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Chapter 1

Introduction

Ever since the early days of quantum mechanics, the correspondence between clas-
sical trajectories and atomic spectra has been a question of fundamental interest
and importance. The “old” quantum theory suffered from the severe drawback
that the Bohr-Sommerfeld quantization rules could only be applied to integrable
systems. Although it had already been noted by Einstein [1] that integrable sys-
tems are exceptional, the question of how to quantize classically non-integrable
systems remained unsolved. After the advent of the “exact” quantum mechanics,
quantum mechanical calculations no longer relied on the underlying classical me-
chanics, so that the interest in the correspondence between classical and quantum
mechanics declined. It was only after the development of periodic-orbit theory [2]
and, as a variant for the photo-excitation spectra of atomic systems, closed-orbit
theory [3, 4], that techniques were available to explore the intimate connections
between quantum spectra and the underlying classical dynamics. These theo-
ries triggered an enormous upsurge of interest in the long-standing problem of
developing what is now called a semiclassical quantization procedure for classi-
cally non-integrable systems, i.e. a quantization scheme based on the underlying
classical dynamics.

The hydrogen atom in external electric and magnetic fields has become a
prototype example for semiclassical studies. Whereas the hydrogen atom in an
electric field is classically integrable, in a magnetic field it shows a transition
from regular to completely chaotic behaviour, so that it is ideally suited to inves-
tigate the impact of classical regularity or chaos on quantum mechanical spectra.
Closed-orbit theory provides a semiclassical approach to atomic photo-absorption
spectra [3, 4]. It gives the oscillator-strength density as a sum of two terms, one
a smoothly varying part (as a function of energy) and the other a superposition
of sinusoidal oscillations. Each oscillation is associated with a “closed” classical
orbit starting at and returning to the nucleus. It is therefore possible to analyse
a given photo-absorption spectrum in terms of the closed orbits contributing to
it. For the hydrogen atom in a magnetic field, a comprehensive classification
of closed orbits exists, and in this framework the large-scale structures of the
spectrum found a convincing semiclassical interpretation. Conversely, atomic en-
ergy levels and the corresponding transition strengths could be calculated from
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2 CHAPTER 1. INTRODUCTION

classical orbits [5].

Because the hydrogen atom in a purely magnetic field possesses a rotational
symmetry around the magnetic field axis, the angular momentum component
along this axis is conserved. Therefore, the dynamics can be reduced, effectively,
to two degrees of freedom. If, to the contrary, the atom is subjected to the
combined influences of perpendicular magnetic and electric fields, all continuous
symmetries are broken and three non-separable degrees of freedom have to be
dealt with. In addition, the dynamics depends on two external parameters, viz.
the field strengths, instead of only one. Hence, both the classical and quantum
dynamics of the crossed-fields hydrogen atom is significantly more complex than
in a magnetic field. Even after ten years of intense study, this complex behaviour
is far from being completely understood.

Although a closed-orbit theory can be derived for the crossed-fields [6,7] as well
as for the magnetized hydrogen atom, and the large-scale structures of crossed-
fields photo-absorption spectra have been interpreted successfully in terms of
individual closed orbits [7–11], only contributions of rather short orbits have
been identified, and a general overview of the closed orbits in the crossed-fields
system is not yet available. What is more, closed orbits are known to proliferate
through bifurcations as the external field strengths are increased. As a crucial
step towards a classification of closed orbits, therefore, one needs a bifurcation
theory describing the generic types of bifurcations one should expect to find. A
bifurcation theory for periodic orbits in Hamiltonian systems was developed long
ago by Mayer [12]. Nevertheless, an analogue for closed orbits is still unavailable.

Much effort has been spent since the advent of the modern semiclassical the-
ories on the construction of a general semiclassical quantization scheme (see,
e.g., [13–19]). Although closed-orbit theory provides a means of calculating
smoothed spectra, it does not readily lend itself to a calculation of individual
energy levels because the sum over all closed orbits is divergent. Periodic-orbit
theory, which gives a semiclassical approximation to the density of states of a
quantum system, is formally analogous to closed-orbit theory and shares this
fundamental difficulty. A number of different techniques have been proposed to
overcome the convergence problems of the semiclassical theories. All of them are
limited in their applicability because they make certain assumptions about the
underlying classical dynamics. In particular, no method proposed to date can be
used if bifurcations of classical orbits must be taken into account.

Most of the work on semiclassical quantization was restricted to systems hav-
ing two degrees of freedom. It is of fundamental importance to assess the applica-
bility of semiclassical schemes to systems with three or more degrees of freedom.
Nevertheless, due to the additional complications brought about by the third de-
gree of freedom, previous studies [20–25] have been restricted to billiard systems.
A full semiclassical quantization has so far been achieved for the three-dimensional
Sinai billiard [20] and the N -sphere scattering system [23] only. As it exhibits a
transition from regular to chaotic dynamics, the hydrogen atom in crossed fields is
considerably more complicated than billiard systems, and a semiclassical quanti-
zation has not even been attempted to date. To achieve a quantization, a number
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of rather diverse problems must be solved. First, a thorough understanding of
the closed orbits in the crossed-fields system is required. Second, bifurcations of
closed orbits will turn out to play an important role in the crossed-fields hydrogen
atom. They introduce divergences into the semiclassical spectrum, and suitable
uniform approximations smoothing these divergences must be found. Third, a
semiclassical quantization procedure capable of dealing with uniform approxima-
tions must be developed. All of these problems will be tackled in the course of
this work.

In chapter 2, the basic properties of the crossed-fields hydrogen atom will be
described and the fundamental formulae of closed-orbit theory will be derived.
Recently, Granger and Greene [26] proposed a novel formulation of closed-orbit
theory for atoms in magnetic fields based on semiclassical S-matrices. Their
formulation appears to be more flexible than the conventional treatment when
applied to non-hydrogenic atoms or molecules. I have extended it to the case of
crossed external fields. For the case of a magnetic field, I discuss and clarify some
misleading conclusions arrived at by Granger and Greene.

The semiclassical investigations presented here are largely based on the method
of harmonic inversion, which was introduced [19, 27] as a general technique for
both semiclassical quantization and the semiclassical analysis of quantum spec-
tra. Several variants of the method have been proposed in the literature. I will
summarize these in chapter 3 and apply them to two simple example systems to
compare their numerical efficiencies. Finally, I will generalize the method to the
semiclassical quantization of systems without a classical scaling property. This
generalization is relevant beyond the realm of closed-orbit theory, because it can
also be applied in connection with semiclassical trace formulae. It is the first
truly universal semiclassical quantization scheme proposed in the literature, be-
cause it does not make any assumptions whatsoever about the underlying classical
dynamics.

The numerical integration of the classical equations of motion for the crossed-
fields hydrogen atom is plagued by the presence of the Coulomb singularity. As
is well-known, this singularity can be regularized by means of a Kustaanheimo-
Stiefel transformation [28]. A novel formulation of the transformation in the
language of geometric algebra was introduced by Hestenes [29]. It offers the ad-
vantages of greater calculational simplicity and a clearer geometric interpretation
than provided by a matrix-based approach. In this formalism, I will develop
Lagrangian and Hamiltonian formulations of the Kustaanheimo-Stiefel transfor-
mation in chapter 4. I will then discuss the problems specific to the description
of closed orbits and demonstrate that the geometric algebra allows a particularly
clear exposition.

In chapter 5, the general framework for a local theory of closed-orbit bifurca-
tions will be set up and the codimension-one generic bifurcations will be identified.
It will be shown that the presence of reflection symmetries in the crossed-fields
hydrogen atom has a significant impact on the possible types of bifurcations.
Subsequently, I will describe the actual closed orbits and their bifurcations at
low scaled energies. The simple elementary bifurcations will be seen to form a
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surprisingly rich structure of complicated bifurcation scenarios. Finally, I will
propose a classification scheme for closed orbits which is inspired by the case of a
pure magnetic field, and I will demonstrate that it is applicable for electric field
strengths at least up to half the strength of the magnetic field (in atomic units).

Chapter 6 discusses the semiclassics of the crossed-fields system. I will present
both low-resolution and high-resolution semiclassical photo-absorption spectra.
In the latter case, the strongest spectral lines are resolved. The observation that
the high-resolution spectra cannot easily be improved so as to yield more spec-
tral lines leads to a closer inspection of the semiclassical signal. Semiclassical
recurrence spectra reveal that closed-orbit theory can be applied in principle for
long as well as for short closed orbits, but the semiclassical spectrum is marred
by missing orbits and, in particular, by the presence of bifurcations of closed
orbits. Bifurcations lead to a divergence of the usual closed-orbit formula and
must be treated by uniform semiclassical approximations. I will propose a heuris-
tic, easy-to-apply technique for the construction of uniform approximations and
derive these for the two types of codimension-one bifurcations. I will then show
how uniform approximations can be included in the semiclassical quantization by
harmonic inversion.

As the bifurcation scenarios occurring in crossed fields turn out to be too com-
plex for a semiclassical quantization to be actually carried out, I will focus my
discussion, in chapter 7, on the hydrogen atom in an electric field. This system is
integrable, hence its classical mechanics is easy to understand. I will derive semi-
analytical formulae describing the closed orbits which have not been given before
in the literature. In spite of its apparent simplicity, the system still exhibits a
multitude of closed-orbit bifurcations, that have so far precluded a semiclassical
quantization based on closed-orbit theory. A uniform approximation describing
a single bifurcation in the Stark system has been given before [30,31]. Using the
general method of chapter 6, I will re-derive it in a form which is much easier
to apply in practice and supplement it with a uniform approximation for a more
complicated bifurcation scenario. The latter is of fundamental interest because it
is the first uniform approximation described in the literature which depends on
a topologically non-trivial configuration space. The uniform approximations will
then be used for a semiclassical quantization in a spectral region where the con-
ventional closed-orbit formula would be completely useless due to an abundance
of bifurcations. In this way, it is demonstrated that the quantization scheme
introduced in chapters 3 and 6 indeed permits the inclusion of uniform approxi-
mations into a semiclassical quantization, which has so far been impossible.

Because of their high topicality, part of the results in this work have been
published in advance [32].



Chapter 2

Closed-orbit theory

2.1 The classical Hamiltonian

To obtain a classical model describing the dynamics of the hydrogen atom in
external fields, I assume the nucleus to have infinite mass and regard the electron
as a structureless point charge. In atomic units (see appendix A) the Hamiltonian
reads

H =
1

2
(p+A(x))2 − 1

r
− V (x) (2.1)

in terms of the electronic position and momentum vectors x and p, the radial
distance r = |x| from the nucleus and the electromagnetic scalar and vector
potentials V (x) and A(x) describing the external fields. (Note that the electron
charge is e = −1.) For a discussion of non-hydrogenic Rydberg atoms, a core
potential modelling the influence of the inner electronic shells can be added to
(2.1) (see, e.g., [33, 34]). In this work, the analysis will be restricted to the
hydrogen atom. For homogeneous external magnetic and electric fields B and
F , the potentials are V (x) = −F · x and A(x) = 1

2
B × x. With a magnetic

field directed along the z-axis and an electric field directed along the x-axis,
which is the field configuration to be assumed throughout most of this work, the
Hamiltonian (2.1) reads

H =
1

2
p2 − 1

r
+

1

2
BLz +

1

8
B2ρ2 + Fx , (2.2)

where ρ2 = x2 + y2 and Lz is the z-component of the angular momentum vector.
In the absence of an external electric field, the motion described by the Hamil-

tonian (2.1) is bounded in space for all energies E < 0 because the electron cannot
escape from the Coulomb potential. If an electric field is present, it will tend to
tear the electron away from the nucleus. The combination of the Coulomb and
the external potentials exhibits a saddle point on the negative x-axis at the en-
ergy ES = −2

√
F . For energies E > ES, the electron can cross the Stark saddle

point and escape to infinity, so that the motion is no longer bounded.
At first glance, the dynamics of the Hamiltonian (2.1) appears to depend on

three external parameters, namely the field strengths B and F and the energy

5



6 CHAPTER 2. CLOSED-ORBIT THEORY

B F E w

magnetic field strength B̃ 1 F−3/4B |E|−3/2B w3B

electric field strength F̃ B−4/3F 1 |E|−2F w4F

energy Ẽ B−2/3E F−1/2E ±1 w2E

position x̃ B2/3x F 1/2x |E|x w−2x

momentum p̃ B−1/3p F−1/4p |E|−1/2p wp

action S̃ B1/3S F 1/4S |E|1/2S w−1S

time T̃ BT F 3/4T |E|3/2T w−3T
scaling parameter w B−1/3 F−1/4 |E|−1/2

Table 2.1: Scaling prescriptions when scaling with the magnetic field strength B,
the electric field strength F , the energy E, or the generic scaling parameter w.

