose dynamics are very similar
to those for two-term superpositions.

Figures 9.1-9.13 illustrate the dynamics of a three-term superposition con-
sisting of the ground state and the first two excited null angular-momentum (I =
0,m = 0) states of the radially vibrating spherical quantum billiard.[160] (In Chap-
ter 10, we discuss this billiard in more detail.) The values of the parameters are
h=1, M =10, m =1, ¢ = 7?/2m =~ 4.9348022, ¢, = 4n%/2m =~ 19.7392088,
€3 = 972 /2m =~ 44.4132198, Vy = 5, and ao = 1.25. The coupling coefficients are
p1z2 = 4/3, p1z = 3/4, and pa3 = 12/5.

Figure 9.1 shows a Poincaré map (of the cut x12 = 0) projected into the (a, P)-
plane. The initial conditions for this plot are z12(0) = sin(0.957) ~ 0.156434,
213(0) = 223(0) = 0, y12(0) = 13(0) = y23(0) = 0, 212(0) = cos(0.957) ~
—0.987688, z23(0) = 0, a(0) ~ 3.3774834, and P(0) ~ 7.2847682. In subsequent

figures, we alter only the initial radius and conjugate momentum.
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Figure 9.9: Poincaré section for the cut z12 = 0 in the (z12, z23)-plane for a three-
term superposition state. The behavior depicted in the plot is chaotic.

Figure 9.2 shows a x12 = 0 Poincaré map projected into the (a, P)-plane. The
initial radius is a(0) & 2.2095438, and the initial momentum is P(0) ~ 3.6672913.
The dynamics in this figure are almost integrable, but a closer look reveals chaotic
characteristics (see Figure 9.3). It appears that this trajectory may be near a pe-
riodic orbit (of period 6), although an additional plot reveals that another of its
degrees-of-freedom has departed quite a bit from a periodic or even quasiperiodic
configuration. Figure 9.4 shows the z33 = 0 Poincaré cut for the same initial con-
ditions. The chaotic behavior in this plot has less structure, which demonstrates
a different level of “excitation” corresponding to different coupling coefficients.
Poincaré maps obtained using y;; = 0 reveal similar behavior as that in corre-
sponding z;; = 0 cuts.

Figure 9.5 shows a P = 0 Poincaré map projected into the (zi2,y12)-plane.
Figure 9.6 reveals the same configuration projected into the (z13, y13)-plane. This
latter figure appears to be have departed further from integrability than the former
one. As discussed above, different quantum-mechanical components of the system

can exhibit different degrees of “excitation” or departure from integrability. In the



81

Billiards: 3-Term Superposition

494045

m—
-~ \\;‘

N,
N

\

491844
100016

Figure 9.10: Poincaré section for the cut z33 = 0 in the (a, P)-plane for a three-
term superposition state. The behavior depicted in the plot is chaotic.

present context, each “component” of the quantum-mechanical subsystem repre-
sents the interaction of one pure eigenstate with a second one. When d = 3, there
are three such interaction pairs corresponding to the three coupling coefficients
pr;- When d = 2, there is only one such interaction. In a physical context, we con-
clude that as electronic near-degeneracies encompass more eigenstates, they yield
additional interactions that take the form of additional behavioral “modes” from
a dynamical systems perspective.[160] In particular, the transition from d = 2 to
d = 3 permits some modes to be excited while others are not. One observes fewer
KAM islands as more modes become excited. This phenomenon may be interpreted
as some sort of “commensurability” effect in coupled (quantum-mechanical) oscil-
lators.

Figure 9.7 shows a x15 = 0 Poincaré cut in the (a, P)-plane corresponding to
the initial conditons a(0) ~ 1.8685499 and P(0) ~ 0.6140458. It appears to depict
quasiperiodic motion, but a portion of the same plot suggests that it is not quite
integrable (see Figure 9.8). KAM theory also implies that this is the case, as

any nonzero perturbation from an integrable configuration will cause some chaos
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Billiards: 3-Term Superposition

Figure 9.11: Time series in z13(¢) from ¢ = 0 to ¢t = 25 revealing near-integrable
behavior.

(although it may be so small as to be impossible to resolve numerically).[67, 194]
Moreover, a magnification of the same plot in the (z12,z23)-plane (Figure 9.9)
reveals chaotic behavior in the Bloch variables. Unlike the classical variables, the
z-Bloch variables appear to have departed quite a bit from integrability. Thus, it is
possible for the classical variables to behave in a nearly integrable fashion while the
quantum variables behave quite chaotically. We discuss this in detail in Chapter
13. In particular, we show that when perturbing from integrable configurations,
the onset of chaos occurs far sooner in a vibrating quantum billiard’s classical dof
than in its quantum dof. This follows from the Born-Oppenheimer approximation,
so it is a general phenomenon in molecular systems.

Further plots suggest that the present configuration is almost integrable with
respect to the interaction between the ground state and first excited state but
chaotic with respect to other interactions. This is supported by the chaotic char-
acteristics in the Poincaré section in the (a, P)-plane corresponding to the cut
T93 = 0 (which is depicted in Figure 9.10). Time series (displayed in Figures 9.11,
9.12, and 9.13) suggest the same phenomenon. Time series for the corresponding

y-Bloch variables reveal similar features, whereas time series for the radius and
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A,

Figure 9.12: Time series in x13(¢) from ¢ = 0 to ¢t = 25 revealing chaotic behavior.

Billiards: 3-Term Superposition

Figure 9.13: Time series in x23(t) from ¢ = 0 to ¢t = 25 revealing chaotic behavior.

momentum reveal motion that is almost regular. Based on the observed behavior
of the classical and quantum mechanical dof, this configuration seems to be one
for which the irregularities of the dynamics of the radius and the momentum are
extremely difficult to observe numerically. The corresponding eigenfunctions are
thus also very regular. Nevertheless, there is some chaotic structure due to the
coupling between the first and second excited electronic states. The presence of a
triple electronic near-degeneracy has given rise to a situation in which interactions

of the ground state yield almost integrable dynamics but the interaction between
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the two excited states is highly irregular.

To phrase the above discussion more rigorously, recall from Chapter 5 that
a two-term superposition state approximates an infinite dof Hamiltonian system
(which describes the full dynamics of the vibrating billiard) with a two dof Hamil-
tonian system. One is ignoring infinitely many quantum dof. As discussed in
Chapter 5, these dof contribute non-negligibly to the dynamics of the vibrating
quantum billiard from a mathematical perspective, but they are justifiably ignored
on physical grounds.[160] Likewise, three-term superposition states yield a three
dof Hamiltonian system to describe nonadiabatic dynamics in molecular systems
near triple electronic near-degeneracies.[154] One observes more intricate behavior

as a result.



CHAPTER 10
EXAMPLE: THE RADIALLY VIBRATING SPHERICAL QUANTUM
BILLTARD*

10.1 Introduction

The radially vibrating spherical quantum billiard addresses the quantum dynamics
of a particle of mass mg confined to the interior of a spherical cavity of mass
M > mg with smooth walls of radius a. The radius vibrates in an a priori
unspecified manner, so that a = a(t).

A two-term superposition state (Galérkin projection) of this quantum billiard

is given using Dirac notation by[112, 158-160]
90,0, 6,85 (1)) = Ar(Olnlm, 1) + Ag(t) T, 1) (10.1

where A;(t) and As(t) are complex amplitudes. The numbers {n,l,m} are, re-
spectively, the principal, orbital, and azimuthal quantum numbers. The eigen-
states in (10.1) are products of spherical Bessel functions and spherical harmon-

ics.[105,112,158] In coordinate representation,

ot t) = n(0.1500) = 25 (5 ) (555 ) Yot
(10.2)

where x;, is the nth zero of j;, the spherical Bessel function of order [. The explicit
radial time-dependence occurs both in the arguments of the spherical Bessel func-
tions and in the normalization factors of the eigenstates. The spherical harmonics

are unaffected by the radial vibrations of the billiard.

*This chapter is based on reference [158].

85



86

Later in this chapter, we show directly that the two eigenstates in (10.1) must
have common rotational symmetry (I = ';m = m') for their superposition to
behave chaotically. This is a special case of the Quantum Number Symmetry
Theorem derived in Chapter 6. First, we present an example to motivate this
result. We then demonstrate its validity for arbitrary superpositions of finitely

many states. We subsequently discuss chaotic superpositions.

10.2 Formulation

The Schrodinger equation describing the radially vibrating spherical quantum bil-

liard is given by

O

Zha = [(l[), r < Cl(t), (103)
where
B2
K=——V? 10.4
( Qmov (10.4)

is the kinetic energy of the confined particle. The radial component of the Lapla-

cian V? is given in spherical coordinates by[27,105]

1/ 0? p?
2 _ o —_ _r
Vi <ar2r> e (10.5)

where p, is the radial momentum operator.[111]

The molecular Hamiltonian is

2

P
H=— K 10.
2M+V+ N, (10.6)

where P is the momentum of the billiard boundary and V' is an external poten-
tial. The potential energy V' and kinetic energy P?/(2M) of the billiard walls
are classical quantities, so the present system has both classical and quantum-

mechanical components. (The billiard boundary is classical, whereas the confined
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particle is quantum-mechanical.) We hence utilize the Born-Oppenheimer approx-
imation,[22, 154] so that only the electronic Hamiltonian K + V' is inserted into
the Schrédinger equation (10.3). As the potential V' shifts every electronic eigen-
value by the same constant value (which depends parametrically on the nuclear
displacement «), one actually only inserts K into (10.3). In this approximation,
we are ignoring the effects of Berry phase.[15, 154, 203]

Taking expectations of (10.3) using the superposition state (10.1) yields
1 .
<¢‘—— 2¢> — [61|A1|2+62|A2|2] = K(Ay, Ay a)
m@%a>:ﬁﬂ&&+AﬂpwmmP
—|— V12A1A; —|— 1/21/12[41K —|— V22|A2|2] 5 (107)

where the energy parameters in (10.7) are given by

_ P,
€l = 5
27710
7:62.1’1, 1
= . 10.8
©= 2m0 ( )

The diagonality of the quadratic form obtained in the expectation of the Laplacian
operator follows from the orthogonality relations of spherical Bessel functions.[27,
105] This orthogonality does not carry over to the second quadratic form, as the
act of differentiating with respect to time causes r-dependent terms to appear in
the integrand when taking expectations. These terms come from application of

the chain rule to the arguments of the spherical Bessel functions, which depend on

a(t).[112,158]

10.3 Integrable Configuration

The diagonal coefficients v1; and vy vanish no matter which eigenstates one con-

siders in (10.1). Examination of the superposition of [100) and [110) using (10.7)
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and orthogonality of spherical harmonics shows that the cross-term coefficients
Vig = V91 = 0. (109)

Equating the inner products (10.7) in both sides of the Schrodinger equation

(10.3) yields amplitude equations:

1

iA1 = ﬁelAh
. 1
ZA2 = ﬁég/‘g, (1010)

which are integrated to obtain

Ai(t) = Crexp [—i%/a—Q(t)dt] :

’1:62

As(t) = Cyexp [—?/a”(t)dt] . (10.11)

From (10.11), one obtains a (one dof) Hamiltonian in the radius @ and conjugate

momentum P:

2 2

P . 1
H = m + K (A1, Az, Cl) + V(Cl) = m + ﬁ [6104 + 626] + V(a)v (10'12)

where the parameter «; is given by
o = |A]'|2 = |Oj|27 ,J € {172} (1013)

A Hamiltonian system with no explicit time-dependence and one dof corresponds
to a two-dimensional autonomous system of ordinary differential equations and is
therefore not chaotic.[67, 183, 194]

The prefactor v, (j # k) represents the strength of the interaction between the
jth and kth eigenstates in the superposition (10.1). When there is no electronic-
nuclear coupling, which occurs when v;, = 0 for all pairs (j,k), the dof of the
resulting Hamiltonian are purely classical, as they correspond to the billiards nu-

clear dof.[154,158] When a two-term superposition has a non-vanishing coupling
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coefficient, the number of dof of the resulting Hamiltonian system is one plus the
number of nuclear dof. Consequently, a superposition state of a quantum billiard
with more than one nuclear dof is expected to behave chaotically even if every one
of its coupling coefficients vanishes. The vibrating rectangular quantum billiard,
which we study in Chapter 11, provides a specific example of this situation.[157]

Hamilton’s equations corresponding to (10.12) are

P _0H
M 9P’
- ov A OH
P=—grd =m0, (10.14)
where
A =2(alCi]? 4 &]Cs]?) > 0. (10.15)

The energy parameter A is positive because ¢; > 0 and the |C;|? correspond to
probabilities (so |Cy|* + |Cq]* = 1). The bifurcation structure of (10.14) was

discussed in Chapter 7.[155]

10.4 Necessary Conditions for Chaos in d Coupled States

Consider a d-state superposition

77Z) = A177Z)Q1 + A2¢QQ + -+ Adﬁ)qda (1016)

where ¢; = (nj,l;,m;) is a vector of quantum numbers. If there does not exist a
pair of eigenstates in (10.16) with common angular-momentum quantum numbers
(i.e., if there is no pair {7,j'} such that [; = [;; and m; = mj/), then inserting

(10.16) into the Schrodinger equation (10.3) returns a diagonal quadratic form

AJAT 4 AgAL = o [ AP+ - | Adl (10.17)
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as the prefactprs v of the interaction terms vanish because spherical harmonics
corresponding to different angular momenta are orthogonal.[27,105] The diagonal
terms in (10.17) stem from the Laplacian.[112, 158]

This yields the Hamiltonian

Pl
H(a, P) = o~ + — Y ejaj + Via), (10.18)

j=1
where a; = |A;]* = |C}%, Zle |C;|> = 1, and the C; are constants. The superpo-
sition (10.16) is not chaotic, as the Hamiltonian (10.18) is autonomous with one
degree-of-freedom.

