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Gutzwiller's trace formula allows interpretation of the density of states of a classically chaotic
quantum system in terms of classical periodic orbits. It diverges when periodic orbits undergo
bifurcations and must be replaced with a uniform approximation in the vicinity of the bifurca-
tions. As a characteristic feature, these approximations require the inclusion of complex ``ghost
orbits''. By studying an example taken from the Diamagnetic Kepler Problem, viz. the period-
quadrupling of the balloon orbit, we demonstrate that these ghost orbits themselves can
undergo bifurcations, giving rise to non-generic complicated bifurcation scenarios. We extend
classical normal form theory so as to yield analytic descriptions of both bifurcations of real
orbits and ghost orbit bifurcations. We then show how the normal form serves to obtain a
uniform approximation taking the ghost orbit bifurcation into account. We find that the ghost
bifurcation produces signatures in the semiclassical spectrum in much the same way as a bifur-
cation of real orbits does. � 1999 Academic Press

1. INTRODUCTION

In the ``old'' quantum theory developed around the turn of the century, quantiza-
tion of a mechanical system used to be based on its classical behavior. In 1917,
Einstein [8] was able to formulate the quantization conditions found by Bohr and
Sommerfeld in their most general form. At the same time, however, Einstein pointed
out that they were applicable only to systems whose classical phase space was
foliated into invariant tori, i.e., which possess sufficiently many constants of motion,
and that most mechanical systems do not meet this requirement. The development
of quantum mechanics by Schro� dinger, Heisenberg and others then offered tech-
niques which allowed for a precise description of atomic systems without recourse
to classical mechanics. Thus, the problem of quantizing chaotic mechanical systems
on the basis of their classical behavior remained open.

As late as in the 1960s, Gutzwiller returned to what is now known as a semi-
classical treatment of quantum systems. Starting from Feynman's path integral for-
mulation of quantum mechanics, he derived a semiclassical approximation to the
Green's function of a quantum system, which he then used to evaluate the density
of states. His trace formula [15, 17] is the only general tool known today for a
semiclassical understanding of systems whose classical counterparts exhibit chaotic
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behavior. It represents the quantum density of states as a sum of a smooth average
part and fluctuations arising from all periodic orbits of the classical system, and
therefore allows structures in the quantum spectrum to be interpreted in terms of
classical mechanics. The derivation of the trace formula assumes all periodic orbits
of the system to be isolated. Thus, it is most appropriate for the description of a
completely hyperbolic system, where in some cases it even allows for a semiclassical
determination of individual energy levels, as was done, e.g., by Gutzwiller in the
case of the Anisotropic Kepler Problem [16]. In generic Hamiltonian systems
exhibiting mixed regular-chaotic dynamics, however, bifurcations of periodic orbits
can occur. They cause the trace formula to diverge because close to a bifurcation
the periodic orbits involved approach each other arbitrarily closely.

This failure can be overcome if all periodic orbits involved in a bifurcation are
treated collectively. A first step in this direction was taken by Ozorio de Almeida
and Hannay [1], who proposed formulas for the collective contributions which
yield finite results at the bifurcation energy but do not correctly reproduce the
results of Gutzwiller's trace formula as the distance from the bifurcation increases.
Similarly, Peters et al. [25] were able to deal with bifurcations of closed orbits aris-
ing in the context of the closed-orbit theory of atomic photoionization. To improve
these results, Sieber and Schomerus [30, 34, 35] recently derived uniform
approximations which interpolate smoothly between Gutzwiller's isolated-orbits
contributions on either side of the bifurcation. Their formulas are applicable to all
kinds of period-m-tupling bifurcations generic to Hamiltonian systems with two
degrees of freedom.

A closer inspection of bifurcation scenarios encountered in practical applications
of semiclassical quantization reveals, however, that the uniform approximations
applicable to generic codimension-one bifurcations need to be extended to also
include bifurcations of higher codimension. Although these non-generic bifurcations
cannot be observed directly if only a single control parameter is varied, they can
nevertheless produce clear signatures in semiclassical spectra because in their
neighborhood two codimension-one bifurcations approach each other, so that all
periodic orbits involved in any of the subsequent bifurcations have to be treated
collectively. Examples of this situation were studied by Schomerus and Haake [31,
32] as well as by Main and Wunner [21, 22], who applied techniques of
catastrophe theory to achieve a collective treatment of complicated bifurcation
scenarios.

All uniform approximations discussed so far in the literature require the inclusion
of complex ``ghost orbits.'' At a bifurcation point, new real periodic orbits are born.
If, in the energy range where the real orbits do not exist, the search for periodic
orbits is extended to the complexified phase space, the orbits about to be born can
be found to possess complex predecessors��ghost orbits. As was first shown by Kus�
et al. [19], some of these ghost orbits, whose contributions become exponentially
small in the limit of � � 0, have to be included in Gutzwiller's trace formula. In
addition, the construction of uniform approximations requires complete informa-
tion about the bifurcation scenario, including ghost orbits.
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All bifurcation scenarios discussed in the physics literature so far involved bifur-
cations of real orbits only. However, there is no reason that ghost orbits should not
themselves undergo bifurcations in their process of turning real. It is the purpose of
this work to demonstrate that ghost orbit bifurcations do indeed occur and have a
pronounced effect on semiclassical spectra if they arise as part of a bifurcation
scenario of higher codimension. To this end, we present an example taken from the
Diamagnetic Kepler Problem. The example we chose appears to be simple: We dis-
cuss the period-quadrupling of the balloon orbit, which is one of the shortest peri-
odic orbits in the Diamagnetic Kepler Problem. However, even this simple case
turns out to require the inclusion of a ghost orbit bifurcation.

To cope with this new situation, we have to develop a technique which enables
us to deal with the occurence of ghost orbits. It turns out that normal form theory
allows for a description of real and ghost orbit bifurcations on an equal footing.
Consequently, ghost orbit bifurcations are found to contribute to uniform
approximations in much the same way as bifurcations of real orbits do, provided
that they occur in connection to bifurcations of real orbits as part of a bifurcation
scenario of higher codimension. Therefore, we will arrive at the conclusion that in
generic Hamiltonian systems with mixed regular�chaotic dynamics the occurrence
of ghost orbit bifurcations will not be very exotic, but rather quite a common
phenomenon. A more concise presentation of our results can be found in [5b].

The organization of this paper is as follows: In Section 2, we briefly summarize
the derivation of Gutzwiller's trace formula, which forms the basis of semiclassical
theories of the density of states. Section 3 presents the bifurcation scenario of the
example chosen. In Section 4, we discuss normal form theory and show that it
allows for an analytic description of the example bifurcation scenario. Section 5
then contains the uniform approximation pertinent to the example scenario. It is
evaluated in two different degrees of approximation, one of which asymptotically
yields perfect agreement with the results of Gutzwiller's trace formula.

2. GUTZWILLER'S TRACE FORMULA

Gutzwiller's trace formula offers a way to calculate a semiclassical approximation
to the quantum mechanical density of states

d(E)=:
j

$(E&Ej), (1)

where the sum extends over all quantum eigenenergies Ej of the system under study.
In quantum mechanics, the density of states is given by

d(E)=:
j

$(E&Ej)=&
1
?

Im Tr G, (2)

21BIFURCATIONS OF GHOST ORBITS



where

Tr G :=| d nx G(xx, E),

and the Green's function G(x$x, E) is the configuration space representation of the
resolvent operator

G� (E)=(E&H� )&1.

On the other hand, it is connected to the time-domain propagator K(x$t$, xt) by a
Fourier transform

G(x$x, E)=
1
i� |

�

0
dt K(x$t$, xt) exp {i

Et
� = . (3)

Thus, if Feynman's path integral representation of the propagator

K(x$t$, xt)=| D(x(t)) exp { i
� |

t$

t
dt L(x(t), x* (t), t)= (4)

and the Fourier integral are approximately evaluated by the method of stationary
phase, one obtains the semiclassical Green's function ([13]; see also [33])

Gscl (x$x, E)=
2?

(2?i�) (n+1)�2 :
class. traj.

- |D| exp {i \S
�

&+
?
2+= . (5)

Here, the sum extends over all classical trajectories connecting x to x$ at energy E,

S(x$x, E)=| p } dx (6)

denotes the classical action along the trajectory,

D=det \
�2S

�x$ �x
�2S

�E �x

�2S
�x$ �E

�2S
�E 2 + ,

and the integer + counts the number of caustics the trajectory touches.
To find the density of states, one has to calculate the trace of the semiclassical

Green's function. To this end, one calculates the limit of Gscl for x$ � x and then
integrates over x. If x$ is very close to x, there always exists a direct path connecting
x to x$. In addition, there are usually indirect paths which leave the neighborhood
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of their starting point before returning there. The contribution of the direct path
can be shown to yield Weyl 's density of states

d� (E)=
1

(2?�)n | d nx d np $ \E&
p2

2m
&V(x)+

=
1

(2?�)n

d
dE | d nx d np 3 \E&

p2

2m
&V(x)+ , (7)

classically accessible volume of phase space

where 3 denotes Heaviside's step function. This result reproduces the well-known
fact from statistical mechanics that on the average there is one quantum state per
phase space volume of (2?�)n. The contributions of indirect paths then superimpose
system-specific modulations on this general average value.

Due to the stationary-phase condition, only periodic orbits contribute to the
semiclassical density of states. To determine the contribution of a single periodic
orbit, one introduces a coordinate system with one coordinate running along the
periodic orbit and all other coordinates perpendicular to it. Assuming all periodic
orbits to be isolated in phase space, one can then evaluate the trace by the method
of stationary phase and obtains Gutzwiller's trace formula for the system-specific
modulations of the density of states

d $(E)=
1

?�
Re :

po

T0

- |det(M&I)|
exp { i

�
S&i

?
2

&= . (8)

Here, the sum runs over all periodic orbits at energy E, and S denotes the action
of the orbit, T0 its primitive period, M its monodromy matrix, which describes the
stability of the orbit, and & its Maslov index, which reflects the topology of nearby
orbits. In the derivation, the primitive period T0 can be seen to arise from the
integration along the orbit, whereas the occurrence of the monodromy matrix is
due to the integrations over the transverse coordinates.