E. The number of parameters can be reduced to two by exploiting the scaling
properties of (2.1). They allow one to assign the fixed value 1 to any of the
parameters. The dynamics will be left invariant if at the same time all classical
quantities are multiplied by suitable powers of the scaling parameter. The details
of this procedure are summarized in table 2.1. Notice, in particular, that when
expressed in terms of the generic scaling parameter w = B−1/3, w = F−1/4 or
w = |E|−1/2, respectively, the scaling prescriptions in all three cases agree. The
parameter w plays the role of an inverse effective Planck’s constant ~eff = w−1

because, due to S = wS̃, the classical actions are large if w is. For configurations
characterized by fixed scaled quantities, i.e. the same classical dynamics, the
semiclassical limit thus corresponds to the limit w → ∞.

The scaling prescription most frequently used in the literature is the scaling
with the magnetic field strength B. I will adhere to this custom throughout,
except when discussing the Stark effect in chapter 7, where the scaling with the
electric field strength will be used. The scaling with respect to the energy E treats
the two external field strengths on the same footing and thus best preserves their
symmetry. It is not well suited, on the other hand, to discuss the transition
from negative to positive energies, because the scaling can only be done with
respect to the absolute value |E|, so that the scaled Hamiltonian changes its
value discontinuously from −1 to +1 at E = 0.

The dynamics described by the Hamiltonian (2.1) depends crucially on the
symmetries the field configuration possesses. For the semiclassical calculation of
photo-absorption spectra, mainly classical trajectories starting at and returning
to the nucleus are relevant. The discussion of symmetries will therefore focus
on these trajectories, which will henceforth be called closed orbits. If only one
external field is present and is assumed to be directed along the z-axis, there
is a rotational symmetry around this axis. Consequently, the z-component of
the angular momentum Lz is conserved and allows an effective reduction of the
number of degrees of freedom from three to two. For trajectories passing through
the nucleus, in particular, Lz = 0.

Due to the rotational symmetry, all closed orbits occur in one-parameter fam-
ilies obtained by rotating a single orbit around the field axis. The starting and
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x y z px py pz
Z x y −z px py −pz
T x −y z −px py −pz
C x −y −z −px py pz

Table 2.2: The symmetry transformations of the crossed-fields system, expressed
in Cartesian coordinates.

returning directions of the orbits in a given family can be characterized by giving
the angle ϑ between the outgoing direction and the field axis. An exception is
formed by orbits starting along the field axis, i.e. with ϑ = 0 or ϑ = π. These
orbits are invariant under a rotation around the axis. Therefore they do not occur
in families.

In the absence of a magnetic field, the dynamics is invariant under time-
reversal. The presence of a magnetic field in general destroys this symmetry,
but if there is no external electric field, time-reversal invariance holds in the
subspace with Lz = 0. For a discussion of closed orbits, therefore, time-reversal
invariance effectively holds whenever there is a single external field. In these cases,
an electron returning to the nucleus will therefore rebound from the Coulomb
centre into its direction of incidence and retrace its previous trajectory back to
its starting direction. Therefore, any closed orbit, if it is not itself periodic, is
half of a periodic orbit. In particular, closed orbits possess repetitions. In the
special case when the starting and returning angles of the orbit are equal, the
closed orbit is itself periodic.

In the presence of non-parallel electric and magnetic fields there is no contin-
uous symmetry so that apart from the energy no constant of the motion exists.
Thus, three non-separable degrees of freedom have to be dealt with. I will always
assume the electric and magnetic fields to be perpendicular and choose coor-
dinates so that the magnetic field is directed along the positive z-axis and the
electric field along the positive x-axis. In the crossed-fields case, two angles are
required to characterize the starting or returning direction of an orbit. I will
use the polar angle ϑ between the trajectory and the magnetic field axis and the
azimuthal angle ϕ between the projection of the trajectory into the x-y-plane and
the electric field axis.

There are three discrete symmetry transformations of the crossed-fields sys-
tem:

• the reflection Z at the x-y-plane,

• the combination T of time-reversal and a reflection at the x-z-plane,1

• the combination C=ZT of the above.

Note that the crossed-fields system is not invariant under time-reversal, so that
closed orbits do not in general possess repetitions. The effects of the transforma-

1Note that the T operation is not time-reversal.
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Transformation Symmetry conditions
ϑi ϕi ϑf ϕf

Z π − ϑi ϕi π − ϑf ϕf ϑi = ϑf = π
2

T ϑf −ϕf ϑi −ϕi ϑi = ϑf and ϕi = −ϕf

C π − ϑf −ϕf π − ϑi −ϕi ϑi = π − ϑf and ϕi = −ϕf

Table 2.3: The symmetry transformations of the crossed-fields system: Transfor-
mation of initial and final angles and symmetry conditions for doublets. Singlets
satisfy ϑi = ϑf = π

2
and ϕi = −ϕf .

tions on the Cartesian coordinates as well as on the initial and final angles of a
closed orbit are summarized in tables 2.2 and 2.3.

The application of these transformations to a given closed orbit yields a group
of four closed orbits of equal length. Typically, these orbits will all be distinct,
so that closed orbits in the crossed-fields system occur in quartets. In particular
cases, a closed orbit can be invariant under one of the symmetry transformations.
In this case, there are only two distinct orbits related by symmetry transfor-
mations. I will refer to them as a doublet, or more specifically as a Z-, T-, or
C-doublet, giving the transformation under which the orbits are invariant. The
transformations of the initial and final angles given in table 2.3 yield symmetry
conditions that an orbit invariant under any of the transformations must satisfy.
They are also given in table 2.3. In special cases, a closed orbit can be invariant
under all three symmetry transformations of the crossed-fields system. It then oc-
curs as a singlet, since no distinct orbits can be generated from it by a symmetry
transformation.

Among the symmetry transformations, the reflection Z plays a special role in
that it is a purely geometric transformation. There is, therefore, an invariant sub-
space of the phase space, viz. the x-y-plane perpendicular to the magnetic field.
This plane is invariant under the dynamics and therefore forms a subsystem with
two degrees of freedom. In addition, in quantum mechanics the Z-transformation
gives rise to a conserved parity quantum number.

In connection with bifurcations of orbits it is essential to study ghost orbits,
i.e. to allow coordinates and momenta to assume complex values. For ghost
orbits, another reflection symmetry arises, viz. the symmetry with respect to
complex conjugation. As the Hamiltonian (2.1) is real, it is obviously invariant
under complex conjugation. Therefore, ghost orbits always occur in pairs of
conjugate orbits.

2.2 The S-matrix formulation of closed-orbit

theory

Closed-orbit theory was first introduced by Du and Delos [3] and Bogomolny [4]
some twenty years ago to interpret the modulations observed in the photo-absorp-
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tion spectra of hydrogenic Rydberg atoms in a magnetic field close to the ioniza-
tion threshold. Since that time, it has proven a powerful and flexible tool for the
semiclassical interpretation of a variety of spectra. It has been used to describe
atoms in electric [35] as well as parallel [36, 37] or crossed [6–8, 38] electric and
magnetic fields. In the case of non-hydrogenic atoms, the influence of the ionic
core can be modelled either by means of an effective classical potential [33,34] or
in terms of quantum defects [39,40]. Recently, closed-orbit theory has even been
shown to be applicable to the spectra of simple molecules in external fields [41].

The basic observation fundamental to all of closed-orbit theory is a partition
of space into physically distinct regions. In the core region close to the nucleus,
the Rydberg electron interacts in a complicated manner with all electrons of the
ionic core. This interaction is manifestly quantum mechanical in nature, it cannot
be described in the framework of semiclassical theories. On the other hand, the
interaction of the Rydberg electron with the external fields is much weaker in
the core region than its interaction with the core, so that the fields can safely be
neglected. Therefore, a description of the core obtained in the field-free case can
be used. In particular, the initial state of the photo-absorption process is assumed
to be localized in the core region and not to be influenced by the external fields.

In the long-range region far away from the nucleus, on the other hand, the
external fields play a dominant role, whereas there is no interaction with the ionic
core except for the Coulomb attraction of its residual charge. In this region, the
dynamics of the Rydberg electron is well-suited for a semiclassical description. It
is independent of the details of the ionic core.

In order to establish a link between the dynamics in the core and long-range
regions, a matching region is assumed to exist at intermediate distances from
the nucleus where both the external fields and the interaction with the core are
negligible. Thus, in the matching region the simple physics of an electron subject
to the residual Coulomb field of the core is observed.

Recently, Granger and Greene [26] proposed a novel formulation of the theory
based on ideas borrowed from quantum-defect theory. Their formulation achieves
a clear separation between properties of the external field configuration and the
ionic core, which are encoded in separate S-matrices. Suitable approximations to
the core and the long-range S-matrices can be derived independently. Therefore,
the formalism can be expected to allow a generalization of closed-orbit theory to
atoms with ionic cores exhibiting more complicated internal dynamics than have
been treated so far.

The derivation given by Granger and Greene treated the case of an atom
in a magnetic field only. It will now be extended in such a way that it holds
for combined electric and magnetic fields with arbitrary field configurations. To
this end, the ansatz and basic formulae of Granger and Greene’s theory will be
summarized in this section. A more detailed treatment can be found in their
paper [26]. In subsequent sections, I will then turn to a discussion of the long-
range scattering matrices pertinent to different external field configurations.

To lay the foundation for a definition of the S-matrices, I pick a basis set
Ψcore

k and ΨLR
k of wave functions of the Rydberg electron valid in the core and
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long-range regions, respectively, and expand in terms of spherical harmonics

Ψ
core(LR)
k (r, ϑ, ϕ) =

1

r

∑

k′

Yk′(ϑ, ϕ)F
core(LR)
k′k (r) . (2.3)

The channel index k is to be understood as a double index (l, m) characterizing
the spherical harmonics. When studying a complicated atom with more than one
relevant state of the core, additional information can be included in the channel
functions Yk.

In the matching region, the radial function matrices F core and F LR can both
be expressed in terms of radial Coulomb functions. I use the functions f+k (r) and
f−
k (r) satisfying outgoing and incoming wave boundary conditions, respectively,
given by [42] and choose the radial functions to be of the form2

F core
k′k (r) = −i

[
f+
k′ (r)S

core
k′k − f−

k′ (r) δk′k
]
, (2.4)

F LR
k′k (r) = −i

[
f+
k′ (r) δk′k − f−

k′ (r)S
LR
k′k

]
. (2.5)

Physically, these choices mean that the basis function Ψcore
k is a superposition of

a single incoming wave in channel k and the outgoing waves in different channels
produced from it by scattering off the core. Similarly, ΨLR

k consists of an outgoing
wave in channel k and the returning waves generated by scattering off the exter-
nal fields. The scattering matrices Score and SLR thus summarize the physical
properties of the core and the external fields, respectively. They are determined
by the condition that the radial functions obey suitable boundary conditions, i.e.
F core is regular at the origin, whereas FLR vanishes or satisfies outgoing-wave
boundary conditions at infinity for bound and free states, respectively.

For hydrogen atoms, the expansion (2.4) in terms of Coulomb functions is
valid arbitrarily close to the nucleus. To make the wave functions regular at the
origin, Score must be chosen equal to the identity matrix. The fact that it is a
diagonal matrix reflects the conservation of angular momentum. For alkali metal
atoms, the wave functions experience an additional phase shift upon scattering
off the core. The core S-matrix can be expressed in terms of the quantum defects
µk (which in fact depend on l only) as

Score
kk′ = δkk′e

2πiµk . (2.6)

Similarly, the expansion (2.5) of the long-range radial functions is valid for
arbitrarily large r if no external fields are present. The long-range S-matrix can
then be determined from the asymptotic behaviour of the Coulomb functions. To
a good approximation [43], it reads

SLR
kk′ = e2iβkδkk′ (2.7)

2The regular and irregular Coulomb functions f and g used by Granger and Greene [26]
differ from those used by Robicheaux [43] in that they are energy-normalized in Rydberg rather
than in Hartree units. The radial function matrices given here agree in normalization with
those adopted by Robicheaux, so that they are consistent with (2.13) below, which is adapted
from [43]. The matrices used by Granger and Greene are inconsistent with their equation (12).
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with

βk =

{
π (ν − l) if E < 0,

i∞ if E > 0,
(2.8)

and the effective quantum number ν = 1/
√
−2E. In the presence of external

fields, SLR encodes the details of the field configuration. As it describes the
dynamics at long distances from the nucleus, it lends itself to a semiclassical
approximation.