Consequently, a necessary condition for chaos to occur in any finite-term su-
perposition state of the radially vibrating spherical quantum billiard is that at
least one pair of eigenstates in the superposition (10.1) have common angular-
momentum quantum numbers. (This is a special case of the Quantum Number
Symmetry Theorem, which was stated and proved in Chapter 6.) For example,

the two states

i (Z2) Yin(0,9),

i <Z’E;’3> Yin (6, 6) (10.19)

interact with each other, so a superposition of these two states behaves chaotically

for some initial conditions and parameter values.

10.5 Chaotic Configuration

As an example of a chaotic configuration of the radially vibrating spherical quan-

tum billiard, consider the azimuthally symmetric superposition state

[¥(n,l,m)) = A;1[110) 4+ A3|210). (10.20)
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This superposition has an interaction coefficient gy = p12 & 0.4395263.[112, 158]
(The parameter p may be expressed exactly in terms of spherical Bessel functions.)
Equating coefficients in the quadratic form (10.7) yields
2
iA, = DupAg, (10.21)
k=1

where D = (D;;) is the Hermitian matrix

D = (h_ _ﬁ55> . (10.22)

e ha?
Additionally,

1242

6 =
2m0
1242

= —12 5 ¢ (10.23)

Mo

Defining the density matrix[105] by p,n = A,A%, introducing (dimensionless)
Bloch variables)[2] & = p12 + pa1, y = i(p21 — p12), and z = pay — p11, and using

(10.21), we obtain the following equations of motion for the quantum-mechanical

dof.
_ woy  2uPz
 a? Ma '’
. Wl
y= ER
2uPzx
= . 10.24
i= (10.24)
In (10.24),
€ — €
wo = — - - (10.25)

Rewriting the kinetic energy K (A, Ag;a) in terms of the Bloch variable z gives

1
K(z,a) = ?(6_1_ + ze_), (10.26)
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where
1
€+ = 5(62 + 61). (1027)

Inserting K'(z;a) into the Hamiltonian (10.6) yields Hamilton’s equations:

. _ P

a = T2

. ov. 2

P = ~ 5 + = [e4 +e_(z — px)]. (10.28)

Equations (10.24) and (10.28) constitute a set of five coupled nonlinear ordinary
differential equations. One can show that this system is equivalent to a two dof
Hamiltonian system.[160] We discussed this from a geometric perspective in Chap-
ter 5 and show this directly using action-angle variables in Chapter 12.

The constants of motion of the dynamical system (10.24,10.28) are the radius
of the Bloch sphere

4= AP+ A =1 (10.29)

and the energy (molecular Hamiltonian)
2

P "
H = Wi + V(a)+ K(z;a). (10.30)

Equilibria satisfy t =y =0, 2 = 1, P = 0, and a = a4, where a4 are solutions

to the equation P=0forz =P =0and z= +1. That is, a4 satisfies

oV = z(q +e), (10.31)

Jda a3

where the subscript of ag corresponds to the sign of z. Assuming that V(a) +
K(z;a) has a single minimum with respect to a, these equilibria are elliptic.[112,
155, 158] These equilibria have one zero eigenvalue and two conjugate pairs of pure

imaginary eigenvalues.
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The oscillations of the radius a(t) lie in a bounded radial interval when V(a)

harmonic (5.41). In this situation, the electronic Hamiltonian is given by

V(a) + K(a) = Vo(a — ap)? + 22 (10.32)
a
Furthermore, equation (10.31) becomes
a—ag = VZZS (10.33)

Equation (10.33) has two solutions—one corresponding to €4 and one corresponding

to e_. Additionally,
ay > a_ > ag, (10.34)

so the resistance of the confined particle against localization increases the equilib-
rium radius relative to the reference value ag. Moreover, as a; > a_, the more
energetic equilibrium state has a larger radius than the less energetic one.[158, 160]
Finally, as a— < a(0) < a4, the displacement a(¢) remains bounded in the interval

[a_,a4].[22,23,112, 158]

10.6  Special Case: Null Angular-Momentum Eigenstates

In this special case, the eigenfunctions of 1 are given by spherical Bessel functions

of order 0. That is,

Y(r,t) =Y An(t)on(t)da(r, 1), (10.35)

where

¢n(r7t) = jO (%) )
jole) = S, (10.36)

z




94

The triple summation of eigenstates (10.2) of the vibrating spherical billiard with
any {n,l,m} has reduced to a single sum, as we consider only states for which
[ =m = 0. In this special case, the normalization coefficient «,, is given by

V2

o, =
" aiji(nm)

: (10.37)

where o, = nm is the nth zero of jo(z). The electronic kinetic energy K is still

given by equation (10.4). Additionally, the energy coefficient ¢; is

(Jmh)*
= 10.38
and the interaction coefficient p,, of two states ¢, and ¢, (n # ¢q) is
2qn
fng = . 10.39
TE T 1039

10.6.1 d-State Superposition

Consider the superposition of the first d states of the radially vibrating spherical

quantum billiard with null angular-momentum eigenstates,

d

Y(r) =Y An(t)anthn(r,t). (10.40)

n=1
To analyze (10.40), one examines the superposition of ¢, and t,, and then super-
poses the couplings one obtains as n and ¢ (n # ¢) run from 1 to d.

The two-term superposition of interest is

Yng = An(L)anthn(r, 1) + Ag(D)agihy(r,1). (10.41)

The dynamical equations for A; are described by a d x d matrix and are a straight-
forward generalization of (10.21,10.22). Note additionally the necessary conditions
for a superposition state to evolve chaotically are satisfied automatically when one
considers only null angular-momentum eigenstates. (The symmetry condition is

satisfied because the quantum numbers m and [ vanish for each state.)
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10.6.2 Numerical simulations

Consider a superposition of the ground state and first excited state, for which

4
Hi2 = 3’
7T2h2
€1 = 5
2m0
2m2h?
€= — (10.42)
mo

Additionally, note that we utilized a harmonic potential (5.41) in our simulations.

Vibrating Billiards

105015

Figure 10.1: Poincaré section (z = 0) in the (a, P)-plane illustrating that not all
invariant tori are destroyed in the present configruation.

Figure 10.1 shows a Poincaré map in the (a, P)-plane corresponding to = = 0,
and Figure 10.2 shows a Poincaré section projected onto the (z,y)-plane for P =
0. For each of these two plots, we used the parameter values h = 1, M = 10,
€6 = m2/2 ~ 4.9348022, ¢ = 27 a2 19.7392088, Vo = 5, and ap = 1.25. The
initial conditions for the two figures are x(0) = sin(0.957) &~ 0.156434, y(0) = 0,
z(0) = cos(0.957) ~ —0.987688, a(0) ~ 1.6, and P(0) ~ 9.45.

The chaotic behavior of this configuration is evident in both plots, although
there remains a lot of structure, as we discussed in Chapter 8.[112,158,159] In

the language of KAM theory, some of the nonresonant tori persist for the present
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Vibrating Billiards

Figure 10.2: Poincaré section (P = 0) of the Bloch sphere projected onto the
(z,y)-plane. The structure in this diagram likewise illustrates the survival of some
invariant tori.

choice of initial conditions.[67, 88, 194] One may also choose initial conditions cor-
responding to a different level of persistence of the nonresonant tori. For example,
Figure 10.3 shows an = 0 Poincaré map in the (a, P)-plane with the same initial
conditions and parameter values as above, except a(0) = 3 and P(0) = 10. Figure
10.4 shows a P = 0 Poincaré map in the (z, y)-plane for the same conditions. There
are fewer invariant tori in these two figures than there are in Figures 10.1-10.2.
The chaotic behavior in null angular-momentum eigenstates is not restricted
to the superposition of the ground state and the first excited state, as one expects
to find chaotic behavior for any null angular-momentum two-state superposition
of the radially vibrating spherical quantum billiard.[158] Additionally, recall that
wavefunctions that are superpositions of eigenstates with both zero and finite an-
gular momenta need not be chaotic in general. It is necessary that at least two of
these eigenstates exhibit common rotational symmetry (i.e., have equal angular-
momentum quantum numbers). For zero angular-momentum eigenstates, this con-
dition is satisfied automatically, so every d-term superposition (d > 2) in the null

angular-momentum case behaves chaotically for some choice of initial conditions
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137575

137568

275672

Figure 10.3: Poincaré section (z = 0) in the (a, P)-plane for slightly different initial
conditions in which fewer invariant tori persist, in accord with KAM theory.

and parameter values.[112, 158]

Vibrating Billiards

Figure 10.4: Poincaré section (P = 0) of the Bloch sphere projected onto the
(z,y)-plane. The initial conditions in this plot correspond to those in Figure 10.3.

10.7  Phenomenology

As semiquantum chaos has been established for the present system, it is natural to

ask about the nature of the corresponding chaotic behavior in real space. Due to



98

conservation of angular momentum, one finds that for the stationary spherical clas-
sical billiard, the enclosed particle sweeps out an annular domain of constant inner
radius. Vibration of the wall of the sphere destroys this constant, and chaotic mo-
tion is expected to develop. (The ‘moment arm’ of the reflected trajectory increases
during, say, the expansion phase of the sphere.) In the present quantum-mechanical
situation, we note that null angular-momentum wavefunctions are composed only
of spherical waves. The nodal surfaces of these wavefunctions are likewise spherical.

The chaotic signature in real space of superpositions of null-angular momentum
eigenstates of the radially vibrating spherical quantum billiard is the sequence of
intersections with a fixed radius that nodal surfaces make at any instant subsequent
to a number of transversal times.[112, 158] At ¢ = ¢, the eigenstates ¢ (r,¢;a(t)),
Po(r,t;a(t)) each vanish for a countably infinite set of values of r (which are de-
termined by a(?1)). At t =ty > 11, the eigenstates vanish for two other countably
infinite sets of values of r, etc. The number of transversal times in the sequence
{t1,--+ .1} simply refers to the number k, which describes how many times we
strobe the system (i.e., the number of dots in a Poincaré section). Finally, note
that the behavior just described is consistent with the standard long-time behavior

of chaotic dynamical systems.[70]



CHAPTER 11
EXAMPLE: THE VIBRATING RECTANGULAR QUANTUM BILLIARD*

In this thesis, we have focused primarily on the case s = 1 describing vibrat-
ing quantum billiards with one nuclear dof. However, as multiple nuclear modes
of molecular systems can be excited simultaneously, we briefly exanmine in this
chapter the vibrating rectangular quantum billiard, for which s = 2. With d = 2,
one obtains a three dof Hamiltonian system that behaves quite differently from the

three dof systems studied in Chapter 9 (in which s = 1 and d = 2).

11.1  Quantum Billiards with s > 2 Nuclear DOF

In this section, we generalize some of the results of previous chapters to quantum
billiards with s > 2 nuclear dof.