Gutzwiller's trace formula expresses the quantum density of states in terms of
purely classical data. It fails, however, if the periodic orbits of the classical system
cannot be regarded as isolated, as is the case, e.g., close to a bifurcation. There, the
failure of the trace formula manifests itself in a divergence of the isolated-orbits con-
tributions in (8): If an orbit undergoes a bifurcation, the determinant of M&I
vanishes. In recent years, the problem of calculating the joint contribution of bifur-
cating orbits to the density of states was addressed by various authors, whose
works were briefly reviewed in the Introduction. It is the purpose of the present
paper to present normal form theory as a technique which allows one to achieve a
collective description of bifurcating orbits and to show its applicability to a com-
plicated bifurcation scenario. In particular, we shall demonstrate that bifurcations
of ghost orbits need to be included in the description of classical bifurcation
scenarios because they can exert a marked influence on semiclassical spectra and
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that classical normal form theory can be extended so as to meet this requirement.
However, before we come to deal with the construction of uniform approximations
in Sections 4 and 5, we shall give a description of our example system, the
Diamagnetic Kepler Problem, and the bifurcation scenario we are going to study.

3. THE DIAMAGNETIC KEPLER PROBLEM

3.1. The Hamiltonian

As a prototype example of a system which undergoes a transition to chaos, we
shall investigate the hydrogen atom in a homogeneous external magnetic field,
which is reviewed, e.g., in [10, 18, 37]. We assume the nucleus fixed and regard the
electron as a structureless point charge moving under the combined influences of
the electrostatic Coulomb force and the Lorentz force. Throughout this paper, we
shall use atomic units, let the magnetic field point along the z-direction, and denote
its strength by #=B�B0 , where B0=m2e3 (4?=0)&2�&3=2.3505 } 105T is the atomic
unit of the magnetic field strength. The Hamiltonian then reads

H=
p2

2
+

#
2

Lz+
#2

8
(x2+ y2)&

1
r

, (9)

where r=|x| and Lz=ez } (x_p) denotes the z-component of the angular momen-
tum, which is conserved due to the rotational symmetry around the magnetic field
axis. In the following, we will restrict ourselves to the case Lz=0. As a conse-
quence, the angular coordinate . measuring rotation around the field axis becomes
ignorable, so that we are effectively dealing with a two-degree-of-freedom system.

The energy E=H is a constant of the motion. Thus, the dynamics depends on
both the energy and the magnetic field strength as control parameters. This situa-
tion can be simplified, however, if one exploits the scaling properties of the
Hamiltonian. If the classical quantities are scaled according to

x [ x~ =#2�3x, p [ p~ =#&1�3p,

H [ H� =#&2�3H, t [ t~ =#t, (10)

S [ S� =#1�3S,

one obtains the scaled Hamiltonian

H� =
p~ 2

2
+

1
8

(x~ 2+ y~ 2)&
1
r~ (11)

=E� =#&2�3E.

The scaled dynamics depends on the scaled energy as its only control parameter.
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The equations of motion following from this Hamiltonian are difficult to handle
numerically due to the Coulomb singularity at r~ =0. To overcome this problem,
one introduces semiparabolical coordinates

+2=r~ &z~ , &2=r~ +z~ (12)

and a new orbital parameter { defined by

dt=2r~ d{=(+2+&2) d{.

These transformations lead to the final form of the Hamiltonian

H=
p+

2+ p&
2

2
&E� (+2+&2)+

1
8

+2&2 (+2+&2)#2. (13)

In this form, the scaled energy E� plays the rôle of an external parameter, whereas
the value of the Hamiltonian is fixed: It has to be chosen equal to 2. The equations
of motion following from this Hamiltonian no longer contain singularities so that
they can easily be integrated numerically.

Note that the definition (12) determines the semiparabolical coordinates up to a
choice of sign only. Thus, orbits which are mirror images of each other with respect
to a reflection at the +- or &-axes have to be identified. Furthermore, if we follow
a periodic orbit until it closes in (+, &)-coordinates, this may correspond to more
than one period in the original configuration space. This has to be kept in mind
when interpreting plots of periodic orbits in semiparabolical coordinates.

As a substantial extension of the classical description of the Diamagnetic Kepler
Problem we complexify the classical phase space by allowing coordinates and
momenta to assume complex values. As the Hamiltonian (13) is holomorphic, we
can at the same time regard the phase space trajectories as functions of complex
times {. To numerically calculate the solution of the equations of motion at a given
time {f , we integrate the equations of motion along a path connecting the origin of
the complex {-plane to the desired endpoint {f . By Cauchy's integral theorem, the
result does not depend on the path chosen so that we can safely choose to integrate
along a straight line from 0 to {f . This extension allows us to look for ghost orbit
predecessors of real periodic orbits born in a bifurcation. In general, their orbital
parameters S, T and the monodromy matrix M will be complex. We calculate them
along with the numerical integration of the equations of motion from

T=|
{f

0
(+2+&2) d{, S=|

{f

0
( p2

++ p2
&) d{.

3.2. The Bifurcation Scenario

The Diamagnetic Kepler Problem described by the Hamiltonian (13) exhibits a
transition between regular dynamics at strongly negative scaled energies E� � &�
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and chaotic dynamics at E� r0 and above (for details see, e.g., [18]). Corre-
spondingly, there are only three different periodic orbits at very low scaled energy,
whereas the number of periodic orbits increases exponentially as E� Z0.

At any fixed scaled energy, there is a periodic orbit parallel to the magnetic field.
It is purely Coulombic since a motion parallel to the magnetic field does not cause
a Lorentz force. This orbit is stable at low negative scaled energies; as E� Z0,
however, it turns unstable and stable again infinitely often [38]. For the first time,

FIG. 1. The balloon orbit in (a) semiparabolical and (b) cylindrical coordinates at a scaled energy
of E� =&0.34.
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FIG. 2. The trace of the monodromy matrix of the balloon orbit. The zero at E� c=&0.342025
indicates the occurrence of the period-quadrupling bifurcation.

instability occurs at E� =&0.391. In this bifurcation, a stable and an unstable peri-
odic orbit are born. The stable orbit is known as the balloon orbit. This is depicted
in Fig. 1. As shown in bifurcation theory, the stability of a periodic orbit is deter-
mined by the trace of its monodromy matrix. For the balloon orbit, the trace is
shown in Fig. 2. It equals 2 when the orbit is born. As the scaled energy increases,
the trace decreases monotonically. The orbit turns unstable at E� =&0.291, where
the trace equals &2. In between, all kinds of period-m-tupling bifurcations occur.
In this work, we shall discuss the period-quadrupling bifurcation which arises at the
zero of the trace at E� c=&0.342025.

For E� >E� c , two real satellite orbits of quadruple period exist. These are depicted
in Fig. 3 at two different values of the scaled energy. The solid and dashed curves
in the plots represent the stable and unstable satellite orbits, respectively. In both
cases, the balloon orbit is shown for comparison as a dotted curve. The satellites
can clearly be seen to approach the balloon orbit as E� zE� c . At E� c , they collide with
the balloon orbit and disappear. Below E� c , a stable and an unstable ghost satellite
exist instead. These are presented as the solid and dotted curves in Fig. 4. Note that
the imaginary parts are small compared to the real parts because the bifurcation
where the imaginary parts vanish is close. As the Hamiltonian (13) is real, the com-
plex conjugate of any orbit is again a solution of the equations of motion. In this
case, however, the ghost satellites coincide with their complex conjugates, so that
the total number of orbits is conserved in the bifurcation. This behavior can be
understood in terms of normal form theory (see Section 4.2).

The orbits described so far form a generic kind of period-quadrupling bifurcation
as described by Meyer [24] and dealt with in the context of semiclassical quantiza-
tion by Sieber and Schomerus [35]. In our case, however, this description of the

27BIFURCATIONS OF GHOST ORBITS



FIG. 3. Real satellite orbits involved in the period-quadrupling bifurcation of the balloon orbit at
scaled energies of (a) E� =&0.34 and (b) E� =&0.3418. Solid curves: stable satellite, dashed curves:
unstable satellite. For comparison, dotted curves: balloon orbit.

bifurcation scenario is not yet complete because there exists an additional periodic
ghost orbit at scaled energies around E� c . Its shape is shown as a dashed curve in
Fig. 4. It is very similar to the stable ghost satellite originating in the period-
quadrupling, and indeed, when following the ghost orbits to lower energies, we find
another bifurcation at E� c$ =&0.343605, i.e., only slightly below the bifurcation
point E� c=&0.342025 of the period-quadrupling. At E� c$ , the additional ghost orbit
collides with the stable ghost satellite, and these two orbits turn into a pair of com-
plex conjugate ghost orbits. Their shapes are presented at a scaled energy of
E� =&0.344 as the solid and dashed curves in Fig. 5. From the imaginary parts, the
loss of conjugation symmetry can clearly be seen if the symmetries of the semi-
parabolical coordinate system as described above are taken into account. The
dotted curves in figure 5 represent the unstable ghost satellite which was already
present at E� >E� c$ . It does not undergo any further bifurcations.