A complete description of photo-absorption spectra requires the calculation
of the energies En of the excited atomic states and the strengths of the spectral
lines, which is characterized by the dipole matrix elements 〈i|D|n〉 between the
initial state |i〉 and the Rydberg state |n〉, where D is the component of the dipole
operator describing the polarization of the exciting laser field. Alternatively, the
oscillator strengths fn = 2(En − Ei) | 〈i|D|n〉 |2 or the scattering cross sections
σn = 4π2α (En−Ei)| 〈i|D|n〉 |2 with the fine structure constant α can be specified.
These quantities are neatly summarized in the response function

g(E) = − 1

π
〈i|DG(E)D|i〉 = − 1

π

∑

n

| 〈i|D|n〉 |2
E − En + iε

, (2.9)

where

G(E) =
∑

n

|n〉〈n|
E − En + iε

(2.10)

denotes the retarded Green’s function. From g(E), both the oscillator strength
density

f(E) =
∑

n

fn δ(E − En) = 2(E − Ei) Im g(E) (2.11)

and the cross section density

σ(E) =
∑

n

σn δ(E − En) = 4π2α(E − Ei) Im g(E) (2.12)

can easily be computed.
Following previous work by Robicheaux [43], Granger and Greene derive the

following expression for the response function:

g = i d†
(
1− ScoreSLR

)−1 (
1 + ScoreSLR

)
d , (2.13)

where the vector d comprises the energy-dependent dipole matrix elements

dk(E) = 〈Ψcore
k (E)|D|i〉 (2.14)

between the initial state and the core-region channel wave functions. Usually, due
to angular-momentum selection rules, only a few of the dk are non-zero. Their
calculation requires a detailed knowledge of the atomic core. For hydrogen the
core wave functions are known analytically, so that the dk can easily be computed
(see appendix B).
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An expression for the response function which is easier to interpret is gained
by expanding the matrix inverse in equation (2.13) in a geometric series, which
yields

g = i d†
(
1 + 2

(
ScoreSLR

)
+ 2

(
ScoreSLR

)2
+ 2

(
ScoreSLR

)3
+ . . .

)
d . (2.15)

The terms in this series embody contributions from paths where the Rydberg
electron takes zero, one, two . . . trips out into the long-range region and back
to the core before interfering with the initial outgoing wave. In the semiclassical
approximation, SLR will be given in terms of closed orbits. A returning wave
is associated with each returning classical orbit. By a general ionic core, it is
scattered into all directions. The parts of the wave scattered into the outgoing
direction of a closed orbit will then follow this orbit until they return to the
core again. Thus, core scattering leads to a concatenation of different closed
orbits [39,40]. In hydrogen, the Coulomb centre scatters the incoming wave back
into its direction of incidence, so that there is no coupling of closed orbits. Terms
describing repeated scattering off the external fields are therefore absent from the
sum, and the hydrogen response function can be decomposed into a smooth part

g0 = i d†d , (2.16)

which is the same as in the field-free case and contains “direct” contributions
where the electron does not scatter off the external fields at all, and an oscillatory
part

gosc = 2i d†SLRd (2.17)

generated by the electron going out into the long-range region and being scattered
back to the nucleus. It is this part which describes the impact of the external
fields. The semiclassical approximation will be of the form

gosc =
∑

c.o.

Ac.o.e
iSc.o. , (2.18)

where the sum extends over all classical closed orbits starting from the nucleus
and returning to it after being deflected by the external fields,

Sc.o. =

∮
p · dx (2.19)

is the classical action of the closed orbit, and the amplitude Ac.o. describes its
stability and its starting and returning directions. The precise form of Ac.o.

depends on the geometry of the external fields and will be derived below for
systems with and without a rotational symmetry. In any case, Ac.o. can be
computed from purely classical quantities.

The basis for a semiclassical approximation is provided by the retarded Green’s
function G(x,x′;E) describing the propagation of the electron from x′ to x at
the energy E. It can be expanded in terms of the channel functions as

G(x,x′;E) =
1

rr′

∑

kk′

Yk(ϑ, ϕ) G̃kk′(r, r
′;E) Y ∗

k′(ϑ
′, ϕ′) (2.20)
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with

G̃kk′(r, r
′;E) = rr′ 〈k|G(x,x′;E)|k′〉 . (2.21)

The long-range scattering matrix is related to the Green’s function matrix by [26]

SLR =
1

iπ
[f−(r0)]

−1G(r0, r0)[f
−(r0)]

−1 , (2.22)

where r0 is the matching radius, f− is the diagonal matrix

f−
kk′(r) = f−

k (r) δkk′ (2.23)

comprising the radial wave functions, and G(r, r′) denotes the part of G̃(r, r′)
satisfying incoming-wave boundary conditions at the final radius r. The latter
condition ensures that only electron paths approaching the matching radius from
the long-range region contribute to SLR, whereas paths that traverse the core
region are omitted.

2.3 Closed-orbit theory for crossed-fields

systems

To obtain a semiclassical approximation to the long-range scattering matrix, I
make use of the semiclassical Green’s function derived by Gutzwiller [2]

Gscl(x,x′;E) =
2π

(2πi)(n+1)/2

∑

class. traj.

√
|D| exp

(
iS − i

π

2
σ
)
, (2.24)

where the sum extends over all classical trajectories leading from x′ to x at the
energy E, n is the number of degrees of freedom,

S =

∫ �

� ′

p · dx , (2.25)

is the classical action along the trajectory, σ the number of caustics along the
trajectory, and

D = det

(
∂2S

∂ � ∂ � ′
∂2S
∂ � ∂E

∂2S
∂E∂ � ′

∂2S
∂E2

)
(2.26)

is the amplitude for the contribution of the trajectory. By (2.21), I obtain a
semiclassical approximation to the Green’s function matrix

Gscl
kk′(r0, r0;E) = r20

∫
dϑ dϑ′ dϕ dϕ′ sin ϑ sinϑ′ Y ∗

k (ϑ, ϕ) Yk′(ϑ
′, ϕ′)

× 2π

(2πi)2

∑

class. traj.

√
|D| exp

(
iS(r0, r0)− i

π

2
σ
)
. (2.27)
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As usual in semiclassics, the integrals will be evaluated in the stationary-phase
approximation. It yields a sum over all classical trajectories leaving the matching
sphere at a direction given by (ϑi, ϕi) and returning to it at (ϑf , ϕf). The condi-
tion that G(r0, r0) obeys incoming-wave boundary conditions at the final radius
translates into the condition that only orbits going out from the matching sphere
into the long-range region and then returning to r0 are to be included, whereas
orbits passing through the core region are omitted. If all factors in the integrand
except for the exponential are assumed to vary slowly, the stationary-phase ap-
proximation reads

Gscl
kk′(r0, r0;E) = 2πr20

∑

i→f

sinϑi sin ϑf Y
∗
k (ϑf , ϕf)Yk′(ϑi, ϕi)

×
√

|Ds.p.|√∣∣∣∣det
∂2S

∂(ϑ′, ϕ′, ϑ, ϕ)2

∣∣∣∣

exp
(
iS(r0, r0)− i

π

2
(σ + κ)

)
, (2.28)

where κ is the number of negative eigenvalues of the Hessian matrix of S occurring
in the prefactor.

Because the initial state is assumed to be well localized, it is clear that the
outgoing waves generated by the photo-excitation originate in the immediate
neighbourhood of the nucleus. Therefore, only trajectories leaving the matching
sphere radially need to be included in (2.28). By the same token, the trajectories
can be assumed to return to the matching radius radially. Thus, they are parts
of closed orbits starting precisely at the nucleus and returning there.

By transforming (2.26) to spherical coordinates and making use of the rela-
tions

∂S

∂x
= p ,

∂S

∂E
= t , (2.29)

the amplitude factor D for radial trajectories can be simplified to

D = − 1

ṙṙ′ r2r′2 sinϑ sin ϑ′
det

∂(p′ϑ, p
′
ϕ)

∂(ϑ, ϕ)
. (2.30)

The determinants occurring in (2.28) combine to

det
∂(p′ϑ, p

′
ϕ)

∂(ϑ, ϕ)
·
(
det

∂2S

∂(ϑ′, ϕ′, ϑ, ϕ)2

)−1

=det
∂(p′ϑ, p

′
ϕ, pϑ, pϕ)

∂(ϑ, ϕ, pϑ, pϕ)
·
(
det

∂(−p′ϑ,−p′ϕ, pϑ, pϕ)
∂(ϑ′, ϕ′, ϑ, ϕ)

)−1

=det
∂(ϑ′, ϕ′)

∂(pϑ, pϕ)
.

(2.31)
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With these results, the Green’s function matrix assumes the form

Gscl
kk′(r0, r0;E) = 2π

∑

c.o.

√
sin ϑi sinϑf√

|ṙṙ′|

× Y ∗
k (ϑf , ϕf)Yk′(ϑi, ϕi)√∣∣∣∣det

∂(pϑf
, pϕf

)

∂(ϑi, ϕi)

∣∣∣∣

exp
(
iS(r0, r0)− i

π

2
(σ + κ)

)
. (2.32)

The determinant in the denominator of (2.32) measures the dependence of the
final angular momenta of the trajectory upon the starting angles. As it stands,
it suffers from the singularities of the spherical coordinate chart: At the poles,
neither the angle ϕ nor the angular momenta pϑ and pϕ are well defined, so
that close to the poles, the calculation of the determinant becomes numerically
unstable. In section 4.4, the determinant will be rewritten in the form

det
∂(pϑf

, pϕf
)

∂(ϑi, ϕi)
= sinϑi sin ϑf M (2.33)

with a 2 × 2-determinant M devoid of any singularities. With this form of the
stability determinant, the semiclassical Green’s function matrix reads

Gkk′ = 2π
∑

c.o.

1√
|ṙṙ′|

Y ∗
k (ϑf , ϕf)Yk′(ϑi, ϕi)√

|M |
exp

(
iS(r0, r0)− i

π

2
(σ + κ)

)
,

(2.34)
which is free of any singularities introduced by the spherical coordinates.

By virtue of (2.22), the semiclassical long-range scattering matrix reads

SLR
kk′ = 2i

∑

c.o.

1√
|ṙṙ′|

1

f−
k (r0)

1

f−
k′ (r0)

Y ∗
k (ϑf , ϕf)Yk′(ϑi, ϕi)√

|M |

× exp
(
iS(r0, r0)− i

π

2
(σ + κ)

)
. (2.35)

This expression can be further simplified if, for excited states close to the ioniza-
tion threshold, the radial wave functions

f−
l (r) ≈ −i

√
rH

(2)
2l+1(

√
8r) (2.36)

are approximated by the zero-energy wave functions, and the Hankel functions
are replaced with their asymptotic forms for large arguments [44]

H(2)
ν (x) ≈

√
2

πx
exp

(
−ix + i

π

2
ν + i

π

4

)
. (2.37)

This approximation has proven accurate in many cases of interest, but it was
called into question by Granger and Greene [26]. It will be discussed further in



16 CHAPTER 2. CLOSED-ORBIT THEORY

section 2.4, where I will show that there is no reason to doubt its reliability. It
leads to

SLR
lm,l′m′ = −2π

∑

c.o.

(−1)l+l′ Y
∗
lm(ϑf , ϕf)Yl′m′(ϑi, ϕi)√

|M |

× exp
(
i
(
S(r0, r0) + 2

√
8r0
)
− i

π

2
(σ + κ)

)
, (2.38)

because, due to the conservation of energy, ṙ2/2 = 1/r if E = 0. In equation 2.38,
the channel indices k = (l, m) are finally written out explicitly.

For a radial trajectory in a hydrogen atom going out from the nucleus to
r = r0 at zero energy, the action is

√
8r0, so that

Sc.o. = S(r0, r0) + 2
√
8r0 (2.39)

is the action of a closed orbit, measured from its start at the nucleus to its return.
The semiclassical long-range S-matrix finally reads

SLR
lm,l′m′ = −2π

∑

c.o.

(−1)l+l′ Y
∗
lm(ϑf , ϕf)Yl′m′(ϑi, ϕi)√

|M |
exp

(
iSc.o. − i

π

2
(σ + κ)

)
,

(2.40)
Both the action Sc.o. and the stability determinantM are evaluated at the nucleus
rather than on the matching sphere. The response function is given by

gosc(E) = 4π
∑

c.o.

Y∗(ϑf , ϕf)Y(ϑi, ϕi)√
|M |

exp
(
iSc.o. − i

π

2
µ
)
, (2.41)

where the Maslov index µ = σ+κ+1 was increased by 1 to absorb an additional
phase, and the angular function

Y(ϑ, ϕ) =
∑

lm

(−1)ldlmYlm(ϑ, ϕ) , (2.42)

with the core-region matrix elements dlm given by (2.14), characterizes the initial
state and the exciting photon. Through the dlm, the function Y(ϑ, ϕ) is energy-
dependent. In accordance with the choice of zero-energy radial wave functions
in the S-matrix elements, the angular function will be evaluated at zero energy
(see appendix B. This approximation has proven accurate in all applications of
closed-orbit theory considered in the literature so far. However, from the S-matrix
theory derivation it is obvious that the energy-dependence of both the dipole
matrix elements dlm and the S-matrix elements can easily be included should the
need arise. The semiclassical response function (2.41) has the anticipated form
(2.18) with

Ac.o. = 4π
Y∗(ϑf , ϕf)Y(ϑi, ϕi)√

|M |
ei(π/2) µ . (2.43)
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2.4 Closed-orbit theory for rotationally

symmetric systems

In the case of an atom in a single external field, a semiclassical expression for
the long-range scattering matrix can in principle be derived along the lines fol-
lowed in the previous section. The derivation is complicated, however, by the
rotational symmetry of the system, which makes closed classical orbits occur in
families. Due to this symmetry, the integrations over ϕ and ϕ′ in (2.27) cannot
be evaluated in the stationary-phase approximation, but must be calculated ex-
actly. A semiclassical theory dealing with these degeneracies can be developed
for arbitrary symmetry groups [45,46]. The treatment can be simplified, however,
if the symmetry reduction is performed at the level of the Schrödinger equation
instead of the semiclassical Green’s function.