Suppose that £ of the boundary constituents of a given quantum billiard are
time-dependent and that the classical dof of the molecular Hamiltonian H can be
decomposed as follows:

3
H(al,--- ,Clg,Pl,-" ,Pg;Al,"'Ad) = ZH]‘(CL]‘,P]‘;Al,'-' ,Ad). (111)

j=1
For the classical dof of H to be decomposable, it is required that both the external
potential V'(a) and the kinetic energy K(a) can be decomposed in the same sense
as the Hamiltonian. For some configurations, such as the vibrating rectangular

parallelepiped billiard, the kinetic energy is decomposable. Others, however, are

*This chapter is based on reference [157].
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not decomposable. For example, a spherical quantum billiard cannot be decom-
posed in the above sense if it undergoes both radial and angular oscillations, as its
kinetic energy is K(r,0,¢) = Ki(r)K2(0, ), which is not equal to K; + K.

If, for a given Galérkin expansion (5.20), there are no cross terms in the expecta-
tion obtained from Schrédinger’s equation (5.1), the decomposable Hamiltonian H
(11.1) decouples into ¢ two-dimensional autonomous systems.[67, 114, 157, 159, 194]
If either V or K is not decomposable, then H cannot be decomposed as in (11.1)
and its associated dynamical system does not fully decouple.

Given a decomposable molecular Hamiltonian describing a vibrating quantum
billiard on D C R", a d-mode Galérkin expansion does not fully decouple if and
only if the (r — &) fb quantum numbers are the same for some pair of eigenstates
(that is, the jth fb quantum number in one state must be the same as the jth fb
quantum number in the other state of the pair, where j runs over all (r — &) fb
quantum numbers). This result, which is a generalization of the Quantum Number

Symmetry Theorem, may be proven in an analogous manner.[157, 159]

11.2  The Rectangular Quantum Billiard

The rectangular quantum billiard describes the wavefunctions of a confined particle

of mass mgy undergoing perfectly elastic collisions inside a rectangular domain. The

vertices of the rectangle are located at (—2, —%), (=5, %), (%, —%), and (g, %) If a

and b are independent of time, a solution to the Schrodinger equation (5.1) with

homogeneous Dirichlet boundary conditions is given by the following superposition

of eigenstates:

e 1E, .
Bt = Y Y alabidun o e |- (1

ny=1ny=1
where A, ,, is the (complex) amplitude of the state with quantum numbers (n,, n,),

Eyon, = €a(ngz)+ey(ny) is its eigenenergy, and vy, is its corresponding eigenstate.
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This eigenstate is given by

gy (T, Y) = P ()00, (y), (11.3)

where

mlw
thi(w) = cos <T> (11.4)
if [ is even and
i(w) = sin (ﬂ—w> (11.5)

q
if [ is odd. Ome absorbs the n;n,th (time-dependent) phase

1 Fy ot
exp {—%} (11.6)

into the coefficient A,,,,.[157,159] Note in equations (11.4,11.5) that w =z, [ =
ng, ¢ = a for the length and w =y, [ = n,, ¢ = b for the width. Additionally,

2
Vab

is the normalization factor of the state with quantum numbers (n,,n,).

ala,b) = (11.7)

Allowing the walls to vibrate corresponds to @ and b depending on time and
Asun, having a time-dependence other than the phase factor (11.6). All other
parameters in the above equations remain constant with respect to time.

The time-dependent walls of the vibrating rectangular quantum billiard are
described by its length a(¢) and width b(¢). The kinetic energy of the confined

particle is given by

h? t) a(t b(t) b(t

Koo e [ M0
2m0

where the Laplacian V? is represented in Cartesian coordinates.

The molecular Hamiltonian is given by

B
_I_
2M, ' 2M,

H(a, Pyyb, Py Ay, - -+ ) Ag) = K(a,b; Ay, -+ - Ag) + + V(a,b), (11.9)
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where

_in (11.10)

P,
da

is the momentum of the horizontal walls (which have mass M, > my), and

0
Py = —iho (11.11)

is the momentum of the vertical walls (which have mass Mj > mg). The exter-
nal potential is V(a,b). The molecular Hamiltonian (11.9) consists of a classical
component (P?/2M, + P?/2M,;) and a quantum one (K + V). We again apply
the Born-Oppenheimer approximation[20,22,154] (see Chapter 2) in using only
the quantum-mechanical component of the Hamiltonian in the Schrodinger equa-
tion. Additionally, the external potential V' may be removed from the Schrodinger

equation because it shifts all the eigenenergies by the same constant value.

11.3  Special Cases: Reduction to One Degree-of-Vibration

If either a(t) or b(t) (but not both) is independent of time, then the present prob-
lem has only one nuclear dof.[22,23,157] In this event, either P, or P, vanishes
identically. If a(t) = b(t) for all time, the rectangular quantum billiard is con-
strained to be a square, which again yields a configuration with one nuclear dof.

This is discussed in greater detail in reference [157].

11.4  Equation of Motions

A two-mode Galérkin expansion of a quantum billiard with two nuclear dof is

written

P(a,y,t) = Ar(t)a(alt),b(1) Ynun, (2, y, 1) + Aa(t)a (alt), (1)) ryny (2, y, 1)
(11.12)
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and may be expressed using Dirac notation[174] as

|90) = 1 [nany) + 2 [niny) . (11.13)

The Schrodinger equation (5.1) is

L 0Y(z,y,t) R* _, a(t) a(t) b(t) b(t)
" = ——— t -t -t
3 at QmOV /;Z)(x’y’ )7 (:’E7 y) E 2 bl 2 X bl 2 bl
(11.14)
The molecular Hamiltonian (11.9) is given by
. rE B
H = K(a,b) + S + M, + V(a,b), (11.15)

where the walls of the quantum billiard have momenta P, and P, conjugate, re-
spectively, to the length a and width b.
Inserting the superposition state (11.12) into the Schrodinger equation (11.14)

and taking expectations gives

12 1 1

(6] gm0 ) = o AP+ 1) + 5 (108 + d21aP).
ih <¢ ‘a—‘f> — ik {AlAg + AyAT

+ 1/11|A1|2 + 1/22|A2|2 + v A1 A + 1/21A2Aﬂ ; (11.16)

where v;; (i,7 € {1,2}) is a constant. In (11.16),

+mh)?
(1) (nemh)

?

. 2m0
/ 2
(2 = (nymh) :
. 27710
1) _ (n,mh)?
éb = 5
27710
n' wh)?
el = ( gmo) . (11.17)

Additionally, the enery E, . of the nyn,th eigenstate is given by[157]

Frpm, = €+ ¢V (11.18)
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The choice of eigenstates in (11.12) determines the values of the coupling coef-

ficients f1;;, which are defined by

a
Vik = Hjk— (1119)
a
or
b
Vi = ,LijE. (1120)
The interaction coefficient w;, = —pk;, (j # k) is nonzero only when either
n, = n, or n, = n,. (Exactly one of these equalities holds.) The diagonal

coefficients p;; and pgr always vanish. Moreover, vj; is proportional to a/a if
n, = n, and to b/b if n, = n/.. This proportionality constant, which is exactly
the quantity p i, is given by the same formula as in the one-dimensional vibrating
quantum billard.[22,23,157] Using the indices n and n’ to represent whichever pair
of (ng,n.,) or (ny,n;) has distinct values and also assuming n < n' without loss of
generality yields the expression

2nn'

(4 m)(n —n)’

If considering a superposition of more than two states, the results discussed in this
paragraph apply to each pair of eigenstates. If the potential V' is decomposable (as
is the case with the harmonic potential), then the molecular Hamiltonian (11.9)
decouples into two one-dof Hamiltonians.

A rectangular quantum billiard with two nuclear dof has only four types of
two-term superpositions that give nonvanishing cross terms g ;. (This follows from

the above results using trigonometric identities and the orthogonality relations of
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Figure 11.1: Poincaré section for the cut P, = 0 in the (b, P;)-plane with potential

parameters Vo =5, V, = 10, and V}, = 2
trigonometric functions.) These are
Y = Aja cos (nﬁr:l:) cos (nywy
Y = Aja cos (nzmz:) sin (
Y = Ajasin (nzmz:) cos (

a
Y = Ajasin (nﬂm:) sin (ny;Ty> + Ajasin <nx7rx
a

. )sin <nlyb y), (11.22)

where in each of the above equations, either n, = n/, or n, = n} (but not both).

In addition to the symmetry requirements for fb quantum numbers discussed

above, the mb quantum numbers in the vibrating rectangular quantum billiard

must also satisfy some symmetry conditions for the coupling coefficients p ;i to be

nonzero. (There are no such requirements on mb quantum numbers in quantum

billiards with one nuclear dof.) This is reflected in the superpositions (11.22), which

are a subset of those that obey the symmetry requirements for the fb quantum

numbers.
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0380038 14,8047

Figure 11.2: Poincaré section for the cut P, = 0 in the (a,b)-plane with potential
parameters Vo =5, V, = 10, and V, = 2

11.4.1 Case One: pj; =0

Suppose the interaction coefficients p;; vanish for all j,k € {1,2}. Equating

coefficients in the quadratic forms (11.16) yields

R NG
iA; = - +2), je{1,2} (11.23)

A\ a? b2

Integrating (11.23) gives

; ) )
A; = Cjexp —%/ - +£—2 dt|, (11.24)

where () is a constant. Since the only time-dependence of A; is a phase, it follows

that |A;]* = |C;]* is a constant. The dynamics of the present system are thus

determined by the Hamiltonian

P B
_I_
oM, " 2M,

H(a, P.,b, Py) = + K (A1, Ay, a,b) + V(a,b), (11.25)

where the electronic kinetic energy K(Aj, Az, a,b) is decomposable in the sense

that

[((Al, AQ, a, b) = I(l(Al, AQ, Cl) + ]ng(Al, AQ, b) (1126)
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66815
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Figure 11.3: Poincaré section for the cut P, = 0 in the (b, P;)-plane with potential

parameters Vo =12, V, =1, and V; = 3

(1) (1) (2) (2)
~ €q € €q €
K = <a2 +£—2) 1A% + <a2 +£—2) | Ay ?

and is given by

a? b2

The equations of motion of (11.25) are

. b
a= M
: av 2
P, = I PR (eM]Cy P + €D|Cs)?)
. P
b=—
M,
: av 2
b= =G5 + 5 (A0l +d2cp) .
Stationary points of (11.28) satisfy P, = P, = 0,
av 2
P (VNP + Do)
and
av. 2

D 2 (400 + ).

_IGP+IGE | gIG I + 4010

(11.27)

(11.28)

(11.29)

(11.30)
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113051

0990711
lllllllllll

Figure 11.4: Poincaré section for the cut P, = 0 in the (a,b)-plane with potential
parameters Vo =12, V, =1, and V; = 3

Define the quantities

Na = 6((1,1)|01|2 + 6.32)|02|27

o = V|0 + 2|0y, (11.31)

The eigenvalues of any equilibrium point of (11.28) such that

2 2 2 2 2
OV (b 2 0 b) - (@ 4 <a*,b*>) Y . b)

Ba? b2 dadb at Ob?
677582‘/ 3677(1776
W (a.,by) + aibi >0, (11.32)

where a, and b, denote equilibrium displacements, have zero real part. Such equi-
libria are hence elliptic (and linearly stable). In particular, if V(a,b) has a single
minimum, then every equilibrium point is elliptic.

The dynamical equations obtained in this section are analogous to those ob-
tained if only a single eigenstate is considered.[157] If K + V' is not decomposable
with respect to the nuclear dof, this yields chaotic dynamics. In the context of

polyatomic molecules, this implies that a molecular system in which two or more
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Figure 11.5: Poincaré section for the cut P, = 0 in the (b, P;)-plane with potential
parameters Vo =12, V, =1, and V; = 3

nuclear modes have been excited can behave chaotically even in the absence of
electronic near-degeneracies. (When K + V is decomposable, these modes act
independently.) By contrast, as discussed in prior chapters, vibrations described
by a single nuclear coordinate must be coupled to at least two of the molecule’s
electronic eigenstates to exhibit chaos.