Note that the second bifurcation at E� =E� c$ involves ghost orbits only. This kind
of bifurcation has not yet been described in the literature so far. In particular,
Meyer's classification of codimension-one bifurcations in generic Hamiltonian
systems covers bifurcations of real orbits only and does not include bifurcations of
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FIG. 4. Ghost orbits at scaled energy of E� =&0.343. Solid and dotted curves: stable and unstable
ghost satellite orbits created in the period quadrupling of the balloon orbit at E� c=&0.342025. Dashed
curves: additional ghost orbit created in the ghost bifurcation at E� c$ =&0.343605.

ghost orbits. Consequently, the influence of ghost orbit bifurcations on semiclassical
spectra has never been investigated so far. Due to the existence of this bifurcation,
however, the results by Sieber and Schomerus [35] concerning generic period-
quadrupling bifurcations cannot be applied to the complicated bifurcation scenario
described here. As in cases dealt with before by Main and Wunner [21, 22] as well
as by Schomerus and Haake [30, 32], who discussed the semiclassical treatment of
two neighboring bifurcations of real orbits, the closeness of the two bifurcations
requires the construction of a uniform approximation taking into account all orbits
involved in either bifurcation collectively. Thus, the ghost orbit bifurcation at E� c$
turns out to contribute to the semiclassical spectrum in much the same way as a
bifurcation of real orbits does, as long as we do not go to the extreme semiclassical
domain where the two bifurcations can be regarded as isolated and ghost orbit
contributions vanish altogether.

To construct a uniform approximation, we need to know the periodic orbit
parameters of all orbits involved in the bifurcations. The parameters were
calculated numerically and are displayed in Fig. 6 as functions of the scaled energy.
Figure 6a presents the actions of the orbits. To exhibit the sequence of bifurcations
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FIG. 5. Ghost orbits at scaled energy of E� =&0.344. Solid and dashed curves: Asymmetric ghost
orbits created in the ghost bifurcation at E� c$ =&0.343605 (real parts coincide). Dotted curves: Unstable
ghost satellite orbit created in the period quadrupling of the balloon orbit at E� c=&0.342025.

more clearly, the action of four repetitions of the central balloon orbit was chosen
as a reference level (2S=0). Around E� c , we recognize two almost parabolic curves
which indicate the actions of the stable (upper curve) and unstable (lower curve)
satellite orbits. At E� c , the curves change from solid to dashed as the satellite orbits
become complex. Another dashed line represents the action of the additional ghost
orbit, which can clearly be seen not to collide with the balloon orbit at E� c . Whereas
the unstable ghost satellite does not undergo any further bifurcations, the curves
representing the stable and the additional ghost orbits can be seen to join at
E� c$ =&0.343605. Below E� c$ , a dotted curve indicates the presence of a pair of com-
plex conjugate ghosts. The imaginary parts of their actions are different from zero
and have opposite signs, whereas above E� c$ , all ghost orbits coincide with their
complex conjugates so that their actions are real.

Analogously, Fig. 6b presents the orbital periods. In this case, no differences were
taken, so that the period of the fourth repetition of the balloon orbit, which is
always real, appears in the figure as a nearly horizontal line at Tr5.84. The other
orbits can be identified with the help of the bifurcations they undergo, similar to the
discussion of the actions given above. Finally, Fig. 6(c) shows the traces of the
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FIG. 6. Actions, orbital periods, and traces of the monodromy matrices of the orbits involved in the
bifurcation scenario as functions of the scaled energy E� =#&2�3E. Solid curves: real orbits; dashed curves:
ghost orbits symmetric with respect to complex conjugation; dotted curves: asymmetric ghost orbits.

monodromy matrices minus two. For Hamiltonian systems with two degrees of
freedom, these quantities agree with det(M&I). At E� c and E� c$ , they can be seen to
vanish for the bifurcating orbits, thus causing the periodic orbit amplitudes (8) to
diverge at the bifurcation points.

4. NORMAL FORM THEORY AND BIFURCATIONS

4.1. Birkhoff�Gustavson Normal Form

As we have seen, Gutzwiller's trace formula (8) fails close to bifurcations when
periodic orbits of the classical system cannot be regarded as isolated. To overcome
this difficulty, we need a technique which allows us to describe the structure of the
classical phase space close to a bifurcating orbit. This can be done with the help of
normal form theory. A detailed description of this technique can be found in [3,
Appendix 7] or [2, Sections 2.5 and 4.2]. Here, we will present the normal form
transformations for systems with two degrees of freedom only, although the general
scheme is the same for higher dimensional cases. As only stable periodic orbits can
undergo bifurcations, we will restrict ourselves to this case.
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As a first step, we introduce a special canonical coordinate system (�, p� , q, p) in
a neighborhood of a periodic orbit, which has the following properties (concerning
the existence of such a coordinate system; see [4, Chapter 7.4, Proposition 1]):

v � is measured along the periodic orbit and q perpendicular to it, so that
phase space points lying on the periodic orbit are characterized by q= p=0.

v � assumes values between 0 and 2?, and along the periodic orbit we have,
up to a constant,

�=
2?
T

t,

where T denotes the orbital period.

v If we choose an initial condition in the neighborhood and 0��<T, the
function �(t) is invertible.

According to the last condition, we can regard p and q as functions of � instead of t.
The classical dynamics of a mechanical system is given by Hamilton's variational

principle, which states that a classical trajectory with fixed initial and final coor-
dinates q(t1) and q(t2) satisfies

$ |
(q(t2), t2)

(q(t1), t1)
p } dq&H dt=0. (14)

If we restrict ourselves to considering the energy surface given by a fixed energy E,
we can transform the integral as follows:

| p } dq&H dt=| p dq+ p� d�&H dt

=| p dq&(&p�) d� &E(t2&t1). (15)

The last term in this expression is a constant which does not contribute to the
variation of the integral, so that actual orbits of the system satisfy

$ | p dq&(&p�) d�=$ | p } dq&H dt=0. (16)

Thus, the dependence of p and q on the new parameter � is given by Hamilton's
equations of motion, where &p� plays the rôle of the Hamiltonian. It has to be
determined as a function of the new phase space coordinates p, q, the ``time'' � and
the energy E, which occurs as a parameter, from the equation

H(�, p� , q, p)=E

From our choice of the coordinate system, p� is periodic in � with a period of 2?.
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We have now reduced the dynamics of a two-degrees-of-freedom autonomous
Hamiltonian system to that of a single-degree-of-freedom system, which is,
however, no longer autonomous, but periodically time-dependent. With regard to
the original system, we can view the motion perpendicular to the periodic orbit as
being periodically driven by the motion along the orbit. Henceforth, we shall
denote the Hamiltonian of the reduced system by 8, coordinate and momentum by
q and p, respectively, and the time by �.

The point p=q=0 corresponds to the periodic orbit of the original system and
therefore constitutes a stable equilibrium position of the reduced system so that a
Taylor series expansion of the Hamiltonian around this point does not have linear
terms. By a suitable time-dependent canonical transformation, the quadratic term
can be made time-independent; see [28]. We expand the Hamiltonian in a Taylor
series in p and q and in a Fourier series in �:

8( p, q, �)=
|
2

( p2+q2)+ :
�

:+;=3

:
�

l=&�

8:;l p:q; exp(il�). (17)

To go on, we introduce complex coordinates

z= p+iq, z*= p&iq.

This transformation is canonical with multiplier &2i, so that we have to go over
to a new Hamiltonian

,=&2i8

=&i|zz*+ :
�

:+;=3

:
�

l=&�

,:;l z:z*; exp(il�) (18)

Birkhoff [6, Chapter 3] and Gustavson [12] developed a technique which
allows us to systematically eliminate low-order terms from this expansion by a
sequence of canonical transformations. To eliminate terms of order :+;=k, we
employ the transformation given by the generating function

F2 (Z*, z, �)=&zZ*& :
:+;=k

:
�

l=&�

F:;l z:Z*; exp(il�) (19)

with arbitrary expansion coefficients F:;l , so that the transformation reads

Z=&
�F2

�Z*
=z \1+: ;F:;l z:&1Z*;&1 exp(il�)+ ,

(20)

z*=&
�F2

�z
=Z* \1+: :F:;lz:&1Z*;&1 exp(il�)),
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if the new coordinates are denoted by Z and Z*. From these equations, we have

z=Z&: ;F:;lz:&1ZZ*;&1 exp(il�)+..., (21)

so that

zz*=ZZ*+: (:&;) F:;lZ:Z*; exp(il�)+..., (22)

where the dots indicate terms of order higher than k.
For the new Hamiltonian we find

,$=,&
�F2

�t

=&i|zz*+terms of order <k

+ :

l
:+;=k

[,:;l z:z*;+ilF:;lz:Z;] exp(il�)

+higher-order terms

=&i|ZZ*&i| : (:&;) F:;lZ:Z*; exp(il�)

+terms of order <k

+: [,:;l+ilF:;l] Z:Z*; exp(il�)

+higher-order terms

=&i|ZZ*+terms of order <k

&i : [(|(:&;)&l ) F:;l+i,:;l] Z:Z*; exp(il�)

+higher-order terms. (23)

Thus, terms of order less than k remain unchanged during the transformation,
whereas if we choose

F:;l=&
i,:;l

|(:&;)&l
, (24)

the term (:;l ) in (19) cancels the term (:;l ) in the expansion of the Hamiltonian.
Therefore, we can successively eliminate terms of ever higher order without destroy-
ing the simplifications once achieved in later steps.