The rotational symmetry gives rise to a conserved magnetic quantum number
m, so that the angular momentum quantum number l remains the only relevant
channel index. The semiclassical scattering matrix reads [26]

SLR
ll′ = 23/2π1/2

∑

i→f

√
|A| sinϑi sin ϑf

|ṙ|f−
l (r0)f

−
l′ (r0)

Y ∗
lm(ϑf , 0)Yl′m′(ϑi, 0)

× exp

(
iS(r0, r0)− i

π

2
µ̃− i

3π

4

)
, (2.44)

where

A =
∂ϑi
∂pϑf

∣∣∣∣
pϑi

, (2.45)

µ̃ is the number of poles of A encountered along the trajectory, and the sum
includes all classical trajectories with azimuthal angular momentum m joining
the circles given by polar angles ϑi and ϑf on the matching sphere. If the radius
of the matching sphere is much larger than the extent of the initial state, the
trajectories can again be assumed to leave the sphere and return to it radially.
Strictly speaking, this condition can only be met if m = 0, which I will assume
in what follows. If m 6= 0, the initial angular velocity ϕ̇ must be non-zero, but it
will be small if the matching radius is large. In this case, the trajectory will not
actually close at the nucleus, but swing by at a short distance.

Using, as above, the radial wave functions at zero energy, I obtain the semi-
classical scattering matrix

SLR
ll′ = −(2π)3/2(−1)l+l′i

∑

c.o.

√
|A| sinϑi sinϑf Y ∗

lm(ϑf , 0)Yl′m′(ϑi, 0)

× exp

(
iSc.o. − i

π

2
µ̃− i

3π

4

)
(2.46)
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and the response function

gosc(E) = 2(2π)3/2
∑

c.o.

√
|A| sinϑi sinϑf Y∗(ϑf )Y(ϑi)

× exp
(
iSc.o. − i

π

2
µ+ i

π

4

)
(2.47)

with µ = µ̃+ 2 and

Y(ϑ) =
∑

l

(−1)ldlYlm(ϑ, 0) . (2.48)

The angular function Y thus defined is a special case of that defined in (2.42)
with ϕ set to zero.

This result has the form (2.18) with

Ac.o. = 2(2π)3/2
√

|A| sinϑi sinϑf Y∗(ϑf )Y(ϑi) exp
(
i
π

2
µ+ i

π

4

)
. (2.49)

It differs from the result obtained previously by Du and Delos [3]; in that in their
work the amplitude factor A of (2.45) is replaced with

A1 =

√
2

r0

∂ϑi
∂ϑf

∣∣∣∣
pϑi

. (2.50)

This discrepancy was noted and numerically investigated by Granger and Greene
[26]. They attribute it to the approximation of using zero-energy wave functions,
which can easily be avoided in the S-matrix theory, but is an integral part of the
derivation given by Du and Delos.

For the closed orbit perpendicular to the field in the diamagnetic Kepler prob-
lem and a scaled matching radius of r̃0 = 0.01, the amplitudes (2.45) and (2.50)
are plotted in figure 2.1. This figure is similar to figure 1 in [26], although for
the latter the matching radius is not given. The agreement is excellent at scaled
energies close to zero, but becomes poor if the energy decreases. However, con-
trary to their conclusions, the lack of agreement is not due to the zero-energy
approximation, but rather to the dependence of the amplitudes on the matching
radius.

This statement can be verified most conveniently if the motion is described in
semiparabolic coordinates

µ =
√
r + z , ν =

√
r − z . (2.51)

If the trajectory is recorded as a function of a parameter τ related to the time t
by

dt = 2r dτ , (2.52)

and a prime denotes differentiation with respect to τ , for trajectories with vanish-
ing azimuthal angular momentum the equations of motion in the Coulomb region
read

µ′ = pµ , ν ′ = pν ,

p′µ = 2Eµ , p′ν = 2Eν .
(2.53)
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Figure 2.1: Scaled semiclassical amplitude factors after Granger and Greene (2.45,
solid line) and after Du and Delos (2.50, dashed line) for the closed orbit per-
pendicular to the magnetic field as a function of the scaled energy. The scaled
matching radius is r̃0 = 0.01.

These equations are devoid of any singularities, so that they can conveniently be
used to discuss the motion close to the nucleus. In fact, the transformation de-
scribed here is a special case of the Kustaanheimo-Stiefel regularization discussed
in chapter 4. The transformation inverse to (2.51) is given by

r =
1

2

(
µ2 + ν2

)
, ϑ = arccos

µ2 − ν2

µ2 + ν2
. (2.54)

The momenta transform according to

pr =
µpµ + νpν
µ2 + ν2

, pϑ =
µpν − νpµ
2 sign(µν)

. (2.55)

Note that the transformation from semiparabolic to Cartesian coordinates is not
one-to-one, but that µ and ν are fixed up to the choice of sign only.

To evaluate (2.45) and (2.50), the derivatives ∂pϑf
/∂ϑi and ∂ϑf/∂ϑi, must be

calculated and their dependence on the matching radius rmust be determined. As
the radial trajectory specified by a starting angle ϑi is independent of the radius
where the angle is measured, the r-dependence of the derivatives is determined
by the returning trajectories only. It can be evaluated as follows:

I arbitrarily fix the returning time of a closed orbit at τ = 0, so that µ(0) =
ν(0) = 0. The solution to (2.53) describing a trajectory returning at an angle ϑf
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is given by

µ(τ) = 2
cos(ϑf/2)√

−2E
sin
(√

−2E τ
)
= −

√
2r cos

ϑf
2
,

ν(τ) = 2
sin(ϑf/2)√

−2E
sin
(√

−2E τ
)
= −

√
2r sin

ϑf
2
,

pµ(τ) = 2 cos
ϑf
2

cos
(√

−2E τ
)
= 2

√
1 + Er cos

ϑf
2
,

pν(τ) = 2 sin
ϑf
2

cos
(√

−2E τ
)
= 2

√
1 + Er cos

ϑf
2
,

(2.56)

where the coefficients were chosen to satisfy the conservation of energy and to
give the correct returning angle after a transformation to Cartesian coordinates.
The second expression in each line follows from µ2 + ν2 = 2r, whence for τ < 0

sin
(√

−2E τ
)
= −

√
−Er , cos

(√
−2E τ

)
=

√
1 + Er . (2.57)

Equations of motion for the derivatives ∂µ/∂ϑi and ∂ν/∂ϑi are obtained by
linearizing (2.53). Since (2.53) is already linear, the derivatives satisfy the same
equations of motion as the coordinates themselves as long as the electron moves
in the Coulomb region. There the solutions read

∂µ

∂ϑi
=

aµ√
−2E

sin
(√

−2E τ
)
+ bµ cos

(√
−2E τ

)
(2.58)

and

∂pµ
∂ϑi

=
d

dτ

∂µ

∂ϑi
= aµ cos

(√
−2E τ

)
−
√
−2E bµ sin

(√
−2E τ

)
. (2.59)

Equation (2.57) yields

∂µ

∂ϑi
= −aµ

√
r

2
+ bµ

√
1 + Er ,

∂pµ
∂ϑi

= aµ
√
1 + Er −

√
2rEbµ ,

(2.60)

so that the coefficients

aµ =
∂pµf

∂ϑi
, bµ =

∂µf

∂ϑi
(2.61)

can be identified with the values of the derivatives obtained at r = 0. Analogous
expressions hold for ∂ν/∂ϑi.

From (2.55), the amplitude (2.45)

1

A
=
∂pϑ
∂ϑi

=
1

2 sign(µν)

(
µ
∂pν
∂ϑi

+ pν
∂µ

∂ϑi
− ν

∂pµ
∂ϑi

− pµ
∂ν

∂ϑi

)

=
1

2 sign(µν)

(
∂µf

∂ϑi
pνf −

∂νf
∂ϑi

pµf

)
(2.62)
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can be evaluated. It is independent of r, as could have been anticipated from the
fact that pϑ is a component of the total angular momentum and thus is conserved
along the trajectory once the electron has entered the Coulomb region. The
amplitude A−1 can also, up to an immaterial choice of sign, be identified with
the monodromy matrix element

m12 =
1

2

(
∂νf
∂ϑi

pµf
− ∂µf

∂ϑi
pνf

)
(2.63)

introduced by Bogomolny [4] to describe the semiclassical amplitudes, so that the
amplitudes derived by Granger and Greene from the S-matrix theory agree with
Bogomolny’s.

Similarly, the amplitude (2.50) used by Du and Delos reads, by (2.54),

1

A1
=

√
r

2

∂ϑ

∂ϑi

=
sign(µν)

2

[
pµf

(√
r

2

∂pνf
∂ϑi

−
√
1 + Er

∂νf
∂ϑi

)

−pνf
(√

r

2

∂pµf

∂ϑi
−
√
1 + Er

∂µf

∂ϑi

)]

=
1

A
+O

(√
r
)
.

(2.64)

Thus, the amplitudes A and A1 agree in the limit of vanishing matching radius,
but the amplitude A1 proposed by Du and Delos exhibits a strong dependence
on r, whereas the amplitude A given by Granger and Greene does not. These
findings can also be confirmed numerically. Figure 2.2 shows the two amplitudes
for the closed orbit perpendicular to the magnetic field at a scaled energy of
Ẽ = −2 as a function of the scaled matching radius r̃0. The dependence of A1

on r̃0 is considerable.
I have thus shown that, contrary to the claim by Granger and Greene, the

discrepancy between their semiclassical amplitude and that obtained by Du and
Delos is not due to the zero-energy approximation, but rather due to the choice
of a finite matching radius. In addition, the amplitude derived by Granger and
Greene is not specific to the S-matrix formulation, it agrees with the result derived
earlier by Bogomolny in the context of a semiclassical wave function formalism.
Nevertheless, as it eliminates the need to specify a finite matching radius and
allows one to calculate all classical quantities at the nucleus, it seems more ap-
propriate than the amplitude given by Du and Delos, which introduces a certain
arbitrariness in the choice of a matching radius. I will henceforth use Bogomolny’s
notation and write the amplitude as

Ac.o. = 2(2π)3/2
√

sinϑi sin ϑf√
|m12|

Y∗(ϑf )Y(ϑi) exp
(
i
π

2
µ+ i

π

4

)
. (2.65)

A final remark is in order concerning closed orbits directed along the external
field axis, i.e. ϑi = ϑf = 0 or π. Such orbits exist in both external magnetic and
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Figure 2.2: Scaled semiclassical amplitude factors after Granger and Greene (2.45,
solid line) and after Du and Delos (2.50, dashed line) for the closed orbit perpen-
dicular to the magnetic field as a function of the matching radius at Ẽ = −2.

electric fields. According to (2.65), their contribution to photo-absorption spectra
is zero. However, as these orbits are invariant under rotations around the field
axis, they occur as isolated orbits rather than in one-parameter families. Thus,
the appropriate amplitude describing their contribution is given by the crossed-
fields amplitude (2.43) rather than (2.65). As will be shown in section 4.4, for
these orbits M = m2

12. The amplitude for an axial orbit thus reads

Ac.o. = 4π
Y∗(ϑf , 0)Y(ϑi, 0)

|m12|
ei(π/2) µ . (2.66)

In terms of the generic scaling parameter w of section 2.1, the monodromy
matrix element scales as m12 = wm̃12. Therefore, the semiclassical amplitudes
scale according to Ac.o. = w−1Ãc.o. for axial orbits and Ac.o. = w−1/2Ãc.o. for
non-axial orbits. Thus, in the semiclassical limit of large w, the contributions of
the axial orbits are small compared to those of the non-axial orbits.



Chapter 3

Harmonic inversion

3.1 Harmonic inversion in semiclassical physics

The semiclassical closed-orbit theory developed in the previous chapter provides
an expression for the quantum mechanical response function (2.9) in terms of
classical orbits. Its general form is

g(E) = − 1

π

∑

n

mn

E − En + iε
= g0(E) +

∑

c.o.

Ac.o.(E) eiSc.o.(E) , (3.1)

where the coefficients mn = | 〈i|D|n〉 |2 are the dipole matrix elements connecting
the initial state to the excited states and g0(E) is the smooth part of the spec-
trum. Equation (3.1) offers a way, in principle, of calculating quantum mechanical
eigenenergies En and their dipole matrix elements mn from classical closed or-
bits or, vice versa, of determining the classical quantities Sc.o. and Ac.o. from a
quantum spectrum.

In recent years, methods of high-resolution spectral analysis have been shown
to be a powerful tool for this conversion from the classical to the quantum regime
and back [19, 27, 47, 48]. The present chapter will be concerned with describing
these techniques. The first section is devoted to a discussion of the ansatz ren-
dering the harmonic signal analysis a powerful tool for the conversion problems
described above. Subsequent sections will introduce different algorithms for the
harmonic inversion and compare their numerical efficiencies. Actual applications
to closed-orbit theory will be presented in later chapters.