If V can be decomposed as
V(a,b) = Vi(a) + Vi(b), (11.33)

then H(a, P,,b, P) is also decomposable. That is,
H(a, Py, b, Py) = Hy(a, P) + Hy(b, ) (11.34)

decouples into two one-dof Hamiltonian systems.[67, 114, 157, 194]
If, on the other hand, V' cannot be decomposed as in (11.33), then the molec-
ular Hamiltonian H is studied as a two dof system. Consider, for example, the

anharmonic potential

V(a,b) = Vy(a — ao)* + Vibi(b — bo)* + Vo(a — ao)(b — by), (11.35)



110

Vibrating Rectangle: Case 1a

608894
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Figure 11.6: Poincaré section for the cut P, = 0 in the (a,b)-plane with potential
parameters Vo =12, V, =1, and V; = 3

in which the last term measures the interaction between the two excited nuclear

modes in the molecule of interest. In (11.35),

0’V
=9 s
Jda? Ve
0’V
gpz ~ 2
0’V
— = 11.
dadb Yo, (11.36)

so an equilibrium point of (11.28) is elliptic if and only if

121,V N L2V | 3601

4 4 474  —
ay b* Cl*b*

4V, Vi — Vi + 0. (11.37)

Figures 11.1-11.6 show various Poincaré maps corresponding to the superposi-

tion state
7 3 2 4
Y = afa,b)A; cos <E> cos | =Y + a(a,b)Az sin T ) gin (22 (11.38)
a b a b
The parameter values in each figure are h = 1, my = 1, e = R2m? [2my ~

4.9348022, €V = 9R?12/2mg ~ 44.4132198, €'?) = 4R%n?/2mq & 19.7392088, 2 =
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0256375

Figure 11.7: Poincaré section for the harmonic potential with the cut x = 0 pro-
jected into the (a,b)-plane

15272 [2mg ~ 78.9568352, ao = 1.25, by = 0.75, |C1]* = 4, |Cy]* = 8, M, = 10,
and My = 5. Figure 11.1 shows the Poincaré map corresponding to the cut P, =0
projected into the (b, P;)-plane for the parameter values V5 = 5, V, = 10, and
Vi, = 2. Figure 11.2 shows the corresponding projection in the (a,b)-plane.
Figures 11.3-11.6 depict Poincaré sections corresponding to the parameter val-
ues Vo =12, V, =1, and V;, = 3. Figures 11.3 and 11.5 depict Poincaré maps for
P, = 0 for different initial conditions projected into the (b, P;)-plane. Figures 11.4
and 11.6 correspond, respectively, to Figures 11.3 and 11.5 and show projections
of the Poincaré maps in the (a,b)-plane. Note that the plots are of the same form
for any constant ¢ > 0, where |Cy]* +|Cq]* = |A1]* +|A42]? = ¢, so only the relative

sizes of |C}]? and |C]* are relevant.

11.4.2 Case Two: pjp #0

Recall that a two-term superposition

¥) = 1 [nany) + 2 [ninl) (11.39)
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Figure 11.8: Poincaré section for the harmonic potential with the cut x = 0 pro-

jected into the (a, P,)-plane

must satisfy either n, = nj or n, = n; to yield non-vanishing interaction coeffi-

cients yi;;. Without loss of generality, consider the case in which n, = n). The

equations of motion in the case n, = n!, are obtained by reversing the roles of the

vectors (a, P,) and (b, Py).

Taking expectations and equating coefficients gives

where
(1) (1 .
1 & € .
3 <—2 + 5—2> —ifln

(Dn]) = . 4 1 6(2) E(2)
Ubnnt Al e T

and fi,, is the interaction coefficient corresponding to A,A*, in (11.16).
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3333333
11111

Figure 11.9: Poincaré section for the harmonic potential with the cut x = 0 pro-
jected into the (b, Py)-plane

(1) _ (2

Transforming to Bloch variables and noting that ¢, ' = 61()2 yields
_ w(()a)y QNnn’ Pz
N a? M,a
- w(()a)a;
y - a2 9
= — 11.42
: Mya ( )
where
2 _ ()
Wi = % (11.43)

Note additionally that the quantum subsystem (11.42) of the dynamical system of
interest depends only on the displacement a and not on b. This follows from the
fact that n, = nj,.

Using Bloch variables, one computes

+ - +
K(Ar, Apa by = o t26) L 6 (11.44)

a? b2’
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Figure 11.10: Poincaré section for the harmonic potential with the cut x = 0
projected into the (P,, P,)-plane

where
L 6,32) + c,gl)
& =—,
¢ 2
() 4 ()
= =% (11.45)
2
Because cgl) = 61()2), the quantity ¢, vanishes for the superposition state (11.39)

M _ I
with n, = n,.

The Hamiltonian corresponding to (11.39) is

P2 2
H(a, P,,b, Py) = 2]\2 + 2}&{) + K(z;a,b) + V(a,b). (11.46)

This leads to Hamilton’s equations

,_on
= op,

: OH
b=

. OH

b= —

P,

Py = _on (11.47)
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Figure 11.11: Poincaré section for the harmonic potential with the cut P, = 0
projected into the (z,y)-plane

Consequently,
P
a= M
A
b= — 11.48
Mb b ( )
and

P = =~ Gy = e Tl e )

Stationary points of the dynamical system (11.42,11.48,11.49) satisfy P, = P, =

t=y=0,z=+l,a=ay, and b = by, where ay satisfies P, = 0 for z = 1 and

z = —1, respectively, and by does the same for P, = 0. That is, a4 satisfies
2 A%
—(eF£e)= — 11.50
g =g (1150
and by satisfies
2¢0 OV
— = — . (11.51)
b3 db bby
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Figure 11.12: Poincaré section for the anharmonic potential with the cut + = 0
projected into the (a,b)-plane

As equations (11.50) and (11.51) correspond to those obtained previously for quan-
tum billiards with one nuclear dof, it follows that every equilibrium in the vibrating
rectangular quantum billiard corresponds to a pure state. In fact, this result holds
for quantum billiards of any globally separable geometry with any number of nu-
clear dof. However, one may be able to obtain mixed-state equilibria for related
systems (such as coupled vibrating quantum billiards) or upon the application of
external forces (such as those due to magnetic fields).

As when s = 1, one may examine both decomposable and indecomposable po-
tentials V'(a, b).[157] If V' is decomposable, the dynamical system (11.42,11.48,11.49)
decouples so that the time-evolutions of (z,y, z,a, P,) and (b, P;) are independent
of each other. In this event, the analysis of (z,y, z, a, P,) reduces to that for quan-
tum billiards with one nuclear dof. Nevertheless, the integrable dynamics of (b, P)
prove insightful when compared side-by-side with the potentially chaotic dynamics

(a, P,), as demonstrated by figures (11.7)—(11.11).
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434260

Figure 11.13: Poincaré section for the anharmonic potential with the cut = 0
projected into the (a, P,)-plane

In our numerical simulations, we utilized the superposition state

b = aa,b) Ay (1) cos <%> cos (%) + a(a, b) As(t) cos (%) cos (%) ,
(11.52)

for which g2 = 3/4. Recall that the roles of (a, P,) and (b, P,) are reversed if
n, = n, rather than n, = n;.

Consider first the harmonic potential
V(a,b) = V,(a — ao)® + Vi(b — bo)?, (11.53)

which is decomposable. The (z,y, z, a, P,) components of the equilibria correspond

to those in the one-dimensional vibrating billiard.[157] These equilibria also satisfy

2¢f
+

Poincaré sections for the harmonic potential are shown in Figures 11.7-11.11.

These depict, respectively, the cut @ = 0 projected into the (a,b)-plane, the cut

z = 0 in the (a, P,)-plane, the cut & = 0 in the (b, P;)-plane, the cut z = 0 in
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Figure 11.14: Poincaré section for the anharmonic potential with the cut + = 0
projected into the (b, P,)-plane

the (P,, Py)-plane, and the cut P, = 0 in the (z,y)-plane. In units of A = 1,
we used the paramter values mg = 1, M, = 10, M = R?r? /2 ~ 4.9348022,
el = 9R2r?/2 ~ 444132198, €V = ¥ = R2r2/2, V, = 3, V, = 2, ap = 1.25,
and by = 1.75 with the initial conditions z(0) = sin(0.957) &~ 0.156434, y(0) = 0,
z(0) = cos(0.957) ~ —0.987688, a(0) ~ 0.6788079, F,(0) ~ —17.6821192, b(0) =
2, and P,(0) = 3.

The dynamics depicted in Figures 11.8 and 11.11 correspond to that in quantum
billiards with one nuclear dof.[159] Additionally, Figure 11.9 displays integrable
motion in the (b, P;) plane, which is necessarily the case in this decoupled situation.
In contrast, the projection of the same motion in the (a, P,)-plane is chaotic. This
follows from the fact that the second term in the superposition state (11.52) was
excited only with respect to the length a(¢) and the ensuing decoupling between

the two nuclear dof.
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412857

Figure 11.15: Poincaré section for the anharmonic potential with the cut + = 0
projected into the (P,, P,)-plane

As another example, consider the anharmonic potential
V(a,b) = V,(a — ag)® + Vo(b — by)* + Vo(a — ag)(b — by), (11.55)

which is indecomposable. Figures 11.12-11.19 depict, respectively, the Poincaré
cut = 0 projected into the (a,b)-plane, the cut = 0 in the (a, P,)-plane, the
cut x = 0 in the (b, P,)-plane, the cut x = 0 in the (P,, P;)-plane, the cut P, =0
in the (b, P,)-plane, the cut P, = 0 in the (z,y)-plane, the cut P, = 0 in the (z, z)-
plane, and the cut P, = 0 in the (y, z)-plane. The parameter values in each figure
are h = 1, mg = 1, M, = 10, ¢,, = h*7?/2mo ~ 4.9348022, ¢,, = IR*7?/2m =~
44.4132198, €, = &, = h*n?/2mg, o = 0.75, Vo = 5, ap = 1.25, by = 1.75,
My, = 10, V, = 3, and V, = 2. Additionally, the initial conditions for each plot
are z(0) = sin(0.957) ~ 0.156434, y(0) = 0, and z(0) = cos(0.957) ~ —0.987688,
a(0) ~ 1.5728477, P,(0) ~ 1.9205298, b(0) = 2, and P;(0) = 3. Each plot except
Figure 11.14 exhibits chaotic behavior. (In general, the regions in parameter space

in which the projection of the motion in the (b, P)-plane is integrable are larger
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44444

Figure 11.16: Poincaré section for the anharmonic potential with the cut P, =0
projected into the (b, P)-plane

than those in any other two-dimensional projection. Recall that for decomposable
potentials such as the harmonic potential, the projection of the motion in this
plane is always integrable.)

Unlike when V' is harmonic, the behavior of the vibrating rectangular quantum
billiard in anharmonic potentials is clearly distinguishable from the dynamics of
quantum billiards with one nuclear dof.[157] The indecomposability of the anhar-
monic potential leads to coupling between the billiard’s two nuclear dof.

In Figures 11.13 and 11.14, both the (a, P,)-plane and the (b, P;)-plane include
two distinct elliptical regions. Additionally, the behavior in the (b, P;)-plane is (as
expected) more complicated in this situation than it was in the harmonic case. In
Figure 11.14, the behavior in the (b, P;) plot appears to be integrable, but that is
no longer guaranteed to be the case a priori. For the anharmonic potential (or any
other indecomposable potential), Poincaré maps can exhibit chaos when projected
into the (b, P;)-plane. Note additionally that the depicted double-ellipse structure

is not present for all initial conditions.
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Figure 11.17: Poincaré section for the anharmonic potential with the cut P, =0
projected into the (z,y)-plane

Just as we found for vibrating quantum billiards with s = 1 nuclear dof,
Poincaré sections commonly indicate that trajectories of (11.42,11.48,11.49) spend
more time in regions of low a(?) than in those of high a(¢). This follows from
the 1/a* dependence of the electronic kinetic energy K. We consider the physi-
cal context of this behavior in some detail, in particular with reference to Figure
11.8, which is similar to many plots obtained when studying the radially vibrating
spherical quantum billiard.[112, 155,157, 158] A low value of a(t) leads to a larger
kinetic energy, as the frequency of the confined particle’s wavefunctions increases
as a result of the smaller enclosure. The derivative of K with respect to a (which is
proportional to 1/a®) becomes very large as well, so |P,| also becomes large. This
often leads to a sign change in P, and consquently a change in direction of the
motion of that constituent of the wall. One thus often observes a large range of
momenta P, for small a. For large a, the potential V(a,b) (and its derivative with
respect to a) often becomes large, leading to a sign change in P, in that region

as well. (More complicated behavior can also occur, but the present description



122

Vibrating Rectangle: Case 2a
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Figure 11.18: Poincaré section for the anharmonic potential with the cut P, =0
projected into the (z, z)-plane

pertains to the standard chaotic configuration that is depicted in Figure 11.8.) The

potential V(a,b) < a?, so

b
LV{;Z’ ) x a. (11.56)
On the other hand,
%—[; x a’. (11.57)

Consequently, the range of momenta P, is larger for small a than it is for large a.