Of course, the generating function (19) must not contain terms that make the
denominator in (24) vanish. Thus, we cannot eliminate resonant terms satisfying
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|(:&;)&l=0. If | is irrational, only terms having :=; and l=0 are resonant,
so that we can transform the Hamiltonian (18) to the form

,=&i|zz*+,2 (zz*)2+ } } } +,k (zz*)[k�2]+O((z+z*)k+1) (25)

with arbitrarily large k.
If | is rational, however, further resonant terms occur, so that the normal form

will become more complicated then (25). These additional terms must also be kept
if we want to study the behavior of the system close to a resonance. So, let |rn�m
with coprime integers n and m, so that the resonance condition |(:&;)&l=0
reads

n(:&;)=ml (26)

and time-dependent resonant terms with l{0 occur. This time-dependence can be
abandoned if we transform to a rotating coordinate system

Z=z exp(in��m), Z*=z* exp(&in��m), (27)

This transformation, which is generated by

F2=&Z*z exp(in��m),

changes resonant terms according to

z:z* exp(il�)=Z: exp(&in�:�m) Z*; exp(in�;�m) exp(il�)

=Z:Z*; exp(&i[n(:&;)&ml] ��m)

=Z:Z*;.

Thus, all resonant terms become time-independent, whereas non-resonant terms
acquire a time-dependence with period 2?m. The Hamiltonian is transformed to

,$=,&
�F2

�t

=,+i
n
m

Z*z exp(int�m)

=,+i
n
m

ZZ*

=&i \|&
n
m+ ZZ*+,2 (ZZ*)2+ } } }

+further resonant terms

+non-resonant terms of higher order,
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that is, in the harmonic part of the Hamiltonian the frequency | is replaced by a
small parameter 2==|&n�m measuring the distance from the resonance.

As we are looking for a local description of the system in a neighborhood of the
equilibrium position z=z*=0, we can abort the normal form transformation at a
suitable k and neglect higher-order terms. This way, we get an ``idealized''
Hamiltonian that quantitatively approximates the actual Hamiltonian close to the
equilibrium.

At the end, we return to the original coordinates p, q or to action-angle-coor-
dinates (I, .) given by

p=- 2I cos ., q=- 2I sin .,

z=- 2I exp(i.), z*=- 2I exp(&i.), (28)

I= 1
2 ( p2+q2)= 1

2 zz*.

We have thus obtained a selection of the most important low-order terms that
determine the behavior of the system close to the central periodic orbit.

According to the resonance condition (26) and as n and m are coprime, for all
resonant terms :&;=rm, r # Z, is a multiple of m, so that a resonant term has the
form

z:z*;=(- 2I):+; exp[i(:&;).]

=(- 2I)k exp[irm.]

and is periodic in . with a period of 2?�m. Thus, although we started from a
generic Hamiltonian, the normal form exhibits m-fold rotational symmetry in a
suitably chosen coordinate system. Furthermore, all resonant terms satisfy

|rm|=|:&;|�:+;=k,

:= 1
2 (k+rm) # Z,

;= 1
2 (k&rm) # Z.

Thus, the normal form reads

8=:
k

ck I k+:
k

:

k\rm even
0<rm�k

- Ik [dk cos(rm.)+d $k sin(rm.)]. (29)

As this Hamiltonian is time-independent, it is an (approximate) constant of motion,
so that all points an orbit with given initial conditions can reach lie on a level line
of the Hamiltonian. Thus, a contour plot of the Hamiltonian will exhibit lines one
will also find in a Poincare� surface of section of the original Hamiltonian system.
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As an example and to describe the bifurcation scenario presented in Section 3, we
will now discuss the case of a fourth-order resonance m=4. Up to the sixth order,
the following terms turn out to be resonant:

,=&i \|&
n
4+ zz* order 2

+,2 (zz*)2+,4, 0, nz4+,0, 4, &n z*4 order 4

+,3 (zz*)3+,5, 1, nz5z*+,1, 5, &n zz*5, order 6; (30)

thus the real normal form reads

8==I+aI 2+bI 2 cos(4.)+b$I2 sin(4.)

+cI3+dI3 cos(4.)+eI3 sin(4.) (31)

with == 1
2 (|&n�4) and suitably chosen real coefficients a, b, b$, c, d, e. The physical

meaning of these terms will be discussed in the following.

4.2. Generic Bifurcations

To lowest order, the normal form (31) reads

8==I=
=
2

( p2+q2). (32)

This is a harmonic-oscillator Hamiltonian. It describes orbits which start close to
the central periodic orbit and wind around it with frequency |+=, or frequency =
in the rotating coordinate system.

In second order in I, angle-dependent terms in the normal form occur. For
arbitrary resonances, the lowest order of the normal form containing this kind of
nontrivial terms describes the generic codimension-one bifurcations of periodic
orbits as classified by Meyer [24], that is, those kinds of bifurcations that can typi-
cally be observed if a single control parameter is varied in a system with two
degrees of freedom and without special symmetries. As was shown by Meyer, for
any order m of resonance there is only one possible kind of bifurcation, except for
the case m=4, where there are two. In the following, we are going to discuss these
possibilities for m=4.

Up to second order in I, the normal form (31) reads

8==I+aI2+bI 2 cos(4.)+b$I2 sin(4.). (33)

Shifting the angle . according to . [ .+.0 , we can eliminate the term propor-
tional to sin(4.), that is, we can assume b$=0, so that the normal form simplifies
to

8==I+aI2+bI 2 cos(4.). (34)
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To find periodic orbits of the system, we have to determine the stationary points
of the normal form. The central periodic orbit we expanded the Hamiltonian
around is located at I=0 and does not show up as a stationary point, because the
action-angle-coordinate chart (28) is singular there.

For I{0, we have

0 =
! �8

�.
=&4bI2 sin(4.),

(35)

0 =
!

=
�8
�I

==+2aI+2bI cos(4.).

From the first of these equations, we get sin(4.)=0, that is, cos(4.)=_# \1. The
second equation then yields

I_=&
=

2(a+_b)
. (36)

For any choice of _, there are four different angles ., 0�.<2?, satisfying
sin(4.)=0 and cos(4.)=_, corresponding to four different stationary points in a
Poincare� surface of section. All these stationary points belong to the same periodic
orbit, which is four times as long as the central orbit.

For a real periodic orbit, I= 1
2 ( p2+q2) is real and positive. Thus, if we get a

negative value for I from (36), this indicates a complex periodic orbit. The action
of this orbit, which we identify with the stationary value 8(I_) of the normal form,
is real if I_ is real. Therefore, if I_ is real and negative, we are dealing with a ghost
orbit symmetric with respect to complex conjugation. Keeping these interpretations
in mind, we find the two possible forms of period-quadrupling bifurcations:

|a|>|b| : Island-Chain-Bifurcation. In this case, the signs of a+b and a&b are
both equal to the sign of a. If sign ==&sign a, both solutions I_ from Eq. (36) are
positive, if sign ==sign a, they are negative. Thus, on one hand side of the
resonance, there are a stable and an unstable real satellite orbit. As = � 0, these
orbits collapse onto the central periodic orbit and reappear as two complex satellite
orbits on the other side of the resonance.

Figure 7a shows a sequence of contour plots of the normal form, which we inter-
prete as a sequence of Poincare� surface of section plots. If =<0, we recognize a
single elliptic fixed point at the centre of the plots, which corresponds to the stable
central orbit. If =>0, four elliptic and four hyperbolic fixed points appear in addi-
tion. They indicate the presence of the real satellite orbits. Due to these plots, the
bifurcation encountered here is called an island-chain-bifurcation. It was this kind of
bifurcation which we observed in the example of Section 3 at energy Ec .
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FIG. 7. Contour plots of the normal form (34) illustrating the two generic types of period-quadrupling
bifurcations. (a) Island-Chain-Bifurcation. (b) Touch-and-Go-Bifurcation.

|a|<|b| : Touch-and-Go-Bifurcation. In this case, the signs of a+b and a&b are
different, that is, at any given =, there are a real and a complex satellite orbit. As
= crosses 0, the real satellite becomes complex and vice versa.

A sequence of contour plots for this case is shown in Fig. 7b. At any =, the central
elliptic fixed point is surrounded by four hyperbolic fixed points indicating the
presence of an unstable real satellite. At =>0, the fixed points are located at dif-
ferent angles than at =<0, that is, it is the orbit with different _ which has become
real. This kind of bifurcation is known as a touch-and-go-bifurcation.

4.3. Sequences of Bifurcations

In the discussion of a specific Hamiltonian system it can often be observed that
the generic bifurcations as described by Meyer occur in organized sequences. Exam-
ples of such sequences have been discussed by Mao and Delos [20] for the
Diamagnetic Kepler Problem. In the example presented in Section 3, we also
encountered a sequence of two bifurcations. As Sadovski@� et al. were able to show
[27, 28], sequences of bifurcations can be described analytically if higher order
terms of the normal form expansion are taken into account. In the following, we are
going to use all terms in the expansion (31) up to third order in I. As we did above,
we can eliminate the b$-term if we shift . by a suitably chosen constant, so that the
normal form reads

8==I+aI2+bI 2 cos(4.)+cI3+dI3 cos(4.)+eI 3 sin(4.). (37)

It can be further simplified by canonical transformations, whereby the transforma-
tions need to be performed up to third order in I only, as higher terms have been
neglected anyway.
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As a first step, we apply a canonical transformation to new coordinates I� and .̂
which is generated by the function

F2=&I� .+
e

8b
I� 2, (38)

that is,

I=&
�F2

�.
=I� ,

(39)

.̂=&
�F2

�I�
=.&

e
4b

I� .