The scope of the algorithms discussed here is actually much wider than that
of closed-orbit theory, because semiclassical trace formulae [2, 49] also lead to
expansions of the form (3.1). Trace formulae can be applied to arbitrary quantum
systems possessing a classical counterpart. In their case, mn is the multiplicity
of the energy eigenvalue En, and the semiclassical sum extends over all periodic
(rather than closed) orbits of the pertinent classical system. The exact form of
the semiclassical amplitudes A depends on the details of the underlying classical
dynamics. Although trace formulae for systems possessing arbitrary discrete [50]
or continuous [45, 46] symmetry groups can be derived, the most well-known
forms are Gutzwiller’s original trace formula [51] for chaotic systems and the

23
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Berry-Tabor trace formula [52,53] for integrable systems. For systems with mixed
regular-chaotic classical phase space, both forms of the trace formula have to be
combined. In these cases, periodic-orbit theory is more difficult to apply than
closed-orbit theory, which yields the same semiclassical amplitudes throughout
the transition from regular to chaotic dynamics.

An obstacle to the extraction of the classical actions and amplitudes from a
quantum spectrum via (3.1) arises from the fact that these parameters are energy
dependent and thus vary across the spectrum. This difficulty can be overcome
with the help of the scaling properties discussed in section 2.1. If, e.g., scaling
with respect to the magnetic field strength is used, a quantum state can be
characterized by the scaled energy Ẽ, the scaled electric field strength F̃ and the
scaling parameter w = B−1/3 instead of the energy E and the field strengths B
and F . If the spectrum of scaling parameters wn corresponding to states with
fixed Ẽ and F̃ is recorded, (3.1) can be rewritten as

g(w) = − 1

π

∑

n

mn

w − wn + iε
= g0(w) + wγ

∑

c.o.

Ãc.o.e
iwS̃c.o. . (3.2)

The exponent γ is determined by the scaling properties of the semiclassical ampli-
tudes.1 In this form of the semiclassical expansion, the scaled classical parameters
S̃c.o. and Ãc.o. are constant throughout the spectrum. This technique, which is
known as scaled-energy spectroscopy, has become customary in both experimental
and theoretical studies [54, 55].

A quantum calculation yields the bound state spectrum

ρ(w) =
∑

n

mnδ(w − wn) = Im g(w) . (3.3)

By (3.2),

w−γρ(w) = w−γ Im g0(w)−
i

2

∑

c.o.

{
Ãc.o.e

iwS̃c.o. − Ã∗
c.o.e

iwS̃∗
c.o.

}
(3.4)

is obtained as a sum of sinusoidal oscillations with frequencies equal to the scaled
actions of classical closed orbits and amplitudes equal to their semiclassical recur-
rence amplitudes. The most obvious method of extracting the classical informa-
tion from the quantum spectrum is, therefore, to take a Fourier transform of the
spectrum. It will exhibit a series of peaks associated with the closed orbits. The
smooth part g0(w) of the semiclassical spectrum will contribute to the Fourier
transform at very low frequencies only. In general it will not interfere with the
closed orbit recurrence peaks.

In practice, the quantum spectrum is known in a finite range 0 ≤ w ≤ wmax

only. Therefore, the Fourier transform yields peaks having a finite width 2π/wmax

1In the case of rotationally-symmetric systems, the scaling properties of the amplitudes of
axial and non-axial closed orbits differ. However, as discussed at the end of section 2.4, in the
semiclassical limit the amplitudes of the axial orbits are small enough to be neglected.
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instead of the ideal δ function peaks. The analysis of the signal by means of a
Fourier transform is thus limited by the “uncertainty principle,” which states
that in a signal of finite length wmax, two frequencies can only be resolved if their
difference is larger than 2π/wmax. This limitation can be overcome by noting
that one is not actually interested in the smooth spectrum the Fourier transform
produces, but rather in a set of discrete actions S̃c.o. and the corresponding am-
plitudes Ac.o.. In abstract terms, the problem is to extract the frequencies ωk and
the amplitudes dk from a given signal C(t) of the form

C(t) =
∑

k

dke
−iωkt . (3.5)

In the present case, the signal

C(w) = w−γρ(w) =
∑

n

w−γ
n mnδ(w − wn) (3.6)

is given as a sum of δ functions.
The application of a high-resolution method of spectral analysis instead of a

conventional Fourier transform circumvents the uncertainty principle. However,
an uncertainty remains in the weaker form of the “informational uncertainty
principle” [56], which states that the signal length Tmax required to resolve the
frequencies is given by

Tmax & 4πρ̄(ω) (3.7)

in terms of the local average density of frequencies ρ̄(ω). Since this relation
involves the average instead of the minimum spacing between frequencies, the
signals can usually be significantly shorter than required by the Fourier transform.

The inverse problem, i.e. the extraction of the quantum mechanical eigen-
energies En and their matrix elements mn from the classical closed orbits, appears
straightforward at first sight: summation of the closed orbit sum in (3.1) imme-
diately gives a semiclassical approximation to the quantum response function.
In practice, however, apart from the obvious difficulty that only finitely many
closed orbits can be calculated, the closed orbit sum turns out to diverge due to
the large number of classical closed orbits. This is in fact to be expected since
the quantum response function has poles at the eigenenergies, whereas the closed
orbit sum, if it converged, would give a smooth function of the energy. One must
therefore search for a method to overcome the fundamental convergence problems
of the semiclassical closed orbit sum and extract the eigenenergies from a finite
set of closed orbits. This turns out to be even more challenging a problem than
the semiclassical analysis of quantum spectra.

An obvious method of dealing with the convergence problems is to simply cut
off the closed orbit sum at a finite maximum orbital period Tmax. This corresponds
to averaging the response function over an energy range ∆E ≈ ~/Tmax. Therefore,
it produces spectral peaks of finite width instead of δ peaks. In this sense, it is
analogous to the spectral analysis by means of the Fourier transform, which also
gives a smooth recurrence spectrum instead of identifying individual orbits. High-
resolution methods are clearly desirable.
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In the context of semiclassical trace formulae, several techniques have been
proposed for the calculation of individual energy levels. Although many of them
have proven very efficient for specific classes of systems, most of them suffer
from the disadvantage of non-universality. The cycle expansion technique [13,
14], for example, requires a completely hyperbolic dynamics and the existence
of a symbolic code. By contrast, the Riemann-Siegel look-alike formula and
pseudo-orbit expansion of Berry and Keating [15,16] can only be applied to bound
systems.

As a general method of semiclassical quantization, Main et al. [19, 47] intro-
duced high-resolution harmonic inversion. This method only assumes the general
form (3.1) of the semiclassical expansion. So far, it has only been applied to sys-
tems possessing a scaling property. I will stick to this restriction for the moment.
In section 3.4, an extension to non-scaling systems will be presented.

In the case of a scaling system, I start from equation (3.2). Multiplying (3.2)
by w−γ, taking the Fourier transform and neglecting the smooth part of the
spectrum, I obtain

i

π

∑

n

w−γ
n mne

−iwns = C(s) (3.8)

with

C(s) =
1

2π

∫ +∞

−∞
dw
∑

c.o.

Ãc.o.e
iwS̃c.o.e−iws =

∑

c.o.

Ãc.o.δ(s− S̃c.o.) . (3.9)

The problem of semiclassical quantization has thus been recast as a harmonic
inversion problem (3.5), where the signal is again given as a sum of δ functions.
The method thus inherits the advantages of the high-resolution methods found
valuable in the context of spectral analysis.

For a semiclassical quantization orbits up to a certain maximum length are
required. Usually, the maximum length is measured in units of the Heisenberg
time

TH =
2π~

∆E
(3.10)

with the mean level spacing ∆E. In connection with semiclassical trace formulae,
quantization schemes that require orbits up to a maximum period of the order
of the Heisenberg time have been devised [18, 20]. In completely chaotic bound
systems, a functional equation can be used to reduce the maximum period to half
the Heisenberg time [16].

In scaling systems, the analogue of the Heisenberg time the Heisenberg action

S̃H = 2π/∆w . (3.11)

Due to the informational uncertainty principle (3.7), the harmonic inversion
method requires orbits with scaled actions up to

Smax & 4πρ̄(w) =
4π

∆w
= 2S̃H , (3.12)
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which is twice as long as required by other methods. Taking into account the
exponential proliferation of periodic orbits in typical chaotic systems, this re-
quirement is severe. On the other hand, the harmonic inversion does not only
extract the eigenvalues wn, but also the matrix elements mn. It thus yields the
double amount of information, so that it should not come as a surprise that
twice as much input data is needed. In the context of closed-orbit theory, the
mn contain useful information other methods cannot extract from a semiclassical
spectrum. If semiclassical trace formulae are used, mn is the multiplicity of the
level wn, so that it must be equal to 1 in non-degenerate systems2 and does not
convey any useful information. A method of implementing this a priori knowl-
edge into the quantization procedure has recently been devised by J. Main [57].
In this case, the required signal length can be reduced to the Heisenberg time.
For a bound system, all eigenvalues must be real. This knowledge leads to an
analogue of the functional equation which reduces the signal length further to
half the Heisenberg time.

3.2 Harmonic inversion of δ function signals

As described in the previous section, a reliable method of extracting the frequen-
cies ωk and amplitudes dk from a given time signal of the form (3.5)

C(t) =
∑

k

dke
−iωkt ,

especially in the case where C(t) is given as a sum of δ functions, provides the
key to both semiclassical quantization and the semiclassical analysis of quantum
spectra. In contrast to the Fast Fourier Transform, which represents a signal in
the form (3.5) with fixed, evenly spaced frequencies ωk and is therefore a stable
linear operation, the general harmonic inversion problem with unknown ωk is
highly non-linear. Therefore, although a variety of algorithms for the harmonic
inversion have been known for a long time [58, 59], they are all numerically un-
stable if the number of frequencies contained in the signal is large. None of them
is thus fit for an application to semiclassics.

This situation was first remedied when Wall and Neuhauser [60] developed
filter diagonalization (FD) as a method of extracting the frequencies contained in
a given interval rather than the complete list of frequencies contained in the signal.
Due to this local ansatz, FD is limited by the local average density rather than
the total number of frequencies. This limitation is expressed by the informational
uncertainty principle (3.7).

The spectral resolution of FD as well as of any other spectral analyser improves
with increasing signal length, which is often fixed or at least hard to increase, e.g.,
for periodic-orbit quantization of classically chaotic systems where the number
of periodic orbits proliferates exponentially with the signal length. To obtain the

2In degenerate systems, the multiplicity of an energy level is a small integer. If it is artificially
set equal to 1 for all levels, degenerate levels appear several times in the list of frequencies.
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optimum results from the harmonic inversion procedure, it is essential to choose
an algorithm that allows one to extract the most precise estimates for the spectral
parameters {ωk, dk} from a signal of a given length.

Since the advent of FD, various computational procedures have been proposed
for the harmonic inversion of time signals, some of which are specially adapted to δ
function signals. However, a systematic study of the relative merits and demerits
of the different methods and a quantitative study of their efficiencies is still lack-
ing. To remedy this situation, I summarize and discuss different techniques of
harmonic inversion and compare their accuracies in the application to two simple
albeit typical example systems for which exact trace formulae are known. The
aim is to pin down the numerically most efficient method for harmonic inversion.

The present section introduces four different methods for the harmonic inver-
sion of δ function signals, section 3.3 contains numerical results comparing their
efficiencies.

3.2.1 Method 1: discrete filter diagonalization

The crucial idea of the filter diagonalization method by Wall and Neuhauser [60]
is to associate the signal C(t) with the auto-correlation function of a suitable
dynamical system,

C(t) =
(
Φ0

∣∣∣e−itΩ̂
∣∣∣Φ0

)
, (3.13)

where (�|�) is a complex symmetric inner product on an abstract vector space,
Φ0 is an arbitrary vector and Ω̂ a complex symmetric Hamiltonian operator. If
ωk are the eigenvalues of Ω̂ with eigenvectors Υk, assumed orthonormal, and
dk = (Φ0|Υk)

2, the auto-correlation function C(t) is of the form (3.5). As the
scalar product was chosen complex symmetric rather than Hermitian, ωk and dk
can be arbitrary complex numbers. The harmonic inversion of the time signal is
the equivalent to the diagonalization of Ω̂. It was shown by Wall and Neuhauser
that a diagonalization procedure relying solely on the knowledge of the time signal
C(t) can be devised.

Mandelshtam and Taylor [56] developed a variant of the original FD method
adapted to signals given on a discrete equidistant time grid cn = C(nτ) with a
constant step width τ . They introduced the one-step time-evolution operator

Û = e−iΩ̂τ =
∑

k

uk |Υk) (Υk| (3.14)

with uk = e−iωkτ . In an arbitrary non-orthonormal basis set Ψj, the eigenvalue

problem for Û can be written as

U Bk = uk S Bk (3.15)

with the matrices

Ujj′ =
(
Ψj

∣∣∣Û
∣∣∣Ψj′

)
, Sjj′ = (Ψj |Ψj′) (3.16)
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and
Υk =

∑

j

BjkΨj . (3.17)

The most obvious choice for the Ψj is the Krylov basis,

Φn = ÛnΦ0 , n = 0, 1, . . . ,M , (3.18)

which gives
Unn′ = cn+n′+1 , Snn′ = cn+n′ . (3.19)

These matrix elements can be evaluated if 2M is less than the number of signal
points. The harmonic inversion problem has thus been reduced to a general-
ized eigenvalue problem that can be solved by standard methods. However, the
number of basis vectors must be chosen as large as the total number of frequen-
cies contained in the signal, which results in huge and generally ill-conditioned
eigenvalue problems if the number of frequencies is large.