For a quartic potential, however, one computes that

V(ab)

94 ) (11.58)
so the analogous configuration has an equally large range for P, for both the upper
and lower regions of a(t).[155,157] For intermediate values of a, the terms from
the potential energy V' (whether or not it includes quartic terms) and the kinetic

energy K compete with each other, so |Pa| is not very large and the momentum F,

does not change signs. For small a, moreover, one often observes a higher density
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0985999

Figure 11.19: Poincaré section for the anharmonic potential with the cut P, =0
projected into the (y, z)-plane

of points in the Poincaré map (for the cut z = 0). Indeed, the Bloch variable
often changes sign as a result of a change in sign of P,, so such behavior is expected
to occur for many initial conditions.

The significance of the dynamical behavior at small, intermediate, and large
values of a discussed above may be interpreted in a molecular context in light of
the physical interpretations of K and V. The influence of K is increased as one
considers increasingly excited electronic states, and the influence of V' becomes
larger as the interatomic bonds become stiffer. We note, in particular, that the

above analysis indicates a preference for small interatomic displacements.[159]



CHAPTER 12
HOMOCLINIC TANGLES AND ARNOLD DIFFUSION

To examine vibrating quantum billiards in the context of Jahn-Teller theory, it
is necessary to express their quantum dof using action-angle variables. In the
present chapter, we do this with an adiabatic basis.[137,154, 189] We also apply
Melnikov’s method to prove that vibrating quantum billiards exhibit homoclinic
tangles and provide a plausibility argument that Galérkin expansions (i.e., super-
position states) with at least three states also exhibit a priori unstable Arnold

diffusion.

12.1 Adiabatic Action-Angle Formulation

To obtain action-angle variables, one applies a polar decomposition.[189] Define
actions (real amplitudes) n; € (0,1) and angles (phases) 6; from the complex

amplitudes Ay in a Galérkin expansion via the relation[78,137, 154, 189]

Ay = /nge's. (12.1)

The quantum actions satisfy

d
S =1, (12.2)
k=1

by conservation of probability, so only (d — 1) of them are independent. There
are also only (d — 1) independent phases, as quantum systems are invariant under
global phase shifts. Consequently, a d-mode Galérkin expansion yields (d — 1)

quantum-mechanical dof.[160]

124
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The adiabatic Hamiltonian for a d-term superposition state of a quantum bil-

liard with s vibrational modes is given by

P? ~ 1
H(a,P,n,0) = 2: 4- —ﬂMn9a+§: L%+An®+VU

2M, ~« M,

(12.3)
where a = (ay,--- ,a,) is the vector of nuclear displacements, P = (Py,--- , P;) is
the vector of (non-kinetic) conjugate momenta, n = (ny,--- ,ng) is the vector of
actions, 8 = (0y,--- ,6,) is the vector of conjugate angles, and M is the mass of

the Ith (time-dependent) boundary constituent of the quantum billiard.

The electronic kinetic energy K can be decomposed as

a)=)Y Ki(na), (12.4)

where

d
1 ﬂ
Ki=—5Y ne (12.5)
al c=1

is the kinetic energy due to the interaction of the confined particle with the [th
portion of the boundary. The quantity egc), which is larger for increasingly ex-
cited eigenstates, is an energy parameter reflecting the interaction between the cth
eigenstate and the [th boundary constituent.
The lth harmonic coupling function Wy is given by
d
Wi=—ih Yy ameexpli(0x — 0,)] T3 (a), (12.6)
k=1

where
1) = (|52 ) = ~10ta) (12.7)

is the [th adiabatic coupling element. The condition Ty = 0 yields an implicit
choice of gauge.[35,137,203]
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Using Hamilton’s equations[67, 70, 114, 194], one obtains

g = Pt We _ ol
M,  OF
6, = 27{; (21: il ;\}le gz;l) _ gi. (12.8)

In (12.8), the index ¢ € {1,--- , s} runs over all nuclear dof, and n € {1,--- ,d—1}
runs over all electronic dof. (The (d — 1) quantum actions are labeled ng, - -, ng
because n; =1 — 2?22 n;.)

If every time-dependent boundary constituent of a vibrating quantum billiard

has the same mass M, then (12.3) may be expressed as

P|? P-W(n,0;a Wi(n,0;a)|?
PIE P Wn0ia) | [Win,0:a)]

H = K
oAr 7 51 + K +V,
d
W = —ih Z Vrngexp (10 — 0;)] Tik(a),
k=1

Tij(a) = @%

a¢]> = —Tu(a), (12.9)

where 83—3 = V, is the gradient with respect to the nuclear displacements.[137]
The quantum angles are constrained by the invariance of quantum systems under
global phase shifts, so only the relative phases between eigenstates are important.
We thus define 0, = 05, — 0;.

For quantum billiards with s = 1 nuclear dof, the adiabatic molecular Hamil-

tonian (12.9) becomes

pP?  P-W(n,#; W(n,0;a)|?
Hia, P,n,0) = o+ z(w “ | (QMGN

+ K+V, (12.10)
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where the harmonic coupling function

W(n,0;a) = —ih Y \/mjngexp[i(6x — 0;)] Tje(a) (12.11)

7,k=1

and the adiabatic coupling element

/ oL R
Tix(a) = <¢j W> = —aj : (12.12)
The harmonic coupling function is then
ih &
W=—— HikA/T ;T €EXD [Z(Hk — (9])] . (1213)
a 7,k=1
The (non-kinetic) momentum in the adiabatic basis is
P=Ma+hP,=Ma—W, (12.14)
where Ma is the kinetic term and 2P, = —W is a momentum shift. The presence

of an O(h) non-kinetic term in the momentum P is a direct consequence of using
an adiabatic basis rather than a diabatic one.

When d = 2, the harmonic coupling function (12.13) becomes

2hp124/n(1 —n)

a

Wi(n,0,a) =

sin 8. (12.15)

The adiabatic Hamiltonian (12.10) for s =1 and d = 2 is consequently given by

P? 2hity9 P 2h%2 2. n(l1 —
H=—+V(a)+ K+ A,L;m Vn(l —n)sinf + Pl n) sin2(9)
a

2M Ma?
EH0—|—EH1—|—FL2H2 EHO—|—H1, (1216)
where
P2
Ho(a, P;n) = Wi + V(a)+ K(a;n) (12.17)

is the integrable component of the Hamiltonian (12.16).
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Hamilton’s equations applied to (12.16) yield

. P+W P 2hug n(l—n)

a i i + Vo sin(0),
b OV oK _owpsW _ oV
Y da da M Oa
2 2%/,612P . 4h2/,L%2
+ E[(l —n)er + neyl + Mt n(l —n)sin(9) + Vs

oW P+ W 2hpi19 P 2R3,
n=— W M - Ma n(l —n)cos(d) — Va2
. 0K OoWP4+W
0= — 4 —
on on M
€e—€  hpP (1—2n) | 2R3, 9
= 0 1-2 ).
a? + Ma /n(1 —n) sin(0) + Ma? ( n)sin(6)

n(1 —n)sin®(9),

n(1 —n)sin(26),

(12.18)

We remark that we will not be applying the so-called “Langer modification” to

(12.18).[78, 137, 189]
When d = 3, define

Ny = No,

ng = ns,
so that

ny=1-—ny, —ng.
The conjugate angles of n, and ng are

9a 502—01,

0/3 503—01.

The harmonic coupling function (12.11) then becomes

2h )
W = ?,ulg\/na(l — Ny —ng)sin(f,)

2h

2h ) i
+ ?Mlg\/TLﬁ(l —ny —ng)sin(fz) + ;Nggq/nanﬁ sin(fz — 0,).

(12.19)

(12.20)

(12.21)

(12.22)
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Additionally, the electronic kinetic energy is given by

1
K = —la(l —n, —ng) + eany + eangl. (12.23)

a

The adiabatic Hamiltonian (12.10) is consequently given by

P? PW  W?
H(a, P,ng,ng,0,,05) = — + K r 12.24
(av y oy N, ﬁ) 2M‘|‘\‘|‘V‘|‘ M —I_QM ( )
where
PW  2RP .
= mun\/na(l — Ny — ng)sin(f,)
2hP 2hP
+ a ,ulg\/ng(l —ng —ng)sin(fs) + Ma Hasy/Tangsin(fs — 0,) (12.25)
and
W2 2h? .
S Wuﬂna(l — ng, —ng)sin®(0,,)
2h? . 2h? .
+ qpztsna(l = na = ng)sin®(0p) + T pzsnang sin®(0s — 0a)
4h? ) )
-+ MGZ,Lnglulg(l — Ny — Ng)y/Mangsin(b,)sin(fs)
4h? ) )
+ Mazlulgluggna\/ng(l —ngy — ng)sin(f,)sin(0z — 0,,)
4h? ) )
+ W,ulg,uggnﬁ\/na(l —ngy —ng)sin(fz)sin(fs — 0,). (12.26)

The Hamiltonian (12.24) has terms with a sinusoidal dependence on 64, 5, and
(02 — 601). The prefactors of these terms include, respectively, the coupling coeffi-
cients p12, p13, and poz. Each coefficient represents a different type of excitation
and appears as a prefactor in one of the terms in the harmonic coupling function
W. As discussed in Chapter 9,[160] their sizes indicate the interaction strengths

of pairs of eigenstates.

12.1.1 Equivalence to Bloch Formulation

Using the case s = 1, d = 2 as an example, we demonstrate the equivalence of the

adiabatic action-angle formulation of vibrating quantum billiards introduced above
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with the Bloch-variable formulation derived directly from Schrodinger’s equation
(5.1) in Chapter 5. Essentially the same argument holds for arbitrary s and d.

Defining the (kinetic) momentum

P=P+W=P+

o
P12 (1 — n)sin(0) = Ma, (12.27)
a

shifting the angle by defining
0 =6— (12.28)

and dropping the primes from the new momentum and angle yields the following

equations of motion:

) P

a=—
M

: vV  IOK

P =% " oa

= —aa—‘; + % [e1(1 —n) + en] — (62_6&%\/71(1 —n)sin(0)

. (e2—@a)  hpP (1-2n)

= " Ma i cos(8),

. 27:6,“12]3 .

n=— n(l —n)sin(8). (12.29)

For general d, one must shift (d — 1) angles exactly in the manner just discussed.
Furthermore, the harmonic coupling function W (and hence the momentum shift)
is given by a more complicated expression. For general s, one simply shifts each
of the momenta as described above. The essence of the argument is the same for
any s and d.

When d = 2, one obtains action-angle variables from the complex amplitudes

in equation (8.4) by defining

Ay = +/n. (12.30)
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In terms of action-angle coordinates, Bloch variables are given by

z = 24/n(1 —n)cos(h),

y = 2+y/n(1 —n)sin(d),

z=2n—1. (12.31)

Inserting the relations (12.31) into the quantum subsystem of (8.9), rescaling

time with

\]
Il

(12.32)

St =~

shifting the angle #, and renaming the new time and angle as ¢ and 6, respec-
tively, for notational consistency yields the quantum subsystem of (12.29) and
thereby demonstrates the equivalence of (8.9) and (12.18). Moreover, this calcu-
lation shows by construction that a two-mode Galérkin expansion of a vibrating

quantum billiard with s = 1 nuclear dof yields a two dof Hamiltonian system.

12.2  Melnikov Analysis for the Case s =1, d =2

In this section, we construct a leading-order Melnikov function to show analytically
that two-mode Galérkin expansions of vibrating quantum billiards with one nuclear
dof exhibit homoclinic tangles.

The molecular Hamiltonian (12.16) is of the form

H(a,P,n,0) = F(a, P)+ g(a, P)G(n) + Hy(a, P,n,0), (12.33)
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where
P2
F(CL,P) = W+V(CL),
1
ofa. P) = gla) = .
G(n) = (1 —n)e + nea,
_ 2%,&12P . 2h2ﬂ%2n(1 _n) c 2
Hi(a, P,n,0) = Mo v/n(l —n)sinf + Va? sin“(9)
= hH, + h*Hy = hH, + O(R?). (12.34)

The first integrals of the uncoupled Hamiltonian (12.17) are Hy = F + g and
n, as 6 is ignorable. Note that we will drop the O(R?) term in (12.16) from the
Melnikov calculation. We discuss the validity of this procedure in a subsequent
section.