Inserting these transformations into the normal form, we obtain up to terms of
order I� 4:

8==I� +aI� 2+bI� 2 cos(4.̂)+cI� 3+dI� 3 cos(4.̂). (40)

This expression is further simplified by another canonical transformation generated
by

F2=&I� .̂&I� 2f (.̂)&I� 3g(.̂), (41)

where

f (.̂)=* sin(4.̂)
(42)

g(.̂)=4*2 (sin(4.̂) cos(4.̂)&4.̂)

and * is a free parameter. Explicitly, this transformation reads

I� = &
�F2

�.̂
=I� +I� 2f $(.̂)+I� 3g$(.̂),

(43)

.~ = &
�F2

�I�
=.̂+2I� f (.)+3I� 2g(.̂),

from which we obtain the transformed Hamiltonian

8==I� +aI� 2+(b+4*=)I� 2 cos(4.~ )

+(c+8b*)I� 3+(d+8a*) I� 3 cos(4.~ )

+O(I� 4). (44)
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If we choose *=&d�8a, we can eliminate the term proportional to I� 3 cos(4.~ ).
Renaming coefficients and coordinates, we finally obtain the third order normal
form

8==I+aI 2+bI 2 cos(4.)+cI 3. (45)

The stationary points of this normal form except for the central stationary point
at I=0 are given by

0 =
! �8

�.
=&4bI 2 sin(4.),

(46)

0 =
! �8

�I
==+2aI+2bI cos(4.)+3cI 2.

From the first of these equations, it again follows that

sin(4.)=0,

cos(4.)=_=\1.

The second equation

=+2(a+_b) I+3cI2=0

has two solutions for any fixed _,

I_\=&*_\- `+*2
_ , (47)

where we introduced the abbreviations

`=&
=

3c
, *_=

a+_b
3c

. (48)

We will first discuss the behavior of the orbits with a fixed _: The solutions I_\

are real, if `>&*2
_ , and they are complex conjugates, if `< &*2

_ . In Fig. 8, the
dependence of I_ on ` is plotted for different values of *_ . These plots schematically
exhibit the bifurcations the orbits undergo.

*_>0. In this case, I_& is negative for `>&*2
_ ; I_+ is negative for &*2

_<`<0
and positive for `>0. If we interprete this behavior in terms of periodic orbits, this
means: The ``_+''-orbit is real, if `>0; as `z0, it collapses onto the central orbit
at I=0 and reappears as a ghost orbit for `<0. At `=&*2

_, the ``_+''-orbit
collides with the ``_&''-orbit, which has been complex up to now, and the orbits
become complex conjugates of one another.
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FIG. 8. The dependence of the radial coordinate I_ on ` illustrates the bifurcations orbits undergo.
Only orbits having a fixed _ are included in these plots: (a) *_>0, (b) *_<0. Solid curves: real orbits;
dashed curves: ghost orbits symmetric with respect to complex conjugation; dotted curves: a pair of
complex conjugate ghosts.

*_<0. In this case, I_+ is positive for `>&*2
_ ; I_& is positive for &*2

_<`<0
and negative for `>0. In terms of periodic orbits this means: The ``_&''-orbit is
complex, if `>0; as `z0, it collapses onto the central orbit and becomes real for
`<0. At `=&*2

_ , the ``_&''-orbit collides with the ``_+''-orbit, which has been real
so far, and the orbits become complex conjugate ghosts.

If |a|> |b|, the signs of *+ and *& are equal, whereas they are different if
|a|< |b|. Thus, we obtain four possible bifurcation scenarios if we take the behavior
of all four satellite orbits into account. These scenarios will be described in the
following.

1. |a|>|b|, *\<0. The orbits ``+&'' and ``&&'' are ghosts if `>0. At `=0
they collide to form an island-chain-bifurcation with the central periodic orbit
and become real if `<0. At `=&*2

_ , the real satellite ``_&'' collides with the real
``_+''-orbit, and they become complex conjugate ghosts.
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FIG. 9. Contour plots of the normal form (45) illustrating the bifurcation scenario of case 1.

A sequence of contour plots of the normal form describing this scenario is given in
Fig. 9. The plots are arranged in order of increasing `. If `>0 (lower right corner), the
central orbit is surrounded by a chain of four elliptic and four hyperbolic fixed points,
representing a stable and an unstable orbit of quadruple period. At `=0, another pair
of quadruple-period orbits is created. As ` decreases further, two subsequent tangent
bifurcations occur, each of them destroying one orbit from the inner and from the
outer island chain. In effect, all satellite orbits have gone, giving the overall impression
that a single period-quadrupling bifurcation had destroyed the outer island chain,
whereas in fact a complicated sequence of bifurcations has taken place.

In the remaining cases we are going to discuss, bifurcations of ghost orbits occur
which cannot be seen in contour plots. Therefore, we have to resort to a different
kind of presentation. In Fig. 10 we plot the value of the normal form 8, depending
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FIG. 10. Plots of the normal form illustrating the bifurcation scenario of case 1. Solid curve:
_=+1; dashed-dotted curve: _=&1.
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on the action coordinate I, for both _=+1 and _=&1. In these plots, a periodic
orbit corresponds to a stationary point of 8(I). If the stationary point occurs at a
positive value of I, it indicates the presence of a real orbit, whereas a stationary
point at a negative I corresponds to a ghost orbit symmetric with respect to
complex conjugation. Asymmetric ghost orbits correspond to stationary points at
complex I and are therefore invisible.

The bifurcation scenario described above manifests itself in the plots as follows:
If `>0, there are stationary points at positive and negative values of I for both
_=+1 and _=&1. As ` becomes negative, the stationary points at negative I
simultaneously cross the 8-axis and move to positive values of I, indicating the
occurrence of an island-chain-bifurcation and the appearance of two real orbits. As
` decreases further, the two stationary points of the ``_=+1''-curve collide and dis-
appear as the two orbits vanish in a tangent bifurcation. Subsequently, the same
happens to the ``_=&1''-orbits.

2. |a|>|b|, *\>0. The orbits ``++'' and ``&+'' are real if `>0. As `z0,
they simultaneously collapse onto the central periodic orbit and become ghosts,
that is, at `=0 an island-chain-bifurcation takes place. For any _, the complex
``_+''- and ``_&''-orbits collide at `=&*2

_ and become complex conjugates. This
sequence of events is depicted in Fig. 11.

3. |a|<|b|, *&<0<*+ . If `>0, the orbit ``++'' is real, whereas ``&&'' is
complex. As `z0, these orbits collapse onto the central orbit and form a touch-
and-go-bifurcation. In the plots of Fig. 12, this bifurcation manifests itself in two
stationary points simultaneously crossing the 8-axis from opposite sides. At `=
&*2

+, the ``++''-orbit, which is complex now, collides with the complex ``+&''-orbit,
and they become complex conjugate ghost orbits. Similarly, the real orbits ``&&''
and ``&+'' become complex conjugates in a collision at `=&*2

& .

4. |a|< |b|, *+<0<*&. This case is similar to the preceding. Following the
touch-and-go-bifurcation at `=0, the disappearences of the real and the ghost
orbits now occur in reversed order (see Fig. 13).

Figure 14 summarizes the four bifurcation scenarios described above. As in
Fig. 8, we plot the values of I where the stationary points occur for different `, so
that the sequence of bifurcations becomes visible in a single plot.

The scenario called case 2 above is already rather similar to the situation dis-
cussed in Section 3. However, in our example we observed only one of the two
ghost orbit bifurcations, and there is no actual periodic orbit corresponding to
the ``&&''-orbit of the normal form. To obtain a more accurate description
of the bifurcation phenomenon, we adopt a slightly different normal form by
setting *=(d&c)�8(b&c) in (44). After renaming, we obtain the modified normal
form

8==I+aI2+bI2 cos(4.)+cI3 (1+cos(4.)). (49)
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FIG. 11. Plots of the normal form illustrating the bifurcation scenario of case 2.
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FIG. 12. Plots of the normal form illustrating the bifurcation scenario of case 3.
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FIG. 13. Plots of the normal form illustrating the bifurcation scenario of case 4.
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The stationary-point equations read

0 =
!

=
�8
�.

=&4I 2 (b+cI ) sin(4.),

(50)

0 =
!

=
�8
�I

==+2aI+2bI cos(4.)+3cI2 (1+cos(4.)).

As above, it follows that

sin(4.)=0,

cos(4.)=_=\1,

and

=+2(a+_b) I+3cI2 (1+_)=0. (51)

If _=+1, this agrees with Eq. (46) as obtained from the third-order normal form
discussed above and thus yields the familiar sequence of period quadrupling and
isochronous bifurcation. If _=&1, however, the third-order term vanishes, so that
there is only one further satellite orbit described by the normal form, which is
directly involved in the period quadrupling. More precisely, the stationary points of
the normal form for _=+1 occur at

I\=&
a+b

6c
\�&

=
6c

+\a+b
6c +

2

and for _=&1 at

I&1=&
=

2(a&b)
.

From now on, we will assume |a|> |b| and c<0. As can be shown in a discus-
sion similar to the above, this is the only case in which an island-chain-bifurcation
occurs at ==0 with the real satellites existing for positive = as we need to describe
our example situation from Section 3. The bifurcation scenario described by the
normal form (49) in this case is shown schematically in Figs. 15 and 16. The
sequence of an island-chain-bifurcation at ==0 and a ghost orbit bifurcation at
some negative value of = can easily be seen to agree with the bifurcation scenario
described in Section 3. Furthermore, with the help of the bifurcations the orbits
undergo we can identify individual periodic orbits with stationary points of the nor-
mal form as follows: The central periodic orbit corresponds to the stationary point
at I=0 by construction. The stationary point labelled as ``&1'' collides with the
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FIG. 14. The four complete bifurcation scenarios the normal form (45) can describe.

origin at ==0, but does not undergo any further bifurcations. It can thus be iden-
tified with the unstable satellite orbit. Finally, the stationary points ``+'' and ``&''
agree with the stable satellite orbit and the additional ghost orbit, respectively.

Under the above assumptions, we can write

I\=&c&1�3($\- '+$2) (52)

with the abbreviations

'= &
=

6c1�3 ,

(53)

$=
a+b
6c2�3 .

50 BARTSCH, MAIN, AND WUNNER



FIG. 14.��Continued.