To extract frequencies in a given window [ωmin, ωmax], Mandelshtam and Tay-
lor [56], changing the original Gaussian filter by Wall and Neuhauser into a rect-
angular filter, proposed to introduce a set of trial values ωminτ ≤ ϕj ≤ ωmaxτ ,
j = 1, 2, . . . , J , and zj = e−iϕj and define a Fourier-type basis

Ψj = Ψ(zj) =
M∑

n=0

einϕj Φn =
M∑

n=0

(Û/zj)
n Φ0 . (3.20)

The basis vector Ψj is dominated by eigenvectors corresponding to eigenvalues
close to ϕj , so that in the Fourier basis the matrices U and S have significant
elements close to the diagonal only. Frequencies not too close to the edges of
the window can thus accurately be calculated from the eigenvalue problem (3.15)
even if an incomplete basis set is used. Only the local completeness condition
that the density of ϕj/τ be larger than the local density of frequencies must be
met. Therefore, the number of basis vectors can usually be chosen considerably
smaller than the total number of frequencies.

The matrix elements

U (p)(z, z′) = (Ψ(z)|Ûp|Ψ(z′)) (3.21)

in the Fourier basis are given by

U (p)(z, z′) =
1

z − z′

(
z

M∑

l=0

cl+pz
′−l − z′

M∑

l=0

cl+pz
−l

− z−M

2M∑

l=M+1

cl+pz
′M−l+1

+ z′−M
2M∑

l=M+1

cl+pz
M−l+1

)
if z 6= z′,

U (p)(z, z) =

2M∑

l=0

(M − |M − l|+ 1)cl+pz
−l ,

(3.22)
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and the eigenvalue problem (3.15) reads

U (1)Bk = ukU
(0)Bk . (3.23)

After the diagonalization, the amplitudes can be calculated from the eigenvectors
by

dk =

(
1

M + 1

J∑

j=1

BjkU
(0)(zj , uk)

)2

. (3.24)

To obtain well-converged frequencies, the number of basis vectors must gen-
erally be chosen 10-30% larger than implied by the local completeness condition,
so that the diagonalization yields too many frequencies. To distinguish between
true and spurious frequencies, the eigenvalue equation (3.15) can be generalized
to

U (p)Bk = uk U
(p−1)Bk (3.25)

and solved for different values of p. If an incomplete basis set is used, spurious
eigenvalues will depend on p whereas true eigenvalues will not. The method by
Mandelshtam and Taylor thus has a built-in error estimator.

As it stands, the method is not well adapted to the analysis of δ function
signals because they cannot be evaluated on an equidistant grid unless the δ
functions are given an artificial width σ which spans several grid points, e.g., by
convoluting the signal with a narrow Gaussian function. In this form the FD
method was applied in [19,48] as a tool for semiclassical periodic-orbit quantiza-
tion.

The convolution of the signal C(t) results in a damping of the amplitudes

dk → d
(σ)
k = dk exp(−w2

kσ
2/2). The width σ of the Gaussian function should

be chosen sufficiently small to avoid an overly strong damping, e.g., by setting
σ . |wmax|−1 where wmax is the largest frequency of interest. To properly sample
each Gaussian a dense grid with sufficiently small step size (τ ≈ σ/3) is required.
Therefore, the convoluted signal to be processed by FD usually consists of a large
number of data points, in particular when high frequency regions of the signal
are to be analysed. The numerical treatment of such large data sets may suffer
from rounding errors and loss of accuracy.

3.2.2 Method 2: δ function filter diagonalization

An approach to the harmonic inversion of δ function signals circumventing the
artificial smoothing of the signal was suggested by Grémaud and Delande [61].
They revert to a continuous-time formulation of the FD algorithm close to the
original ansatz in [60], but keep the rectangular filter introduced by Mandelshtam
and Taylor [56].

In the continuous-time formulation, the time evolution generated by the Hamil-
tonian Ω̂ is given by a one-parameter family of time evolution operators

Û(t) = e−iΩ̂t . (3.26)
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The Fourier basis used by Grémaud and Delande for a signal of total length T
reads

Ψ(ϕj) =

∫ T/2

0

dt eiϕjt U(t)Φ0 . (3.27)

Notice the close analogy with (3.20). The trial frequencies ϕj are now to be
chosen in the frequency interval ωmin ≤ ϕj ≤ ωmax of interest.

The harmonic inversion problem is recast as a generalized eigenvalue problem
for −iΩ̂, viz.

ΩBk = −iωkS Bk (3.28)

with

Ω(ϕj , ϕj′) =
(
Ψ(ϕj)

∣∣∣−iΩ̂
∣∣∣Ψ(ϕj′)

)
, S(ϕj, ϕj′) = (Ψ(ϕj) |Ψ(ϕj′)) . (3.29)

In terms of the given signal, the matrix elements read

Ω(ϕ, ϕ′) =
1

ϕ− ϕ′

(
ϕ′
∫ T/2

0

dt C(t)eiϕ
′t − ϕ

∫ T/2

0

dt C(t)eiϕt

− ϕ′ ei(ϕ−ϕ′)T/2

∫ T

T/2

dt C(t)eiϕ
′t

+ ϕ ei(ϕ
′−ϕ)T/2

∫ T

T/2

dt C(t)eiϕt
)

if ϕ 6= ϕ′,

Ω(ϕ, ϕ) =

∫ T

0

dt C(t) sign

(
t− T

2

)
eiϕt

+ iϕ

∫ T

0

dt C(t) t sign

(
t− T

2

)
eiϕt − iϕT

∫ T

T/2

dt C(t)eiϕt

(3.30)

and

S(ϕ, ϕ′) =
i

ϕ− ϕ′

( ∫ T/2

0

dt C(t)eiϕ
′t −

∫ T/2

0

dt C(t)eiϕt

− ei(ϕ−ϕ′)T/2

∫ T

T/2

dt C(t)eiϕ
′t

+ ei(ϕ
′−ϕ)T/2

∫ T

T/2

dt C(t)eiϕt
)

if ϕ 6= ϕ′,

S(ϕ, ϕ) =

∫ T

0

dt C(t)

(
T

2
−
∣∣∣∣
T

2
− t

∣∣∣∣
)
eiϕt .

(3.31)

Once the eigenvalue problem (3.28) is solved, the amplitudes are obtained from

dk =

(
2

T

J∑

j=1

BjkS(ϕj, ωk)

)2

. (3.32)

The matrix elements (3.30) were derived under the assumption that C(0) =
C(T/2) = C(T ) = 0. This condition renders them useless for general signals, but
it is satisfied for δ function signals. In this case, the integrals occurring in the
matrix elements reduce to simple sums. They can therefore easily be evaluated
without any prior smoothing of the signal.
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3.2.3 Method 3: discrete decimated signal diagonalization

An alternative method to FD for high-resolution signal processing is decimated
signal diagonalization (DSD), which was introduced by Belkić et al. [62] in a for-
mulation suitable for signals given on an equidistant time grid. DSD is a two-step
process for harmonic inversion. In the first step a low-resolution frequency filter
is applied to the signal. The resulting band-limited signal contains only a small
number of frequencies and is given on a small number of grid points. It can, there-
fore, be processed, in the second step, by conventional high-resolution methods
without incurring numerical instabilities. For the processing stage, Belkić et

al. [62] discuss linear prediction, Padé approximants or the FD method using the
primitive Krylov basis, which does no filtering of the signal.

The filtering required in the first step is achieved by first subjecting the signal
to a conventional discrete Fourier transform. The resulting spectrum has low
resolution, but still contains all the information contained in the signal. All
spectral information outside the frequency window of interest is then discarded,
i.e. the Fourier transform is set to zero there. The window is shifted such as to
be centred at zero frequency, and an inverse discrete Fourier transform is applied
to obtain the band-limited signal. The number of band-limited signal points is
equal to the number of spectral data points in the frequency window and usually
much smaller than the original number of data points, so that the step width of
the time grid is increased. However, as the maximum frequency contained in the
band-limited signal is smaller than half the window width, in the course of this
reduction all spectral information in the window of interest is kept.

The DSD method of reference [62] is easy to implement as it basically resorts
to standard algorithms for discrete Fourier transform and matrix diagonalization.
However, the application of the low-resolution Fourier filter in the first step of the
method implicitly assumes periodicity of the signal with period equal to the signal
length. In this case, the DSD filter is exact. In general, of course, this condition
is not met, so that only approximate filtering can be achieved. Therefore, DSD
must be expected to be less accurate than FD (method 1) for frequencies close
to the borders of the window, or when very short frequency windows are chosen.

Because it is designed for signals given on an equidistant grid, the DSD tech-
nique, in the same way as method 1, can only be applied to δ function signals
after an artificial smoothing of the signal.

3.2.4 Method 4: δ function decimated signal diagonaliza-

tion

The DSD technique of method 3 can be modified for a more direct application to a
δ function signal without the necessity of smoothing the signal. Because the signal
C(t) is given as a sum of δ functions, the ‘filtering’ step can be performed analyt-
ically if the discrete Fourier transform is replaced with the continuous form of the
Fourier transform. This technique was proposed by Main et al. [63]. The applica-
tion of the analytical filter for a rectangular frequency window [ω0−∆ω, ω0+∆ω]
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results in replacing the signal

C(t) =
∑

j

Aj δ(t− tj) (3.33)

with a band-limited (bl) signal [63]

Cbl(t) =
∑

j

Aj
sin [(t− tj)∆ω]

π(t− tj)
eiω0tj , (3.34)

where the δ functions are basically replaced with sinc functions [sinc x = (sin x)/x].
The band-limited signal (3.34) contains the same shift of the frequency window as
applied in method 3, so that it can be discretized with a small number of points
and further processed, in the second step, by conventional harmonic inversion
methods as described above.

In practice, the band-limited signal can only be evaluated approximately be-
cause the signal is only known up to a finite length. Since the sinc functions
decay slowly at infinity, peaks well beyond the end of the known signal may have
an influence on the band-limited signal points. Omitting contributions from the
unknown peaks beyond the limit of the given signal amounts to the assumption
that the signal is zero outside the given range. Thus, the low-resolution filter of
method 4 is different from the filter of method 3 where the signal is implicitly
assumed to be periodic.

In summary, the four methods can be classified according to whether they
are discrete-time algorithms (methods 1 and 3), which require a regularization of
δ function signals, or continuous-time algorithms adapted to δ function signals
(methods 2 and 4). Alternatively, they can be classified into filter diagonalization
(FD) methods (methods 1 and 2) and decimated signal diagonalization (DSD)
methods (methods 3 and 4) where the low-resolution ‘filtering’ and high-resolution
signal processing is performed in two separate steps.

3.3 Numerical examples and discussion

To quantitatively assess the relative performances of the different algorithms, I
present a comparison of the numerical accuracy achieved by all of these methods
for two simple but archetypal examples, viz. firstly, the high-resolution analysis of
the spectrum of the harmonic oscillator and, secondly, the search for the zeros of
Riemann’s zeta function as a mathematical model for periodic-orbit quantization
in chaotic systems. These systems possess exact trace formulae, so that the
harmonic ansatz (3.5) for the semiclassical signal is known to be exact.

3.3.1 Harmonic oscillator

The one-dimensional harmonic oscillator (with ~ω = 1) has energy eigenvalues
En = n+ 1

2
, n = 0, 1, 2, . . . . Its density of states can be written as an exact trace
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formula [49]:

ρ(E) = Im g(E) =

∞∑

n=0

δ(E − En) =

∞∑

k=−∞
(−1)ke2πikE . (3.35)

The right-hand side of (3.35) can be interpreted as a periodic-orbit sum in analogy
with (3.1), where Sk = 2πkE is the action of the (k times traversed) periodic orbit
and dk = (−1)k is the periodic orbit amplitude. (The interpretation of the k = 0
Thomas-Fermi term is special, see [49] for more details.) The high-resolution
analysis of the quantum spectrum ρ(E) =

∑∞
n=0 δ(E − En) should yield equally

spaced real frequencies ωk = 2πk and amplitudes dk = (−1)k of equal magnitude.
Thus, this simple application of harmonic inversion to the extraction of classical
periodic orbit parameters from a quantum spectrum [47, 48, 61] is ideally suited
to compare the efficiencies of the different methods for the harmonic inversion of
δ function signals.