The angular frequency of the orbit with action n is

d(gG) _ o(a)G'(n) = %(62 —a), (12.35)

dn a

Qn;a) =

which is positive since €3 > €;. Had we been studying fully degenerate electronic
energy levels (for which €; = €;) rather than nearly degenerate ones, the frequency
Q(n; a) would have vanished.

To apply Melnikov’s method, define the perturbation strength € as

3 (12.36)

€

(We show that this choice is permissible in a subsequent section.) For small €, the

equation H = Ep is invertible and can be solved for the action n:[67,194]
n = L(a, P,0; Eg) = Lo(a, P; Ex) + ¢l (a, P,0; Ex) + O(€?), (12.37)
where

Lo =G (ﬁ[&[ ~ Fla, P)]) ,

H, (aa P7 07 LO(aapa 9; EH)) _ H, (CL, P7 67 LO(G,p, 0; EH))
Q(LO(G,P;EH),G,P) a g(avp)G/(LO(aap;EH)) .

L =— (12.38)
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One consequently obtains

. aLo a[f 2

a=— 8P(aPEH)—eaP(aPGEH)—I—O(c),

. dLg 0L, 2

P = 9 ——(a, P; Eg) + ea—q(a P.0; Eg) + O(€). (12.39)

The equations of motion for the unperturbed system (12.17) are then expressed as

. dL

a = 6]30 (a, P; F),

. 0L

P = aao(“ P; Eg). (12.40)

The smallness of the term G/(n) for small ¢; is expressed formally as
gla, P)G(n) = O(N). (12.41)

where

d
1
e [Z ejnj] <4 (12.42)

for a d-mode Galérkin expansion (5.20) with s = 1. The quantity ¢, is the largest
energy parameter, as it corresponds to the most excited state under consideration.
The size of the perturbation parameter X is therefore determined by the energy of

this state:

O\ =0 (e—d) . (12.43)

a2

The quantity A is small when the electronic kinetic energy K is small. This
energy becomes larger as one considers increasingly excited states. It is also larger
for confined particles with smaller masses mg and for billiards with larger spatial
dimensions. As A represents an energy, homoclinic orbits are more likely to exist
when it is small. (This was shown in Chapter 7.[155]) Consequently, the Melnikov
calculation in this section has an energy threshold (encoded in the electronic kinetic

energy K') above which it is not valid.
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The unperturbed Hamiltonian (12.17) is given by
Ho(a, P;n) = F(a, P)+ O(X). (12.44)

For sufficiently small A, the unperturbed dynamical system (12.40) has a homo-
clinic orbit provided F does. This latter homoclinic orbit F(a, P) = EF is ex-

pressed analytically as a function of time as

(a, P) = (a(t),fa(t)). (12.45)

One uses (12.45) to approximate the homoclinic orbit Hg(a, P; ) = Eq in a Mel-

nikov integral 9. This homoclinic orbit is parametrized by

(a, P) = (&(t),f’(t)). (12.46)
Homoclinic orbits in (12.40) are determined from the relation
1
lo=G" < [En + (’)(A)]) : (12.47)
g(a, P)

Expanding (12.47) in a Taylor series in A, the homoclinic orbit of (12.40) is given
by

VAR
n=lp=G (g(a’ P)EH> +ON). (12.48)

Consider perturbations of a homoclinic orbit in the unperturbed system (12.40).
The upper subharmonic Melnikov function is given by[67,194]

M(0) = /Oo {LO (&(0),]5(9);EH) Ly (a(e),ﬁ(e),ew + 90;EH)}de, (12.49)

where {Y}, Y3} is the (canonical) Poisson bracket of Y; and Y3 and 0 = 6, + 0, =
Qlo)t + 0.

In terms of the original Hamiltonian H, the Melnikov integral (12.49) is

/oo [Q{E M} + Hi{F g} + En{th, g} + Fg, Ih}]
] FE ) |

M(0y) = (12.50)

o0
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where the Hamiltonian F is evaluated at (a(t), P(t)) and H, is evaluated at
(a(t), P(1), Qlo)t + o zo).
As g(a, P) = g(a), the Melnikov integral (12.50) reduces to

B g{F, Hi} + 2 ([F - Eg) 2 — H S
)= [ o)

The homoclinic orbit (Zz(t) P(t)) cannot be expressed in closed form, but one

r) dt. (12.51)

can write the nearby orbit ( (1), ( )) associated with the Hamiltonian F'(a, P)
in this manner. When g(a)G(n) is sufficiently small, Er = F(a, P) is almost a
constant of the motion of Hy(a, P;n).

The true energy of (&(t), p(t)) is F(a, P) = Fq — O()), so by inserting this
orbit into (12.50), one obtains an expression My(fy) that is accurate to leading

order. That is,
M(0o) = Mo(6o) + o(\°). (12.52)

We demonstrated in Chapter 8 that quartic potentials V(a) can yield homo-
clinic tangles in vibrating quantum billiards,[155] so consider a potential of the
form

V(a) = Vya* + Vya?

= \N/4(a — a0)4 + Vs(a — a0)3 + Va(a — a0)2 + \N/l(a: —ap) + Vo. (12.53)

When V; < 0 and V4 > 0, the Hamiltonian F'(a, P) describes a Duffing oscilla-
tor.[67,164] For sufficiently small ¢;/a* (and hence for sufficiently small ¢;), the
right-hand Duffing homoclinic orbit is a good approximation of the right-hand
homoclinic orbit for unperturbed vibrating quantum billiards (which have Hamil-
tonian Hy). The parameter V3 is assumed to be sufficiently negative so that the
local maximum of the potential V(a) is large enough for (12.17) to possess a ho-

moclinic orbit.[155] In particular, the Hamiltonian Hy has a homoclinic orbit for

sufficiently small ¢; when V3 = —V, < 0.[155]



136

The perturbation of F'(a, P) to Ho(a, P;n) is singular, as the term K(n;a) con-
tains powers of the displacement a in the denominator. Nevertheless, we observed
numerically in Chapter 7 that the dynamical system with Hamiltonian Hy has
homoclinic orbits near those in Duffing oscillators.[155] For sufficiently small ¢;,
the homoclinic connection corresponding to positive a in the Hamiltonian F'(a, P)
is well-approximated by that corresponding to the Hamiltonian Hy(a, P;n), as is
shown in Figure 12.1. Because of the singular nature of the perturbation from F
to Hy, however, the left homoclinic connection in the Hamiltonian F'(a, P) is not

similarly well-approximated.

Billiards: Quartic, no cross

aaaaa

,,,,,,
0407863 214605

Figure 12.1: This plot shows homoclinic orbits for the Duffing Hamiltonian /" and
nearby ones for the integrable vibrating billiard Hamiltonian H,. Because the
perturbation from F' to Hj is singular, only the right-hand homoclinic connection
is well-approximated. These two homoclinic orbits are especially close together
when t € [=T,T] for sufficiently small T'.

The approximate (Duffing) homoclinic orbit, whose energy is Er = 0, is ex-

pressed parametrically as
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The approximate energy
Er = Er + O(N) =0+ O()) (12.55)

is then inserted into the Melnikov integral (12.51).

The quantity Er denotes the energy of the exact homoclinic orbit correspond-
ing to the system with Hamiltonian F', whereas Fpr denotes the energy of the
approximate homoclinic orbit obtained by using only the F' term in the Hamilto-
nian Hy. (Although Er and Er both “equal” F(a, P), we use different symbols
to explicitly recognize their distinct meanings.) This latter quantity is defined by

the relation

G(n)

~ ’
a2

EFEEO—

(12.56)

so it is only approximately constant. (By contrast, Er is exactly constant.) The

energy Fjy of the Hamiltonian Hy is comparably close to both Er and Ep:

A

N 1 _
Ho(, Pin) = Ey = F(a, P) + —G(n) = Er + O(A) = 04 O() = Er + O(2).

(12.57)
The angle § is given by
o(1) = 0 (Lo(d, 2 EH)) 14 0y = Qo) + 0 = wt + o, (12.58)
where
—1 /2 1 EH
lo =G " (&*Ey — EF)) = ;(EH — Er)+ O(XN) = — 4+ O(\), (12.59)

and H = Fp is the energy manifold. The leading-order Melnikov integral is then

dpi1o 1 - n) 2p? .
Mo 0
/ M 62_61)2 sin(0) +
4p2 Bga/n(1 —n)a?

M(62 — 61)2

00 4 1 — 1 A
szﬂeznf qpn) {_&ZPZ sin(0) + Vaa® sin(6) + Ega® sin(6) | dt.

4p12Var/n(1 — n)a®
M(62 — 61)2

sin(6)

dt

sin(6)

M

— 00

(12.60)
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Along the homoclinic orbit (a, P) = (Zz(t), p(t)), the action is

n=ly= % L O(N). (12.61)
Therefore,
n(l —n) = \/% (1 - %) + O(VN). (12.62)

Defining the quantity

p2Voy [ (1= 5F)
V4M(62 - 61)2

v=4 (12.63)

and inserting the time-dependence of the approximate homoclinic orbit (12.54)

into (12.60) yields
6
M =My + O(VA) =7 I+ O(V)), (12.64)
7=1

where

00 2 _
I = /_Oo VvisechG (\/ ;4‘/2 t) cos(fo) sin(wt)dt,

o0 2 _
I, = —2/_ Vvisech4 ( ;4‘/2 t) cos(fo) sin(wt)dt,

o0

I, = _/ Eysech? <‘ /%t) cos(f) sin(wt)dt,
00 2 _
I, = /_ VvisechG ( ;4‘/2 t) sin(fg) cos(wt)dt,
00 2 _
Is = =2 /_Oo %sech‘l (\ / —;4‘/2 t) sin(fo) cos(wt)dt,
e —2
Is = _/ Fsech? (1/ MV2 t) sin(fg) cos(wt)dt. (12.65)

The first three integrals I, I3, and I3 vanish because their integrands are odd and

their intervals of integration are symmetric.
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Computing the other three integrals yields

M3 2 _ 8% 2 _ 32Vp

Iy = — il (w M) (w M )csch 1/—£ﬂ sin(6y),
960V5 V, 2V, 2

M2 2 8Vy

Is = — il (w M‘)csch 1/—£ﬂ sin(6y),
12V} 2V, 2
M Egwmr M wr\ .

Is = ﬁcsch (1 / —m7) sin(fy). (12.66)

Defining B; with the relation

[J' = B]‘ sin(&o), (1267)
one obtains
M = B(By + By + Bs)sin(6o) + O(V)), (12.68)

which has simple zeroes for 6, = km (where k is an integer) when A = 0. For
sufficiently small A, there exist points near km that are simple zeroes of 9 to all
orders (as the coefficient of the term of order (’)(\/X) is finite).

Consequently, homoclinic tangles occur in vibrating quantum billiards when

V(a) is a quartic, double-well potential.

12.3 Melnikov Analysis for the Case s =1, d =3

One can generalize the scalar Melnikov method discussed above to a vectorial
method[82] and thereby provide a plausibility argument for a priori unstable Arnold
diffusion in the Hamiltonian (12.24) with a Duffing potential V(a). (This calcu-
lation can likely be extended to a proof by overcoming the so-called gap prob-
lem,[74, 114, 115] whose recent resolution has not yet been published.[130])
Melnikov calculations establish the existence of individual homoclinic connec-
tions to invariant KAM tori, but they are not sufficient to construct a chain of such

connections (which must exist if diffusion is to occur). Resonances on invariant
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manifolds in Hamiltonian systems H = Hy + €¢H; lead to gaps of order O(/¢€) in
the surviving tori,[74,82,114, 115] so one may not be able to construct finite het-
eroclinic chains (transition chains) between them. The variation in actions along
perturbed homoclinic and heteroclinic orbits is of order O(¢), so these orbits can-
not connect tori on opposite sides of O(y/€) gaps. This gap problem is generic, as
any smooth path of tori contains a dense set of resonant tori. Consequently, the
gaps necessarily occur on any fixed diffusion route.[74]

Moreover, KAM theory must be invoked, as one otherwise demonstrates only
the existence of homoclinic tangles.[74,82, 114, 115] The simultaneous existence of a
horseshoe structure and invariant KAM tori allow for the possibility of Hamiltonian
diffusion. A vectorial Melnikov technique provides a mechanism to examine a priori
unstable Arnold diffusion at the perturbation strength O(¢). Overcoming the gap
problem involves the application of additional estimates to account for the fact
that the perturbation strength is smaller than the gap size.