From the decomposition

8=\1
3

I+
a+b
18c +

�8
�I

&4c1�3 ('+$2) I+2'$ if cos(4.)=+1,

which can be derived by a polynomial division, we then obtain the actions of
periodic orbits as

8\=8(I\ , _=+1)

=&4c1�3 ('+$2) I\+2'$

=+4('+$2)($\- '+$2)+2'$,
(54)

8&1=8(I&1, _=&1)=&
=2

4(a&b)
,

80=8(I=0)=0.
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FIG. 15. Plots of the normal form illustrating the bifurcation scenario described by the normal
form (49).

Furthermore, we shall need the Hessian determinants of the action function at
the stationary points. We can calculate them in an arbitrary coordinate system in
principle. However, the polar coordinate system (I, .) is singular at the position of
the central periodic orbit, so that we cannot calculate a Hessian determinant there.
Thus, we will use Cartesian coordinates. Using the transformation equations (28)
and the relation

cos(4.)=cos4.&6 cos2. sin2.+sin4.,
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FIG. 16. Bifurcation scenario described by the normal form (49) in the case |a|>|b| and c<0.

we can express the normal form in Cartesian coordinates

8=
=
2

( p2+q2)+
a
4

( p4+2p2q2+q4)

+
b
4

( p4&6p2q2+q4)+
c
4

( p6& p4q2& p2q4+q6). (55)

This yields the Hessian determinants

Hess 8=8pp 8qq&8pq 8qp

={=+3(a&b) p2+(a&3b)q2+
c
2

(15p4&6p2q2&q4)=
_{=+(a&3b) p2+3(a+b)q2&

c
2

( p4+6p2q2&15q4)=
&4p2q2[a&3b&c( p2+q2)]2 (56)

If we pick p=q=0 on the central periodic orbit, p=0, q=- 2I\, that is, .=0, for
_=+1, and p=q=1�- 2 - 2I&1 =- I&1, that is, .=?�4, for _=&1, we finally
obtain Hessian determinants at the periodic orbits:

Hess\=[=+2(a&3b)I\&2cI2
\][=+6(a+b) I\+30cI2

\],

Hess&1=[=+4aI&1+4cI 2
&1]2&4I 2

&1[a&3b&2cI]2,

Hess0==2. (57)

We have now found an analytic description of the bifurcation scenario we are
discussing, and we have evaluated stationary values and Hessian determinants
which we will relate to classical parameters of the orbits. We will now go over to
the constuction of a uniform approximation.
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5. UNIFORM APPROXIMATION

5.1. General Derivation of the Uniform Approximation

We need to calculate the collective contribution of all orbits involved in the bifur-
cation scenario to the density of states. In the derivation of the integral representa-
tion (70) of the uniform approximation, we take the method used by Sieber [34]
as a guideline.

We use the semiclassical Green's function (5) as a starting point and include the
contribution of a single orbit only:

G(x$x, E)=
1

i� - 2?i�
- |D| exp { i

�
S(x$x, E)&i

?
2

&= .

(58)

Here, S denotes the action of the periodic orbit, & its Maslov-index, and

D=det \
�2S

�x$ �x
�2S

�E �x

�2S
�x$ �E

�2S
�E 2 + .

As in Section 4, we introduce configuration space coordinates ( y, z) so that z is
measured along the periodic orbit and increases by 2? within each circle, and y
measures the distance form the orbit. We then have

Tr G=| d 2x$ d 2x $(x$&x) G(x$x, E)

=
1

i� - 2?i� | d 2x$ d 2x $(z$&z) $( y$& y) - |D|

_exp { i
�

S(x$x, E)&i
?
2

&=
=

1

i�m- 2?i� | dy$ dz dy $( y$& y) - |D|

_exp { i
�

S(x$x, E)&i
?
2

&= } z$=z+2?m
. (59)

In the last step, the z$-integration has been performed. Close to an n�m-resonance,
we regard m periods of the bifurcating orbit as the central periodic orbit, so that
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the z-integration extends over m primitive periods, although it should only extend
over one. This error is corrected by the prefactor 1�m.

From its definition (6), the action integral S(x$x, E) obviously satisfies

�S
�x$

=p$,
�S
�x

=&p.

We can thus regard S as the coordinate representation of the generating function
of the m-traversal Poincare� map. At a resonance, however, the Poincare� map is
approximately equal to the identity map whose generating function does not pos-
sess a representation depending on old and new coordinates. Thus, we go over to
a coordinate-momentum-representation. To this end, we substitute the integral
representation

$( y$& y)=
1

2?� |
+�

&�
dp$y exp { i

�
p$y ( y& y$)=

into (59) and evaluate the y$-integration using the stationary-phase approximation.
The stationarity condition reads

�S
�y$

& p$y=0, (60)

so that we obtain

Tr G=
1

2?im�2 | dy dz dp$y - |D| | sp

_exp { i
�

(S� + yp$y)&i
?
2

&̂= 1

�} �
2S

�y$2 } } sp

. (61)

Here,

S� (z$p$y zy, E)=S(z$y$z y, E)& y$p$y | sp (62)

denotes the Legendre transform of S with respect to y$ due to (60), and

&̂={&,

&+1,

�2S
�y$2 } sp

>0

�2S
�y$2 } sp

<0.
(63)
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As a general property of Legendre transforms, if we let u, v denote any of the
variables z, z$, y, and E which are not involved in the transformation, we have

�S�
�u

=
�S
�u

,
�S�
�p$y

=&y$. (64)

For the second derivatives, it follows that

�2S
�u �v

=
�

�u
�S�
�v

=
�2S�

�u �v
+

�2S�
�p$y �v

�p$y
�u } y$

(65)

and

�2S
�u �y$

=
�p$y
�u

=
�

�y$
�S�
�u

=
�2S�

�p$y �u
�p$y
�y$

=
�2S�

�p$y �u
�2S
�y$2 . (66)

Furthermore, we have

�2S
�z$ �z

�2S
�y$ �z

�2S
�E �z

D=det\ �2S
�z$ �y

�2S
�y$ �y

�2S
�E �y+�2S

�z$ �E
�2S

�y$ �E
�2S
�E 2

�2S�
�z$ �z

+
�2S�

�p$y dz$
�p$y
�z

�p$y
�z

�2S�
�E �z

+
�2S�

�p$y �E
�p$y
�z

=det\ �2S�
�z$ �y

+
�2S�

�p$y �z$
�p$y
�y

�p$y
�y

�2S�
�E �y

+
�2S�

�p$y �E
�p$y
�y+ .

�2S�
�z$ �E

+
�2S�

�p$y �z$
�p$y
�E

�p$y
�E

�2S�
�E2+

�2S�
�p$y �E

�p$y
�E
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The second terms in the first and third columns of this matrix are multiples of the
second column and can thus be omitted. This yields

�2S�
�z$ �z

�2S
�y$2

�2S�
�p$y �z

�2S�
�E �z

D=det\ �2S�
�z$ �y

�2S
�y$2

�2S�
�p$y �y

�2S�
�E �y+�2S�

�z$ �E
�2S
�y$2

�2S�
�p$y �E

�2S�
�E2

�2S�
�z$ �z

�2S�
�p$y �z

�2S�
�E �z

=
�2S
�y$2 det\ �2S�

�z$ �y
�2S�

�p$y �y
�2S�

�E �y+ . (67)

�2S�
�z$ �E

�2S�
�p$y �E

�2S�
�E2

If we denote the remaining determinant by D� , we obtain from (61)

Tr G=
1

2?im�2 | dy dz dp$y - |D� | exp { i
�

(S� + yp$y)&i
?
2

&̂= } z$=z+2?m
.

From our choice of z along the periodic orbit, we have

�H
�p

=x* =(z* , 0).

Taking derivatives of the Hamilton�Jacobi equations

H \ �S
�x$

, x$+=E, H \&
�S
�x

, x+=E

with respect to z, z$ and y and using (64), we therefore obtain

�2S�
�z$ �z

=
�2S�

�p$y �z
=

�2S�
�z$ �y

=0,

�2S�
�z$ �E

=
1
z* $

,
�2S�

�E �z
=

1
z*

,
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so that

D� =
1

z* z* $
�2S�

�y �p$y
. (68)

Using this relation, the z-integration can trivially be performed. It yields the time
consumed during one cycle. This time depends on the coordinates y and py and is
different in general from the orbital period of the central periodic orbit. We denote
it by �S� ��E( y, p$y):

Tr G=
1

2?im�2 | dy dp$y
�S�
�E �} �2S�

�y �p$y } exp { i
�

(S� + yp$y)&i
?
2

&̂= . (69)

Finally, we obtain the contribution of the orbits under study to the density of
states:

d(E)=&
1
?

Im Tr G

=
1

2?2m�2 Re | dy dp$y
�S�
�E �} �2S�

�y �p$y }
_exp { i

�
(S� + yp$y)&i

?
2

&̂= . (70)

The exponent function

f ( y, p$y , E) :=S� ( y, p$y , E)+ yp$y (71)

has to be related to known functions. The only information on f we possess is
the distribution of its stationary points: They correspond to classical periodic
orbits.

The classification of real-valued functions with respect to the distribution of their
stationary points is achieved within the mathematical framework of catastrophe
theory [26]. The object of study there are families of functions 8(x, Z) depending
on k so-called state variables x and indexed by r control variables Z. For any fixed
control Z, the function 8(x, Z) is assumed to have a stationary point at the origin
and to take 0 as its stationary value there. Further stationary points may or may
not exist in a neighborhood of the origin. As the control parameters are varied,
such additional stationary points may collide with the central stationary point, they
may be born or destroyed. The aim of catastrophe theory is to qualitatively under-
stand how these bifurcations of stationary points can take place. More precisely,
two families 81 and 82 of functions as described above are regarded as equivalent
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if there is a diffeomorphism �c of control space and a control-dependent family
�s (Z) of diffeomorphisms of state space which keep the origin fixed, such that

82 (x, Z)=81 (�s (x, Z), �c (Z)). (72)

Equivalence classes with respect to this relation are known as catastrophes.
Catastrophes having a codimension of at most four, that is, catastrophes which can
generically be observed if no more than four control parameters are varied, have
completely been classified by Thom. They are known as the seven elementary
catastrophes. Each of these catastrophes can be represented by a polynomial in one
or two variables.