Since the signal is periodic with period ∆E = 1, an integer signal length
would render the low-resolution Fourier filter of method 3 exact. To avoid this
atypical situation I choose a rational multiple of π as signal length. According to
the informational uncertainty principle (3.7) a signal length of Emax & 2 should
suffice to resolve the frequencies. Typically, (3.7) slightly underestimates the
required signal length. I therefore present results calculated with a signal of length
Emax = π, which means that only three energy levels contribute to the signal. To
assess the accuracy of the results, I use the absolute values of the imaginary parts
of the calculated frequencies and amplitudes as error indicators. If the analysis
of the signal were exact, all imaginary parts should vanish. Therefore, by an
inspection of the sizes of the imaginary parts the accuracy of the calculation can
be checked. This sort of accuracy test can be applied to all bound systems. If
the exact frequencies are known, as is the case in our example systems, the real
parts can also be compared. The errors of the real and imaginary parts typically
are of the same order of magnitude and exhibit, at least qualitatively, the same
behaviour.

Results for the harmonic inversion of the quantum spectrum ρ(E) obtained
with the four methods introduced in section 3.2 are presented in figures 3.1 and
3.2 for the imaginary parts of the frequencies ωk and amplitudes dk, respectively.
For frequencies which appear to be missing, imaginary parts of zero have been
obtained by the pertinent method. From figure 3.1 parts (a) to (f), the width ∆ω
of the frequency filter is increased. For the application of methods 1 and 3 the sig-
nal has been discretized with step width τ = 0.002 after convolution of the signal
with a Gaussian function with width σ = 0.006. In all cases it can be seen that
the precision achieved decreases to the boundaries of the frequency window. The
reason is that none of the filtering methods is exact and can neither completely
remove the influence of frequencies outside the window under consideration nor
exactly preserve the contributions of frequencies inside the window. For narrow
windows, the FD methods 1 and 2 outperform the DSD algorithms 3 and 4, for
wide windows the situation is reversed. The frequencies obtained by methods 1
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and 2 are equally precise for small windows, whereas for wide windows method
2 gains superiority and even competes with the DSD methods. In general, the
distance from the window boundaries where a method acquires its full precision
is smaller for the FD than for the DSD methods. Calculations were carried out
with double precision. For the widest window shown, frequencies have practically
been obtained to machine precision.

For all methods, the precision of the amplitudes in figure 3.2 is somewhat
lower than that of the frequencies in figure 3.1 because the amplitudes are calcu-
lated from the eigenvectors of a generalized eigenvalue problem, which in general
are obtained less accurately than the eigenvalues. In particular, the difference
in precision between the frequencies and amplitudes is considerably larger for
method 1 than for any other method, so that even for small windows the am-
plitudes obtained by this technique are the least accurate (see the × symbols in
figure 3.2).

3.3.2 Zeros of Riemann’s zeta function

It is a peculiar feature of the harmonic oscillator signal that the density of fre-
quencies is constant, i.e. the precision of frequencies obtained from a signal of
a given length is the same throughout the whole frequency domain. However,
in typical systems the density of states grows rapidly with the frequency, which
means that a longer signal is required to extract higher frequencies. As an ex-
ample of a system exhibiting this typical behaviour, I discuss the Riemann zeta
function, which has served as a mathematical model for the periodic-orbit quanti-
zation of chaotic systems [19,64]. If the zeros of ζ(z) on the critical line Re z = 1

2

are written as z = 1
2
− iw, the density of zeros on the critical line can be expressed

as [64]

ρosc(w) = Im gosc(w) = − 1

π

∑

p

∞∑

m=1

ln p

pm/2
cos(wm ln p) , (3.36)

where p runs over all prime numbers. Equation (3.36) is formally identical to
a semiclassical trace formula with Spm = wm ln p corresponding to the classical
actions and Apm = −(i ln p)/(πpm/2) corresponding to the amplitudes. With this
interpretation, the Riemann zeta function can be used as a mathematical model
for chaotic dynamical systems, and the Riemann zeros are obtained by harmonic
inversion of the δ function signal [19]

C(s) = − i

π

∑

p

∞∑

m=1

ln p

pm/2
δ(s−m ln p) . (3.37)

Unlike typical semiclassical trace formulae, equation (3.36) is exact. As the zeta
function has only simple zeros, the amplitudes dk obtained from the harmonic
inversion of the signal (3.37) must all be equal to 1.

In figure 3.3 I present numerical results obtained by the application of methods
1 to 4 to extract the (numerically complex valued) Riemann zeros with Rewk <
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Figure 3.1: Imaginary parts (absolute values) of the frequencies ωk extracted from
a harmonic oscillator signal of length Emax = π. Symbols ×, +, �, and � denote
methods 1 to 4, respectively. Windows are [10−∆ω, 10+∆ω] with ∆ω = (a) 4.5,
(b) 5.5, (c) 6.5, (d) 7.5, (e) 8.5, (f) 9.5.
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Figure 3.2: Same as figure 3.1, but for the imaginary parts of the amplitudes dk.
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Figure 3.3: Imaginary parts (absolute values) of locations wk of zeros of the
Riemann zeta function in the frequency window [10, 100]. Symbols ×, +, �, and
� denote to Methods 1 to 4, respectively. Signal lengths are Smax = (a) 4.5,
(b) 5.0, (c) 5.5, (d) 6.0, (e) 6.5, (f) 7.0.
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Figure 3.4: Same as Figure 3.3, but for the imaginary parts of the multiplicities
dk.
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100. Ideally, all values wk should be real. Therefore, the absolute values of the
imaginary parts of the wk can again serve as a measure for the accuracy of the
harmonic inversion process. For the application of methods 1 and 3 the signal
has been discretized with step width τ = 0.002 after a convolution of the signal
with a Gaussian function with width σ = 0.006.

It is no problem to construct the signal (3.37) for the Riemann zeros up to
quite large maximum values Smax because the prime numbers used as input are
easy to compute. However, the periodic-orbit quantization of physical systems
usually requires a numerical periodic orbit search which becomes more and more
expensive for longer orbits, especially in chaotic systems, where the number of
orbits proliferates exponentially with increasing signal length. Therefore, in prac-
tical applications of periodic-orbit quantization the given signal length is often
rather short. In figure 3.3 I present the results for the accuracy of the methods for
various signal lengths, increasing from Smax = 4.5 in figure 3.3(a) to Smax = 7.0
in figure 3.3(f). The frequency window w ∈ [10, 100] is kept fixed.

For a fixed signal length, the zeros up to a certain critical value can be ob-
tained to a constant precision. Above the critical frequency, the precision de-
creases rapidly due to the higher density of states. As was to be expected, for all
methods the critical frequency increases with growing signal length, which means
that frequencies in regions of higher spectral density can be resolved. Roughly,
the critical frequency is determined by the informational uncertainty principle
(3.7). In fact, it is slightly higher for the FD methods 1 and 2 than for the
DSD methods 3 and 4. As before, the maximum accuracy below the critical fre-
quency is obtained by the DSD methods. However, above the critical frequency
the precision yielded by the FD methods is higher.

The lowest zero of the zeta function is located at w = 14.1347, not far above
the lower boundary of the frequency window at w = 10. For the first zeros a
decrease in accuracy due to the proximity of the boundary can be seen. Evidently,
the influence of the boundary diminishes with increasing signal length. Again, it
is considerably more pronounced for the DSD than for the FD methods. For the
latter, it can only be seen in the shortest signals. With any of the four methods,
the boundary effects on the lowest zeros can be removed if the lower boundary of
the frequency window is decreased to w = 0.

Figure 3.4 presents results similar to those shown in figure 3.3, but for the
imaginary parts of the multiplicities dk. The accuracy of the results achieved
with the different methods resemble those obtained for the imaginary parts of
the frequencies wk, with the exception of method 1 (see the × symbols) which
provides amplitudes with significantly lower precision.

3.3.3 Conclusion

In this section I have quantitatively determined the accuracies of four differ-
ent algorithms for the high-resolution harmonic inversion of δ function signals,
by applying all algorithms to two, physically motivated, example signals. For
sufficiently long signals and broad frequency windows all four methods provide
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excellent results of very high accuracy, in the case of the examples selected even
close to the machine precision. However, when either the width of the frequency
filter or the signal length is considerably reduced, the accuracy of the results
obtained by the four methods can vary by several orders of magnitude.

The calculations show that no general clear-cut answer to the question “Which
method is the best in all physical situations?” is possible. In practice, the window
width can be regarded as a free parameter, i.e. it can usually be chosen sufficiently
large to achieve good results before increasing computational effort or numerical
instabilities become a restriction. The signal length, on the contrary, is often fixed
or at least hard to increase. In such a case the proper choice of the algorithm
for harmonic inversion of the signal will be essential to achieve optimum results.
When the signal length is quite at the limit for convergence of the frequencies
and amplitudes, the filter diagonalization (FD) methods 1 and 2 provide superior
accuracy compared to the decimated signal diagonalization (DSD) methods 3
and 4. For signals given as the sum of δ functions method 2 will often prove to
be the method of choice.

Finally, note that harmonic inversion techniques can be generalized so as to
cope with the analysis of multidimensional signals, with important applications
in other areas of physics [65–67]. The knowledge gained from the comparison
of methods for one-dimensional harmonic inversion should also serve as a useful
guide in future developments and applications of accurate and efficient algorithms
for multidimensional high-resolution signal processing.

3.4 Quantization of non-scaling systems

So far, applications of harmonic inversion techniques to semiclassics have been
restricted to systems possessing a scaling property. Although this restriction
is fairly weak in that in encompasses, among others, billiard systems, systems
with homogeneous potentials and atoms in external fields, in many cases scaled
spectra do not provide the most natural approach to a problem. For atoms in
external fields, for example, the most obvious question to ask is for spectra at
fixed external field strengths rather than for scaled spectra. Although scaled-
energy spectroscopy [54, 55] has become a well-established tool, a semiclassical
approach to this more general problem is still desirable. Furthermore, there is the
need to quantize systems without a scaling property as, e.g., simple molecules.

As to the semiclassical analysis of quantum spectra, for non-scaling systems
the classical actions and amplitudes occurring in (3.1) are functions of the energy,
and there is obviously no hope of determining these continuous functions from a
given discrete set of energy eigenvalues by any means. On the other hand, the
energy eigenvalues En and matrix elements mn determining the quantum response
function are well-defined constants for non-scaling as well as for scaling systems,
so that the problem of generalizing the semiclassical quantization procedure can
be expected to be a technical rather than a fundamental issue.

To generalize the approach to semiclassical quantization given in section 3.1,
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I first take the Fourier transform of (3.1). I obtain

−i
∑

n

mne
−iEnt = C(t) (3.38)

with

C(t) =
1

2π

∫ +∞

−∞
dE
∑

c.o.

Ac.o.(E) eiSc.o.(E) e−iEt . (3.39)

The left-hand (“quantum”) side of (3.38) has precisely the form needed for the
application of the harmonic inversion. However, whereas the integral (3.39) giving
the semiclassical signal could easily be evaluated analytically in the case of scaling
systems, there appears to be no way of computing it in general. Apart from the
fact that the classical quantities can always be calculated in a finite energy range
only, the integral (3.39) can, in general, not even be expected to converge. Thus,
no analytical nor numerical approach to (3.39) will give a useful semiclassical
signal.

A solution to these problems can be found by noting that (3.38) contains
the spectral information describing the system at all energies. No computational
procedure should be expected to handle a signal containing unlimited spectral
information. It is now crucial to note that a band-limited signal can be obtained
by taking the Fourier transform of (3.1) over a fixed energy interval [E0−∆E,E0+
∆E] only. This procedure yields

−i
∑

|En−E0|<∆E

mne
−i(En−E0)t = Cbl(t) (3.40)

with

Cbl(t) =
1

2π

∫ E0+∆E

E0−∆E

dE
∑

c.o.

Ac.o.(E) eiSc.o.(E) e−i(E−E0)t

=
1

2π

∫ E0+∆E

E0−∆E

dE gosc(E) e−i(E−E0)t .

(3.41)

The integral in (3.41) can be evaluated numerically once the classical data is
known in the energy range considered. Again, as in methods 3 and 4 in section
3.2, the frequency window was shifted such as to be centred at zero. This shift
makes the integral easier to evaluate because the integrand is less oscillatory, and
it allows the step width for the discretization of the band-limited signal to be
larger, so that fewer signal points need to be computed.

The procedure described above achieves the goal of making the semiclassical
quantization by harmonic inversion applicable to non-scaling as well as scaling
systems, so that it can now be regarded as a truly universal semiclassical tech-
nique. It does not impose any conditions on the classical dynamics of the system
under study. As is obvious from the second line in (3.41), the method does not
even depend on the general form (3.1) of the semiclassical approximation to the
recurrence function. It is therefore possible to include uniform approximations or
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other non-standard contributions in the semiclassical spectrum. Thus, the gener-
alization of the harmonic inversion procedure developed here is not only the first
semiclassical quantization scheme which is applicable to arbitrary systems, it also
constitutes a major step towards a semiclassical quantization of the crossed-fields
hydrogen atom, where bifurcating orbits will be shown to play an important role.