To ensure isoenergetic nondegeneracy,[67, 82] one calculates that KAM theory

can be applied whenever

P2
4[2Via® + V3 [W + Via® + V26l2} [(1 = na)er + nac]

P2
— 4a* [QVMQ + Vz]2 [m + Vyat + Vzcﬂ} —a® [QVM2 + Vz]s
+a? [2Via" + Vo] * [(1 = na)er + nacol

2

P
— 4 [3Via® + V5] [W + Via®* + vzcﬂ] [(1 = nn)er +nae] #0,  (12.69)

where V(a) = Vja* + Vaa? is the Duffing potential (12.53). (Only n, appears in
(12.69) because we have “reduced” the Hamiltonian (12.24) by the action ng. The
reduction procedure that has been applied is discussed in reference [82].)

We now summarize the results of a vectorial Melnikov analysis, the details of

which have been omitted from this work. The procedure is analogous to the scalar
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Melnikov method outlined above.

The Hamiltonian (12.24) is of the form

H = F(a, P) + g(a, P) [Ga(na) + Gs(ns)] + Hy(a, g, O, 0),  (12.70)

where
P2
F(CL’P) = m—l_v(a)v
1
g(a) = g(a,P) =~
a
Go(ne) = (1 —na)er + ngeg,
Ga(ng) = (€3 — €1)ng,
_ p 2
Hl(a, P7 na,ga,TLﬁ,Hﬁ) = WW + ;/V—M = hHl + FLQHQ = hHl + O(FLQ), (1271)

where W is given by equation (12.22).
The kth frequency (k € {a,3}) in (12.24) is given by

Qp(ng;a) = 8[9(“53:(“’“)] = g(a)G(ny), (12.72)

so the kth phase is
0,(t) = Qut + 0%, (12.73)

where 5 is the kth reference angle. The quantity E represents the energy of the
full Hamiltonian, £, = H — (3 is the energy contribution of the ath action-angle
pair, and Eg = H — (G, is the contribution of the fth action-angle pair.

One derives a two-dimensional Melnikov vector (9, 9M,), where

< OH, /00,
m 0079ﬁ7E 7Ea :_/
10600, Brs o) = = | 9 0 T Py

- /Oo {na, i}
e D

Q{F, Hl} + Hl{Fag} + EH{Hlvg} + F{ga Hl}
g*[Gls(ng)]?

dt

[e.e]

dt.

M, (03,05, Ex, Ey) :/

o0

(12.74)
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Computing (12.74) yields

Dﬁl = C12L12 sm(eg) —|— 623L23 sm(ﬂg — Hg) —|— O(\/X),

M,y = (—C TS — C4T9 4 C7T)sin(0) + (—Colh — CsT? + CsT5) sin(6))

+ (CsT57 + Oy — CoT5P)sin(05 — 67) + O(VN), (12.75)
where
K, E, FE
erp = 492 /oY, 1 ( _ Ba _ﬁ)
f (e3 —€1) | wa Wa  Wg
EE
Co3 = 4E —2M‘/2 K2 A
4 (€3 —€1) || wawp
I = Tw? (—M>5 Y M
= csc )
2T 2\ 22V VW,
Tws — wgl? (—M)g Tw, |—M
Loz = h . 12.76
23 2 v, ) T 22V v (12.76)
Additionally,

4,&13 V23 E, Eﬁ
M(es —€1)? Vy Wa  Wg
4 3 |EF
03 = H23 —22 ﬁ,

o 4,“12EH ‘/2 a Ea Eﬁ
Co=————4/— (1 —— — L),
M(es —€1)? Vi \l wa Wa  Wg
eyt 1o [

4/123EH E EaEﬁ
M(es —€1)?2 Vi waws’
07 = 201, 08 = 202, 09 = 203 (1277)

CGE
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Finally,

Mwym WET M
rk=_ 0 (i
2 2V, ¢ ( 9 2\@)’

M?w,m 8V Wy M
rh= 2 T (e SR en (2T 22
SRS YATE <“”“ M)CSC (2 2, |

M3wym 8V; 32V; WET M
k — k 2 2 2 2 k

where k € {a, 3,af} and the interaction frequency w,g is defined as

Wap = Wy — Wg. (12.79)

To leading order, points (b,m,bgm), where b, and bz are integers, are simple
zeroes of (M, My). One thereby obtains transversal intersections of stable and
unstable manifolds in a positive measure of two dimensional invariant tori, which—
by invoking KAM theory—yields a plausibility argument for a priori unstable Arnold
diffusion. Equation (12.75) represents the leading order computation of (91, 91,).
For sufficiently small A, there exist points near (b,7, bsm) that are simple zeroes of

the Melnikov vector (911, 9My) to all orders.

12.4 The Role of

In the analyses above, we used h as a perturbation parameter when applying
Melnikov’s method. Although it is a constant of nature, perturbation parameters
in quantum systems are often expressed as ratios of & divided by some other action.

To examine this dichotomy, we consider the sizes of the nuclear and electronic
energies in the adiabatic Hamiltonian (12.16). Recall that the perturbation term
in (12.16) is

= 1 9 _ 2412 P . 2hﬂ%2n(1 _n) )
H, = h(hHl + h*H,) = M a v/n(l —n)sin(0) + Va? sin”(0)
_ 2/112P
Ma

HEE

St —

n(l —n)sin(0) + O(h). (12.80)
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We will examine the relative sizes of the terms in (12.80) and show that they are
independent of i. We will also show that the term of order O(h?) is smaller than
that of order O(k), which—in turn—is smaller than those of order O(h°) and thereby
justify the choice of i as the perturbation parameter in Melnikov’s method.

Recall from Chapter 2 that the nuclear kinetic energy P?/2M varies as the zero-
point nuclear energy, which for a harmonic potential is proportional to 1/v/moM.
Additionally, the electronic kinetic energy K is proportional to 1/mg, which is
larger than 1/v/moM by a factor of \/m. Hence, the nuclear mass M is
typically about 10000 times larger than the electronic mass mg, so the electronic
kinetic energy K is about 100 times larger for molecular systems than is the nuclear
kinetic energy P?/2M.

The size of the electronic kinetic energy K is

Yhn

K ~ >
moa

(12.81)

where the constant T depends on the choice of electronic eigenstates in (5.20) and

is larger for increasingly excited states. The size of the smallest perturbation term

in (12.16) is

BEQP\/n(1 “n), (12.82)
a

so 1t is required that

1— 12.
Va (1-n)< o (12.83)
and hence that
/,L12P Thn
1— 12.84
i n(l—n) << -~ (12.84)

for this term to be much smaller than K. As n ranges over (0,1), it follows that

n~+/n(l—n) (12.85)
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on average, so it is necessary that

,LL12P Th
. 12.86
M < moa ( )
The nuclear velocity in molecular systems is roughly[154]

P mo % h
= — ~ [— ) 12.87
N M ( M) mod ( )

Inserting (12.87) into (12.86) yields the condition

pak® < Y, (12.88)

where

= (%) (12.89)

the ratio of nuclear vibrational displacement to the spacing between nuclei, is the
expansion parameter in the Born-Oppenheimer approximation. Its cube is the
expansion parameter in the adiabatic approximation.[7, 19,20, 154] (We discussed

this in Chapter 2.)

For typical nuclear masses, M ~ 10*my, so equation (12.88) implies that
1072, < 7. (12.90)

The electronic interaction strength iz is typically of order O(1) and the excita-
tion parameter Y is typically at least of order O(1).[112,157,159,160] Hence, the
O(h) term in (12.16) is much smaller than the O(k°) terms. (Because of the 1073
difference in the order of magnitude in the left-hand and right-hand sides of equa-
tion (12.90), there are almost never any problems with this estimate even when n
ranges only over a small subset of (0,1). More precisely, one needs n < 107° for
almost all time for this estimate to fail.)

When applying Melnikov’s method, we dropped the O(h?) term in H; and

showed that perturbing Hy by terms of order O(R) leads to homoclinic tangles.
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Numerical simulations reveal chaotic dynamics regardless of whether one drops the
terms of order O(h?). Those simulations, in which & = 1, suggest that the O(R?)
terms in (12.16) are smaller than the O(h) terms regardless of the size of h.

To examine the actual sizes of the O(h) and O(h?) terms in (12.16), one removes

common factors from both terms and compares the size of P with that of

hui24/n(1 —n)
a

sin(6). (12.91)

The quantities p12, v/n(1 —n), and sin(#) are all of order O(1), so one need only
examine the relative sizes of P and hi/a. These are the only remaining factors of
the O(Rh) and O(h?) terms, respectively, in (12.16).

In Chapter 2, we estimated the zero-point momentum in a harmonic potential

to be[7, 154]

i
P~ (%) 4 g (12.92)
so the term of order O(Rh*) term is smaller than that of order O(R) by roughly
a factor of kK &~ 1/10. Note that although « is an appropriate unitless parameter
to use in Melnikov calculations, it is not as mathematically convenient as i. The
present discussion shows that this latter choice is a valid one.

In light of the size of RH;, the Melnikov calculation above implies that the
dynamical system (12.18) describing two-mode Galérkin expansions of vibrating
quantum billiards with one nuclear dof has transverse homoclinic orbits and hence

3

Smale horseshoes at every energy level Fy > 0+ O(A) as long as £° is sufficiently

small.



CHAPTER 13
CHAOTIC ONSET IN CLASSICAL AND QUANTUM DOF

The interaction terms in the molecular Hamiltonian (12.16) describe faster fluc-
tuations than those that arise from diagonal terms in the quadratic form (5.21).
This phenomenon, which is a consequence of the Born-Oppenheimer approxima-
tion,[7, 19,20, 154, 189] implies that when perturbing from integrable configura-
tions, a vibrating quantum billiard’s quantum dof become chaotic far sooner than
do its classical dof.

We note, moreover, that this is true in general for systems derived via the Born-
Oppenheimer approximation. Consequently, this phenomenon is a signature of
semiquantum chaos. Moreover, one expects to frequently encounter configurations
in which the quantum dof are globally chaotic but the classical dof are only locally

SO.

13.1 Introduction

In this thesis, we have observed numerous configurations for which the quantum
probabilities (represented by the actions n;) in vibrating quantum billiards behave
more erratically (are “more chaotic”) than the system’s classical variables.[160]
(See, for example, Chapter 9.)

Consider, for example, a nearly integrable configuration in a two-mode Galérkin
expansion of a quantum billiard with s = 1 nuclear dof. Empirical observations

suggest that it takes a smaller perturbation for n(t) to develop chaotic behavior

147



148

than it does for a(t) and P(t) to do so.[160] As one increases this perturbation, one
often observes situations for which n(¢) is completely erratic while a(¢) and P(t)
are only mildly so. This is intuitively reasonable because the system’s quantum
dynamics evolve at a faster timescale than do its classical dynamics.[154]

In the context of diatomic molecules, the analysis in this chapter indicates that
for a typical initial configuration, one expects the quantum probabilities of the
eigenstates to fluctuate more violently than the interatomic distance a, which we
recall defines the lengthscale of the eigenstates ;.

To explore chaotic onset in (12.16) systematically, we simulate the associated

dynamical system (12.18) numerically and perform some simple calculations.

13.2  Analysis

As discussed in prior chapters, the dynamical system (12.18) has dynamics on
multiple timescales even when 2 = 1. As A = 1 in our simulations, the size of
Planck’s constant also does not affect our numerical results. The disparity of scales
we seek to describe is due to the difference in size between the nuclear mass M
and the electronic mass mg. Consequently, we let i = 1 without loss of generality.

In our numerical simulations, M = 10my. However, typical molecular systems
have mass ratios M/mg of roughly 10* or 10°,[7, 154] as an electron’s rest mass is
m. ~ 9.1094x 107! kg and the mass of a single neutron is about M,, ~ 1.675x107%7
ke.[105] Thus, by using more realistic values for the nuclear and electronic masses,
the difference in ease of chaotic onset in the classical and quantum dof becomes
even more pronounced than what we observed numerically.