In our discussion of periodic orbits the energy serves as the only control
parameter. However, we are only interested in stationary points of functions which
can be obtained as action functions in Hamiltonian systems. Due to this restriction,
we can generically observe scenarios which would have higher codimensions in the
general context of catastrophe theory, so that catastrophes of codimension greater
than one are relevant for our purpose. The variation of energy then defines a path
Z(E) in an abstract higher-dimensional control space.

In earlier work on the construction of uniform approximations close to non-
generic bifurcations, Main and Wunner [21, 22] succeeded in relating the action
function describing the bifurcation scenario to one of the elementary catastrophes. In
our case, however, this approach fails because the codimension (in the sense of catas-
trophe theory) of the action function is even higher than four. Nevertheless, we can make
use of the equivalence relation of catastrophe theory, because, as was shown above, the
normal form has got stationary points which exactly correspond to the periodic orbits
of the classical system. This observation enables us in principle to systematically con-
struct ansatz functions for any bifurcation scenario encountered in a Hamiltonian
system using normal form theory. We are thus led to making the ansatz

f ( y, p$y; E)=S0 (E)+8(�s ( y, p$y; E), �c (E)). (73)

Here, the energy E serves as the control parameter, 8 denotes the normal form of
the bifurcation scenario, �s and �c unknown coordinate changes as in the general
context of catastrophe theory, and S0 (E) is the action of the central periodic orbit,
which has to be introduced here to make both sides equal at the origin. The
unknown transformations �s and �c can easily be accounted for because they can
only manifest themselves in appropriate choices of the free parameters occuring in
the normal form. Inserting the ansatz (73) into (70) and transforming the integra-
tion measure to new coordinates (Y, P$Y)=�s ( y, p$y; E), we obtain

d(E)=
1

2?2m�2 Re exp { i
�

S0 (E)&i
?
2

&̂=
_| dY dP$Y

�S�
�E �} �2S�

�y �p$y }
1

|det Jac �s |
exp { i

�
8(Y, P$Y )= ,
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where Jac �s denotes the Jacobian matrix of �s with respect to the variables y and
p$y . Differentiating the ansatz (73) twice, we get the matrix equation

�2f
�( y, p$y)2=(Jac �s)

T �28
�(Y, P$Y )2 Jac �s ,

so that the determinants satisfy

|det Jac �s |=� |Hess f |
|Hess 8|

, (74)

and the density of states finally reads

d(E)=
1

2?2m�2 Re exp { i
�

S0 (E)&i
?
2

&̂=
_| dY dP$Y

�S�
�E �} �2S�

�y �p$y } �
|Hess 8|
|Hess f |

exp { i
�

8(Y, P$Y )= . (75)

The exponent function in the integrand of the remaining integral is given by the
normal form describing the bifurcation scenario, which was calculated in the
preceding section for the present case. The normal form parameters, however, still
have to be determined. On the other hand, the coefficient

X :=
�S�
�E �} �2S�

�y �p$y } �
|Hess 8|
|Hess f |

(76)

is completely unknown. To evaluate (75), we have to establish a connection
between X and classical periodic orbits. As periodic orbits correspond to stationary
points of the normal form, we will now analyse the behavior of X at stationary
points of the exponent.

By (71), the Hessian matrix of f is given by

�2f
�( y, p$y)2=\

�2S�
�y2

�2S�
�y �p$y

+1

�2S�
�y �p$y

+1

�2S�
�py$

2 +
so that the Hessian determinant reads

Hess f =
�2S�
�y2

�2S�
�py$

2&\ �2S�
�y �p$y

+1+
2

=&\1+\ �2S�
�y �p$y+

2

&
�2S�
�y2

�2S�
�py$

2+&2
�2S�

�y �p$y
.
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As can be shown, in a two-degree-of-freedom system the monodromy matrix of a
periodic orbit can be expressed in terms of the action function as

Tr M=&\ �2S�
�y �p$y+

&1

{1+\ �2S�
�y �p$y+

2

&
�2S�
�y2

�2S�
�py$

2= , (77)

so that

Hess f =
sp

(Tr M&2)
�2S�

�y �p$y
(78)

and

� 1
|Hess f | �}

�2S�
�y �p$y } =

sp 1

- |Tr M&2|
. (79)

Furthermore, we make use of the fact that at a stationary point the derivative
�S� ��E gives the orbital period of the corresponding periodic orbit. For the central
periodic orbit, this is m times the primitive period mT0 ; for a satellite orbit,
however, it gives a single primitive period Ts . Altogether, these results yield

X =
sp [m]T

- |Tr M&2|
- |Hess 8| , (80)

where the notation [m] is meant to indicate that the factor of m has to be omitted
for a satellite orbit. This expression can be calculated once the normal form
parameters have suitably been determined.

Furthermore, (80) allows us to check that (75) does indeed reduce to Gutzwiller's
isolated-orbits contributions if the distance from the bifurcations is large: If the
stationary points of the normal form are sufficiently isolated, we can return to a
stationary-phase approximation of the integral. We will first calculate the contribu-
tion of the stationary point at Y=P$Y =0, which corresponds to the central periodic
orbit. If we use 8(0)=0 and (80) and let * denote the number of negative eigen-
values of the Hessian matrix (�28��(Y$, PY)2) |0 , this contribution reads

1
2?2m�2

mT0

- Tr M0&2
- |Hess 8| |0 Re exp { i

�
S0&i

?
2

&̂= (2?i�)
exp {&i

?
2

*=
- |Hess 8| |0

=
1

?�

T0

- Tr M0&2
Re exp { i

�
S0&i

?
2

(&̂+*&1)= .

If we identify &̂+*&1 with the Maslov index of the central periodic orbit, and note
that in a two-degree-of-freedom system Tr M&2=det(M&I ), this is just
Gutzwiller's periodic-orbit contribution.
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Satellite orbits contribute only at energies where they are real. In this case, every
satellite orbit corresponds to m stationary points of the normal form. Altogether,
they contribute

m
1

2?2m�2

Ts

- Tr Ms&2
- |Hess 8| | s

Re exp { i
�

S0&i
?
2

&̂= (2?i�) exp { i
�

8s=
exp {&i

?
2

*$=
- |Hess 8| | s

=
1

?�

Ts

- Tr Ms&2
Re exp { i

�
Ss&i

?
2

(&̂+*$&1)= .

Here, the number of negative eigenvalues of (�28��(Y$, PY)2) | s was denoted by *$,
and we made use of the fact that, according to our ansatz (73), S0 (E)+8s equals
the action Ss (E) of the satellite orbit. Thus, we also obtain Gutzwiller's contribu-
tion for satellite orbits, provided that &̂+*$&1 is the Maslov index of the satellite
orbit. We can regard this as a consistency condition which allows us to calculate
the difference in Maslov index between the central periodic orbit and the satellites
from the normal form.

Now that we have convinced ourselves that the integral formula (75) is correct,
we can go over to its numerical evaluation. This can be done to different degrees
of approximation, and we are going to present two different approximations in the
following sections.

5.2. Local Approximation

To obtain the simplest approximation possible, we can try to determine the nor-
mal form parameters a, b, c so that the stationary values (54) of the normal form
(49) globally reproduce the actions of the periodic orbits as well as possible. In the
spirit of the stationary-phase method we can further assume the integral in (75) to
be dominated by those parts of the coordinate plane where the stationary points of
the exponent are located. As the uniform approximation is only needed close to a
bifurcation, where the stationary-phase approximation fails, all stationary points lie
in a neighborhood of the origin I=0. Thus, we can approximate the derivative
�S� ��E by its value at the origin, that is, the orbital period mT0 of the central
periodic orbit. Furthermore, we can try and approximate the quotient
(Tr M&2)�Hess 8 by a constant k. We then obtain

d(E )r
1

2?2�2

T0

- |k|
Re exp { i

�
S0 (E )&i

?
2

&̂=
| dY dP$Y exp { i

�
8(Y, P$Y)= . (81)
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Thus, the density of states is approximately given by the integral of a known func-
tion which can be evaluated numerically.

In our case, the distance from the period-quadrupling bifurcation is described by
the normal form parameter =. We choose to measure this distance by the difference
in scaled energy

==E� &E� c . (82)

Then, to globally reproduce the numerically calculated actions, we use the
parameter values

a~ =&0.029,

b� =+0.007,
(83)

c~ =&0.052,

k� =11000,

where the tilde indicates that the parameters have been adjusted to the scaled
actions S� �2?. As can be seen from Figs. 17 and 18, the action differences and
Hessian determinants calculated from the normal form do indeed qualitatively
reproduce the actual data, although quantitatively the agreement is not very good.
Nevertheless, we will try to calculate the density of states within the present
approximation.

If we are actually going to calculate spectra for different values of the magnetic
field strength, we have to determine the action S=2?w } (S� �2?) according to the
scaling prescription (10) with the scaling parameter w=#&1�3. As can easily be seen
with the help of (54), this scaling can be achieved by scaling the normal form
parameters according to

a=a~ �2?w,

b=b� �2?w, (84)

c=c~ �4?2w2.