We derived in Chapter 2 the following estimate for the frequency (and energy,
since i = 1) of nuclear oscillations:[7, 154]

1
o, (13.1)

moa? \l M

wy ~
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The energy of the electronic excitation is about

1
We A —— (13.2)

2moa

which is larger by a factor of

o ( ﬂ) ~ /10000 = 100. (13.3)

mo

As this division of speeds is built into the Born-Oppenheimer approximation, the
phenomenon discussed in this chapter pertains to any system derived from such a
scheme (and hence to most semiquantum systems).

More generally, this signature of semiquantum chaos represents a particular
facet of nonadiabatic dynamics, so any system that exhibits coupling between
dof that evolve on different timescales is expected to exhibit different facilities
of chaotic onset in its fast and slow dof (assuming it is not constrained to be
integrable).

The nuclear dynamics of vibrating quantum billiards are determined by a; and
PJ- (where j represents the jth nuclear dof), whereas the electronic dynamics are
described by the dynamical equations for the quantum phase and action or via
Bloch variables.[154, 160, 189] To illustrate the phenomenon of interest, consider a
two-term superposition of a quantum billiard with s = 1 nuclear dof.

With & = 1, the equations of motion (12.18) become

P 2u124/n(1 —n)

a = i + o sin(9),
: v 2
P = —% + 5[(1 — n)el + TLGQ]

+ 2'LLIQP\/n(l —n)sin(8) + Aiy n(l —n) sin2(0)
Ma? Ma3 ’
. 2unP 2u3, :
n=—— v/n(l —n)cos(9) MaQn(l —n)sin(26),

€y — €1 ,ulgp (1 — 271) . 2/1%2 .92
0 —=(1 -2 9). 13.4
& T Ma a2 0) (134)

0=
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When the interaction strength g5 is small, the largest terms in the right-hand-
sides of @ and P are those present in the integrable configuration (when 12 = 0).
In this event, the classical dynamics of (13.4) are influenced significantly more by
the nuclear dof than by the electronic dof. However, every term in the right-hand-
side of n is proportional to at least one power of 12, so small coupling cannot
be neglected in the quantum dynamics even when its contribution to the classical
dynamics is negligible. Thus, a smaller coupling strength is required to significantly
influence the quantum dynamics of (13.4) than is necessary to influence its classical
dynamics substantially. In particular, this implies that if one perturbs the coupling
strength 9 from zero—p12 = 0 guarantees integrable dynamics—it follows that
chaotic onset in the quantum dof requires weaker interactions than chaotic onset
in the classical dof.

To examine this phenomenon, one compares the interaction terms to P/M in
the @ equation of motion in (13.4) and to dV/da and K /da in the P equation.
Thus, the nuclear displacement a is most affected by an increase in electronic
coupling when the conjugate momentum P is small. More precisely, it is requisite

that

a

1
OP)< 0O (—) (13.5)
for an O(1) electronic coupling 12 to significantly influence the classical displace-

ment (provided the phase # is not too small). For an O(1) electronic coupling to

heavily influence the nuclear momentum (again assuming that 6 is not too small),

vV oK P
—_— — )<
o(-% -5 )50 () (13.6)

av 0K 1
N
© < da aa> 50 <Ma3) (13.7)

either

or
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must hold. The interaction terms in the P equation of (13.4) are proportional to
1/M, whereas the other terms are independent of M. Condition (13.6) is ordinarily
more restrictive than (13.7) when the nuclear displacement a is small (especially
if P is also small), and the reverse is the case when a is large (especially if the
momentum P is also large).

One decomposes the adiabatic Hamiltonian (12.16) into (integrable) diagonal

terms and (perturbative) cross terms as follows:

H = HO + Hla
P2
HO = m —|— V(Cl) —|— [/(,
_ 2hu19 P 2h% 2 1 —
H, = A'L;l; v/n(l —n)sinf + MJQ\;C(LQ n) sinZ(Q). (13.8)

The electronic kinetic energy K and the nuclear kinetic energy P?/2M are non-
negative. The external potential V (a) is also non-negative if it is a polynomial

in (@ — ag)?

, as is the case with the symmetric harmonic potential discussed in
several previous chapters.[112,155,157-160] When V' > 0, it is also true that

Hy > 0, so associated with the energy manifold H = Fp is a condition guaranteeing

boundedness of the perturbation term H:

i, < Eg. (13.9)

As the time-evolution of the quantum action n is due entirely to the interaction
terms (i.e., H;), it follows that the fast dynamics of (12.16) are bounded in mag-
nitude. Thus, every trajectory visits only regions of phase space in which the
perturbation H; is at most some finite value. In particular, one cannot reach the

entirety of phase space for any given energy Fx (no matter how large).
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Adiabatic Hamiltonian, Action-Angle (w/o Langer)

oooooo

Figure 13.1: This plot depicts several § = 0 Poincaré cuts projected into the (n,a)-
plane. They correspond to the interaction strengths p1o = 0, 0.01, 0.02, 0.05, 0.1,
0.25, 0.5, 1, 1.5, 1.6, and 1.75.

13.3 Numerical Simulations

To study chaotic onset numerically, we utilize § = 0 Poincaré sections. The per-

turbation term H; vanishes when 6 = 0, so
H(#=0)=Hy(0=0)= FEpy. (13.10)

As the energy Ep is independent of the cross terms, it is also independent of the
coupling strength p15. Hence, it is convenient for the present discussion to tune g1
by gradually increasing its value from zero in examining the departure of (12.16)
from integrability.

In general, coupling constants p;; are determined by the geometry of quan-
tum billiards as well as which eigenstates are included in the superposition state
(5.20).[159,160] Thus, although we manipulate 15 mathematically, a given cou-
pling coeflicient is actually a physical constant. The parameter p;; measures the
strength of the interaction between the jth and kth eigenstates.

We show numerically that as p2 is increased, the quantum dof become glob-

ally chaotic significantly sooner than do the classical dof. One can also show
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Adiabatic Hamiltonian, Action-Angle (w/o Langer)

Figure 13.2: This plot shows a magnification of Figure 13.1.

this by making the electronic coupling increasingly negative, although because the
term of order O(u2,) is proportional to sin®(@), it is more difficult to examine the
phenomenon of interest in this manner using the Hamiltonian (12.16). Note addi-
tionally that by KAM theory, even the classical dof become locally chaotic as soon
as fi12 1s increased from zero.[67,70, 114, 194]

Solving for the momentum, one obtains

P =+\/2M[Ey — V(a) — K. (13.11)

To find real values for P, it is necessary that the energy Ky > E > 0. In our
simulations, we use M = 10, h = 1, V5 = 5, ap = 1.25, ¢, = 7?/2, and ¢; = 272,

With these values,

2

2[a(0)]"

To determine P(t = 0), one needs to specify a(0) and n(0). Let (0) = 0 in

P(t=0)= iz\/5 <EH — 5[a(0) — 1.25)* — [+ Qn(())]). (13.12)

order to compute the energy Fpy independently of uq5. For simplicity, also let

a(0) = 1.25 = ag. This yields

P(0) = ig\/l%EH — 872 [1 + 2n(0)]. (13.13)
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Adiabatic Hamiltonian, Action-Angle (w/o Langer)
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Figure 13.3: This plot depicts the § = 0 Poincaré sections from Figure 13.1 pro-
jected into the (a, P)-plane.

If the initial superposition contains an equal probability of the two states under

consideration (i.e., if n(0) = 0.5), the equation (13.13) simplifies to

2
P(0) = ig\/l%EH — 1672, (13.14)

If the initial momentum P(0) = 0, then the energy is Ky = 1672/125 &~ 1.2633094.

Consequently,

8 1672
H(t=0) = Hy(t = 0) = (612; e2) _ 12”5 — By (13.15)

Increasing Fp corresponds to increasing the magnitude of the initial momentum.

Figure 13.1 displays § = 0 Poincaré sections projected into the (n,a)-plane
for trajectories corresponding to interaction strengths g2 = 0, 0.01, 0.02, 0.05,
0.1, 0.25, 0.5, 1, 1.5, 1.6, and 1.75. The p1o = 0 trajectory yields integrable
dynamics. As one increases the coupling strength, however, the trajectories become
increasingly bowed, which indicates that the quantum action n encompasses a
wider range of values. The behavior of the displacement, however, does not change
very much. Figure 13.2 shows a magnification of a portion of Figure 13.1. Figure

13.3 shows the same Poincaré section projected into the (a, P)-plane. As g1z



155

Adiabatic Hamiltonian, Action-Angle (w/o Langer)

Figure 13.4: This plot shows time series up to ¢t = 50 of the quantum action n(t)
for the initial conditions and interaction strengths used in Figure 13.1.

increases, the classical dynamics change slowly from integrable to near-integrable
until finally reaching a state of global chaos. The only globally chaotic trajectory
that is depicted corresponds to the parameter value p15 = 1.75. The local chaos
becomes increasingly evident as one increases pi3. It is extremely difficult or
impossible to observe for very small pq5, but by KAM theory it is present for any
nonzero coupling.[67, 163, 194]

To accentuate our point, we examine time series for n(t) (see Figure 13.4) and
a(t) (see Figure 13.5) for each interaction strength depicted in prior plots. The
time series for the quantum action (and hence for the quantum probabilities) is
extremely erratic for all nonzero couplings. For smaller jiq5, this chaotic behavior—
though quite evident—occurs over a smaller range of n. That is, the quantum
dynamics are not necessarily more chaotic for larger electronic coupling; rather, the
range of quantum probabilities that can be achieved is larger. The story is rather
different for the nuclear displacement a(t), however, as there are no substantial
changes in the dynamics until the coupling strength becomes of order O(1). Even

then, the chaotic behavior in a is not evident in the time series. One must examine
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Adiabatic Hamiltonian, Action-Angle (w/o Langer)

T

Figure 13.5: This plot shows time series up to ¢ = 50 of the nuclear displacement
a(t) for the initial conditions and interaction strengths used in Figure 13.1.

stroboscopic maps of phase space to observe it clearly.

One can generalize the analysis in this chapter to superpositions with d > 3
states. In this situation, each pair of eigenstates has a corresponding interac-
tion coefficient (see Chapter 9).[160] Thus, one can separately examine increases

in coupling strength between any pair of eigenstates. One can thereby examine

individually the various modes of excitation corresponding to these interactions.



APPENDIX A
GENERALIZED BLOCH COORDINATES*

One way to transform the quantum-mechanical subsystem of a d-mode Galérkin

expansion to real variables is to use generalized Bloch coordinates. For k < [, define

Tl = PRl T Plks

yr = 1(pik — pri),

Zkl = Pu — Pkks (A1)
where pi; = AfA;. This yields 3(52[) = 3d!/(2-(d—2)!) variables, of which [2(d—1)]
are independent. (This corresponds to the (d—1) quantum-mechanical dof obtained

from a d-mode Galérkin expansion.)

Equations (A.1) satisfy the constraint

d
(o (2 + i) + =] = 8, (A.2)

ki=1k<!

where a = d/2 and 3 = d — 1. Additionally,
2k = pu— prk = (pu = pii) + (pis = pre) = ki + 250 (A.3)

Applying (A.3) recursively then implies that
Zhkts = Zhgtl T Zhts—1,kts- (A.4)

It is easier to derive the additional constraints after d has been specified. When

d = 4, for example, the final six constraints are derived from the six equations

2h Ak 42k = [ — A2 — A, (A.5)

*This chapter is based on portions of reference [160].
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where ¢, j, k, and [ are distinct indices in {1,2,3,4}. Three of these equations take

the form

R R R Ve R TR T b (A.6)

where all the indices are again distinct. (One then applies equation (A.4).) The

other three equations are

2 2 2 2 2 2 _ _
—/Tiy Yo + 2y A/ T34 + Y3, + 254 = 214 + 223 = 212 + 2293 + 234,

2 2 2 2 2 2 _
—\/ T3 T Yiz + 293 T 1/ T34 T Y24 + 254 = 212 + 234,

- $%4 + 9%4 + 2%4 + 1/'%3 + yga + 233 = %12 — %34, (A-7)

where one again utilizes equation (A.4).

Bloch variables can also be defined using a Lie group formulation.[160,199]
With this procedure, one can show that d = 2 yields Pauli spin matrices and
d = 3 yields Gell-Mann matrices.[38,150] The special cases d = 2 and d = 3 are
considered, respectively, in Chapters 7 and Chapter 8. The case d = 1, which is

discussed in Chapter 6, yields zero quantum-mechanical dof.
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