According to its definition (82), the parameter = does not scale. Neither does k scale
with the magnetic field strength, because it is given by a quotient of two non-scaling
quantities, but the factor of 2? in Hess 8 has to be taken into account:

k=k� �2?. (85)

The local approximation calculated with these data is shown in Fig. 19 for three
different values of the magnetic field strength. Instead of the real part, we actually
plotted the absolute value of the expression in (81) to suppress the highly
oscillatory factor exp[i�� S0 (E)]. As was to be expected, the approximation does
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FIG. 17. Comparison of the action differences calculated from the normal form (49) with parameter
values (83) to the actual action differences. Solid curves: numerically calculated values; dashed curves:
stationary values of the normal form.

indeed give finite values at the bifurcation points, but does not reproduce the results
of Gutzwiller's trace formula as the distance from the bifurcations is increased. This
is due to the fact that the normal form with the parameter values chosen does not
reproduce the actual orbital data very well. In particular, a better description of the
actions is needed to improve the approximation, because asymptotically the actions
occur as phases in Gutzwiller's trace formula, so that, if the error in phases wS� is
not small compared to 2?, the interference effects between the contributions of
different orbits cannot be described correctly.
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FIG. 18. Comparison of the traces of the monodromy matrices calculated from the normal form
(49) with parameter values (83) to the actual traces. Solid curves: numerically calculated traces; dashed
curves: Hessian determinants of the normal form.

Furthermore, we cannot even expect our local approximation to yield very
accurate values at the bifurcation points themselves, because the normal form
parameters were chosen to globally reproduce the orbital data, so that a local
parameter fit designed to describe the immediate neighborhood of the bifurcations
would lead to different results.
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FIG. 19. Local approximation to the contribution of the considered bifurcation scenario to the den-
sity of states for three different values of the magnetic field strength: (a) #=10&10, (b) #=10&12,
(c) #=10&14. Solid curves: local approximation, dashed curves: Gutzwiller's trace formula.
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5.3. Uniform Approximation

To improve our approximation, we can make use of the fact that the coordinate
transformation �s in (73) is energy-dependent in general, so that the normal form
parameters a, b, c will also depend on energy. We thus have to choose the
parameters so as to reproduce the numerically calculated action differences for any
fixed ==E� &E� c . To achieve this, we have to solve equations (54)

8\=4('+$2)($\- '+$2)+2'$,
(86)

8&1=&
=2

4(a&b)
,

where

'=&
=

6c1�3 ,

(87)

$=
a+b
6c2�3 ,

for a, b, c. To this end, we introduce

h+=
8++8&

8

=$('+$2)+
1
2

'$,
(88)

h&=
8+&8&

8

=('+$2)3�2.

The second equation yields

'=h2�3
& &$2. (89)

Inserting this into the first equation of (88), we obtain

$3&3h2�3
& $+2h+=0. (90)

This is a cubic equation for $. Its solutions read, from Cardani's formula,

$=
*
2

3
- &(- 8+ +- 8& )2+

**
2

3
- &(- 8+ &- 8& )2, (91)
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where * # [1, &1
2\i(- 3�2)] is a cube root of unity. If the discriminant

D=h2
+&h2

&= 1
168+8& (92)

is positive, there is only one real solution for $, which has *=1. If, however, D<0,
all three solutions are real. In this case we have to choose one solution before we
can proceed.

Using the correspondence between stationary points and periodic orbits dis-
cussed above, we find from Fig. 6 that 8+>0, and there exists an =0<0 so that
8&<0 if =>=0 and 8&>0 if =<=0 . Thus, from (92), we have DY0 if =y=0 , and
we have to choose *=1 if =<=0 to make $ real.

To determine the correct choice of * for =>=0 , we demand that $ must depend
on = continuously. Thus, * can only change at energies where (90) has a double
root, viz. D=0 or = # [0, =0]. Therefore, it suffices to determine * in a neighborhood
of ==0. Close to ==0, the action differences can be seen from Fig. 6 to behave like

8+=:2=2+O(=3),

8&=&1&;=+O(=2)

with positive real constants :, ;, 1. Equations (91) and (89) then allow us to
expand ' in a Taylor series in =:

'=\1
4

&(Re *)2+ 1 2�3

+\\1
4

&(Re *)2+ 2;
31 1�3&Re * Im *

4: sign = - 1
31 1�3 + =+O(=2). (93)

If we require this result to reproduce the definition

'=&
1

6c1�3 =, &
1

6c1�3>0,

we find the conditions

Re *=&
1
2

,

Im *
2: - 1
31 1�3 sign =>0,
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and are thus led to the correct choices of *:

*={
1, 8&>0

(94)
&

1
2

+i
- 3

2
sign =, 8&<0.

Using this result, we obtain $ and ' from (91) and (89). Finally, from (53) and (86)
we can explicitly determine the normal form parameters a, b, c as functions of the
energy = and the action differences 8+ , 8& , and 8&1 :

c=&\ =
6'+

3

,

a+b=6c2�3$, a&b=&
=

48&1

, (95)

a=3c2�3$&
=

88&1

, b=3c2�3$+
=

88&1

.

Now that the normal form 8 has been completely specified, a suitable
approximation to the coefficient X remains to be found. We shall assume X to be
independent of the angular coordinate ., and because, from (80), the value of X is
known at the stationary points of f at four different values of I (including I=0), we
can approximate X by the third-order polynomial p(I ) interpolating between the
four given points, so that our uniform approximation takes its final form

d(E)=
1

2?2m�2 Re exp { i
�

S0 (E)&i
?
2

&̂=
_| dY dP$Y p(I ) exp { i

�
8(Y, P$Y)= . (96)

This choice ensures that our approximation reproduces Gutzwiller's isolated-orbits
formula if, sufficiently far away from the bifurcation, the integral is evaluated in
stationary-phase approximation. Thus, our solution is guaranteed to exhibit the
correct asymptotic behavior. On the other hand, as was shown above, very close to
the bifurcations the integral is dominated by the region around the origin. As our
interpolating polynomial assumes the correct value of X at I=0, we can expect our
uniform approximation to be very accurate in the immediate neighborhood of the
bifurcations, too, and thus to yield good results for the semiclassical density of
states in the complete energy range.

The values of the normal form parameters a, b, c calculated from (95) are shown
in Fig. 20. Obviously, their calculation becomes numerically unstable close to the
bifurcations. This is true for two reasons:
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FIG. 20. Values of the normal form parameters calculated from (95) which were used for the
uniform approximation.

v As input data to (95), we need action differences between the central orbit
and the satellite orbits. Close to the bifurcations, these differences become
arbitrarily small and can thus be determined from the numerically calculated
actions to low precision only.

v The parameter c is given by the quotient of ' and =, which quantities both
vanish at the bifurcation energy. As the bifurcation energy E� c , and hence =, is not
known to arbitrarily high precision, the zeroes of the numerator and the
denominator do not exactly coincide, so that the quotient assumes a pole.

We can smooth the parameters by simply interpolating their values from the
numerically stable to the unstable regimes. As the dependence of the parameters on
energy is very smooth, we can expect this procedure to yield accurate results.
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FIG. 21. Uniform approximation to the contribution of the considered bifurcation scenario to the
density of states for three different values of the magnetic field strength: (a) #=10&10, (b) #=10&12,
(c) #=10&14. Solid curves: uniform approximation, dashed curves: Gutzwiller's trace formula.
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The uniform approximation was calculated for the same values of the magnetic
field strength as was the local approximation. The results are displayed in Fig. 21.
They are finite at the bifurcation energies and do indeed reproduce the results of
Gutzwiller's trace formula as the distance from the bifurcation increases. Even the
complicated oscillatory structures in the density of states which are caused by inter-
ferences betweeen contributions from different periodic orbits are perfectly
reproduced by our uniform approximation. We can also see that the higher the
magnetic field strength, the farther away from the bifurcation energies is the
asumptotic (Gutzwiller) behavior acquired. In fact, for the largest field strength
#=10&10 the asymptotic regime is not reached at all in the energy range shown.
This behavior can be traced back to the fact that, due to the scaling properties of
the Diamagnetic Kepler Problem, the scaling parameter #&1�3 plays the rôle of an
effective Planck's constant, therefore the lower # becomes, the more accurate the
semiclassical approximation will be.

6. SUMMARY

We have shown that in generic Hamiltonian systems bifurcations of ghost orbits
can occur besides the bifurcations of real orbits. If they occur in the neighborhood
of a bifurcation of a real orbit, they produce signatures in semiclassical spectra
in much the same way as bifurcations of real orbits and therefore are of equal
importance to a semiclassical understanding of the quantum spectra. Further-
more, we have shown that the technique of normal form expansions traditionally
used to construct uniform approximations taking account of bifurcations of real
orbits only can be extended to also include the effects of ghost orbit bifurcations.
Thus, normal form theory offers techniques which will allow us, at least in prin-
ciple, to calculate uniform approximations for arbitrarily complicated bifurcation
scenarios.

The effects ghost orbit bifurcations exert on semiclassical spectra were illustrated
by way of example of the period-quadrupling bifurcation of the balloon orbit in the
Diamagnetic Kepler Problem. This example was chosen mainly because of its sim-
plicity, because the balloon orbit is one of the shortest periodic orbits in the
Diamagnetic Kepler Problem, and the period-quadrupling is the lowest period-m-
tupling bifurcation that can exhibit the island-chain-bifurcation typical of all higher
m. We can therefore expect ghost orbit bifurcations also to occur for longer orbits
and in connection with higher period-m-tupling bifurcations. This conjeture is con-
firmed by the discussion of the various bifurcation scenarios described by the
higher-order normal form (45), which reveals ghost orbit bifurcations close to a
period-quadrupling in three out of four possible cases. Thus, ghost orbit bifurca-
tions will be a common occurence in generic Hamiltonian systems. Their systematic
study remains an open problem for future work.
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