Numerical results for the hydrogen atom in an electric field confirming the
reliability of the technique in the presence of bifurcating orbits will be presented
in chapter 7.
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Chapter 4

The Kustaanheimo-Stiefel
transformation

The classical description of the electron dynamics for the hydrogen atom in ex-
ternal fields is that of a perturbed Kepler problem. The motion of the electron
close to the nucleus is dominated by the Coulomb potential, which introduces a
singularity into the equations of motion. For numerical studies of the dynamics
it is mandatory to find a representation of the equations of motion which avoids
this singularity.

For the one-dimensional Kepler motion, it was already found by Euler [68]
that the introduction of a square-root coordinate u =

√
x and a fictitious time τ

defined by dt = x dτ reduces the Kepler equation of motion

d2x

dt2
= − 1

x2
(4.1)

to the regular equation of motion of a one-dimensional harmonic oscillator

d2u

ds2
+ 2Eu = 0 , (4.2)

where E is the energy of the Kepler motion.
Generalizing this approach, Levi-Cività [69] regularized the two-dimensional

Kepler problem by combining the two spatial coordinates into a complex number
x = x1 + ix2 and introducing a complex square-root coordinate u =

√
x, which

together with the fictitious-time transformation dt = |x| dτ reduces the Kepler
problem to a two-dimensional harmonic oscillator.

Attempts to extend this regularization scheme to the three-dimensional Kepler
problem failed, until in 1964 Kustaanheimo and Stiefel [70, 71] proposed the in-
troduction of four regularizing coordinates instead of three and thereby achieved
the reduction of the three-dimensional Kepler problem to a four-dimensional har-
monic oscillator. This transformation, which is known as the Kustaanheimo-
Stiefel (KS) transformation, is discussed in detail in the monograph by Stiefel
and Scheifele [28].

In this chapter, a formulation of the KS-transformation in terms of the geo-
metric algebra of Euclidean three-space is presented. In this formalism, the four

45
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KS coordinates are interpreted as the components of a position spinor. Thus,
the KS coordinates are given a clear geometric interpretation. In addition, the
formalism offers computational advantages over the conventional matrix-based
approach because it unites the four coordinates into a single spinor.

In section 4.1, the regularized spinor equation of motion for motion under
the combined influences of the Coulomb potential and arbitrary additional forces
will be derived. This equation of motion was first obtained in the context of
geometric algebra by Hestenes [29]. Subsequent sections will then go on to show
that the geometric algebra formulation readily lends itself to an incorporation into
the Lagrangian and Hamiltonian formulations of dynamics. A short introduction
into the properties of geometric algebra needed here is given in Appendix C,
where the notation used in what follows is also explained.

4.1 The spinor equation of motion

The KS-transformation in three dimensions can be found by representing an
arbitrary position in space not by its position vector x, but by a position spinor,
i.e. the rotation-dilatation operator transforming a fixed reference vector into
the position vector x. According to appendix C, a rotation-dilatation of the
reference vector σ3 is represented in the geometric algebra by an even multivector
U according to

x =
1

2
Uσ3U

† . (4.3)

The factor 1/2 was introduced here to stay in touch with earlier applications of the
KS-transformation to atomic dynamics [6,7], although the present formulation of
the theory would suggest dropping it. It implies the normalization

U †U = UU † = 2 r = 2 |x| . (4.4)

Up to normalization, the ansatz (4.3) reproduces the square-root coordinates
introduced by Euler and Levi-Cività, respectively, if it is applied to spaces of one
or two dimensions.

Given a position vector x, the choice of the spinor U is not unique. More
precisely, the gauge transformation

U 7→ Ue−I3α/2 (4.5)

with arbitrary real α does not alter x, because the additional exponential factor
describes a rotation of the reference vector σ3 around itself. This consideration
immediately clarifies why a position spinor representation in three dimensions
must introduce a fourth degree of freedom. In lower dimensions, a rotation does
not leave any vector invariant, so that the spinor transformation does not possess
a gauge degree of freedom. It is also clear from (4.5) that all fibres of the KS
transformation except U = 0 are circles in spinor space.
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The inverse KS transformation can be found from equation (C.23) by adapting
the normalization to (4.4). The position spinors corresponding to a vector x are
given by

U =
r + xσ3√
r + z

e−I3α/2 (4.6)

with arbitrary real α.

In components, the spinor U can be represented as U = u0 + Iu with u =∑3
k=1 ukσk. The transformation (4.3) then decomposes into

x = u1u3 − u0u2 ,

y = u1u0 + u2u3 ,

z =
1

2
(u20 − u21 − u22 + u23) .

(4.7)

Up to renumbering the components, this agrees with the conventions of [6, 7].

To obtain an equation of motion for U , time derivatives of U must be calcu-
lated. Differentiating (4.3) leads to

ẋ =
1

2
U̇σ3U

† +
1

2
Uσ3U̇

† =
〈
U̇σ3U

†
〉
1
. (4.8)

Equation (4.8) obviously cannot be solved for U̇ because the time derivative of
the gauge parameter α in (4.5) cannot be determined from the dynamics of the
position vector. To arrive at an equation of motion for U , I must therefore impose
a constraint on α. This can be done in a convenient and geometrically appealing
fashion by requiring 〈

U̇σ3U
†
〉

3
= 0 , (4.9)

This condition means that U̇ is chosen such as not to contain a component of
rotation around the instantaneous position vector x. Under this constraint, (4.8)
yields

ẋ = U̇σ3U
† (4.10)

and

U̇ = ẋU †−1
σ3 = ẋ

U

2r
σ3 . (4.11)

As in the one- and two-dimensional cases, the regularization of the three-
dimensional Kepler motion requires the introduction of a fictitious-time parame-
ter τ . It is defined by

dt = 2r dτ (4.12)

Derivatives with respect to τ will be denoted with a prime. Equation (4.11) then
yields

U ′ = 2r U̇ = ẋU σ3 . (4.13)



48 CHAPTER 4. THE KUSTAANHEIMO-STIEFEL TRANSFORMATION

For the second derivative of U , I obtain

U ′′ =

(
d

dτ
ẋ

)
Uσ3 + ẋU ′ σ3

= 2rẍUσ3
U †

2r
U + ẋ2 U

= 2

(
ẍx+

1

2
ẋ2

)
U .

(4.14)

Together with Newton’s equation of motion

ẍ = − x

r3
+ f (4.15)

with an arbitrary non-Coulombic force f , equation (4.14) yields the spinor equa-
tion of motion

U ′′ = 2 (EK + f x)U , (4.16)

where the Kepler energy

EK =
1

2
ẋ2 − 1

r
(4.17)

denotes the sum of the kinetic and Coulombic potential energies.

In the special case of pure Kepler motion, i.e. f = 0, the Kepler energy EK is
equal to the total energy E and is conserved. In this case, (4.16) reduces to the
linear equation of motion

U ′′ = 2E U . (4.18)

If E < 0, this is the equation of motion of a four-dimensional isotropic harmonic
oscillator with frequency ω =

√
−2E with respect to τ .

If additional forces f are present, the Kepler energy is not conserved in gen-
eral, so that the work done by the external forces must be taken into account [71].
This can easily be achieved if the external forces are generated by static electro-
magnetic fields, because the work done by a magnetic field B is zero, whereas an
electric field F = −∇V can be derived from a potential V (x). In this case, the
total energy E = EK − V is conserved1, so that the equation of motion reads

U ′′ = 2 (E + V (x) + f x)U (4.19)

with f = −F − ẋ×B.

It finally remains to verify that the equation of motion (4.16) is consistent
with the constraint (4.9). To prove this, I first note that

ξ =
〈
U ′σ3U

†〉
3

(4.20)

1Note that the electron charge is negative.
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is a constant of motion for any external forces f [71], because by (4.16)

dξ

dτ
=
〈
U ′′ σ3 U

†〉
3
+
〈
U ′ σ3 U

′†
〉

3︸ ︷︷ ︸
=0 by (C.22)

= 〈(EK + f x)x〉3
=
〈
EKx+ r2f

〉
3

= 0 .

(4.21)

Therefore, if the initial conditions are chosen so that ξ = 0 at τ = 0, equa-

tion (4.21) guarantees
〈
U̇ σ3 U

†
〉

3
= 2r ξ = 0 at all times.

4.2 Canonical formalism

In classical investigations of atoms in external fields, the Hamiltonian nature
of the dynamics plays a central role. It is therefore essential to show how the
spinor equation of motion found in the previous section can be derived in the
context of a Lagrangian or Hamiltonian formalism. In the matrix theory of the
KS transformation, a Hamiltonian formulation is well known and widely applied
in the literature [6,7]. Due to the introduction of an additional degree of freedom
and a fictitious-time parameter, it cannot be found by a straightforward change
of variables. In this section it will be shown that the application of geometric
algebra allows an easy and general derivation of the Hamiltonian. At the same
time, the Hamiltonian formalism will be generalized to arbitrary inhomogeneous
static external fields.

4.2.1 Fictitious-time transformations

Elementary expositions of Lagrangian and Hamiltonian dynamics usually treat
the time t as the externally prescribed independent variable fundamentally dif-
ferent from the spatial coordinates, velocities, and momenta. The formalisms are
then shown to be invariant under point transformations or canonical transfor-
mations, respectively, which may be time-dependent, but may not transform the
time variable. However, both the Lagrangian and the Hamiltonian formalisms
can be reformulated in such a way that it is possible to introduce an arbitrary
orbital parameter τ and to treat the physical time t as an additional coordinate
on the same footing as the spatial coordinates. This formalism is discussed in its
full generality by Dirac [72, 73]. For the special case of autonomous Lagrangian
dynamics and the simple form of the fictitious-time transformation used above,
the full flexibility of Dirac’s homogeneous formalism is not needed. Instead, the
modifications needed to achieve the fictitious-time transformation can be derived
in a straightforward manner from Hamilton’s variational principle.

The Lagrangian equations of motion can be derived from the action functional

S =

∫ t2

t1

dt L(q(t), q̇(t)) (4.22)
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by requiring that for the classical paths the variation of S with respect to the path
q(t) vanishes if the variation is performed with the initial and final times t1 and
t2 and the coordinates q(t1) and q(t2) kept fixed. If a fictitious-time parameter τ
is introduced by the prescription

dt = f(q, q̇) dτ (4.23)

with an arbitrary function f , it is tempting to rewrite the action functional as

S =

∫ τ2

τ1

dτ f(q, q̇)L(q, q̇) (4.24)

and regard

L̃ = f(q, q̇)L(q, q̇) =
dt

dτ
L (4.25)

as the Lagrangian describing the dynamics with respect to τ . However, this simple
procedure is incorrect in general, because to derive the Lagrangian equations with
respect to L̃ from (4.24), the variation of S has to be performed with the initial
and final fictitious times τ1 and τ2 kept fixed, and due to (4.23) a variation of the
path will alter the relation between t and τ , so that the initial and final physical
times t1 and t2 will vary.

To establish the true relation between (4.22) and (4.24), I calculate the vari-
ation of (4.24) taking the variation of t into account, i.e. q and t are varied
according to

q(τ) 7→ q(τ) + δq(τ) ,

t(τ) 7→ t(τ) + δt(τ) ,
(4.26)

subject to the boundary conditions

δq(τ1) = δq(τ2) = 0 (4.27)

and with τ1 and τ2 kept fixed. Under this variation,

dτ

dt
7→ dτ

d(t+ δt)
=

1
dt
dτ

+ d δt
dτ

=
dτ

dt

(
1− dτ

dt

d δt

dτ

)
,

(4.28)

so that

δ
dτ

dt
= −

(
dτ

dt

)2
d δt

dτ
(4.29)

and hence

δq̇ = δ

(
dq

dτ

dτ

dt

)

= δ

(
dq

dτ

)
· dτ
dt

+
dq

dτ
· δ
(
dτ

dt

)

=
d δq

dt
− q̇

dτ

dt

d δt

dτ
.

(4.30)



4.2. CANONICAL FORMALISM 51

The variation of (4.24) then reads

δS =

∫
dτ

[
δ

(
dt

dτ

)
L +

dt

dτ

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)]

=

∫
dτ

d δt

dτ

(
L− q̇

∂L

∂q̇

)
+

∫
dt

(
∂L

∂q
δq +

∂L

∂q̇

d δq

dt

)

= −
∫
dτ

d δt

dτ
H +

∫
dt

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq ,

(4.31)

where the customary partial integration was performed, the boundary conditions
(4.27) were used and the Hamiltonian

H = q̇
∂L

∂q̇
− L (4.32)

was introduced.
If only the second integral in the last line of (4.31) was present, it would yield

the correct equations of motion. Thus, the action functionals (4.22) and (4.24)
are equivalent if the Hamiltonian H vanishes. For autonomous systems, H is
a constant of motion equal to the energy E. If the Lagrangian L is replaced
with L+E, with E regarded as a constant, the equations of motion derived from
L are unchanged, but the Hamiltonian (4.32) changes to H − E = 0. Thus,
the dynamics of trajectories with energy E with respect to the fictitious-time
parameter τ is described by the Lagrangian

L =
dt

dτ
(L + E) = f(q, q̇) (L+ E) . (4.33)

This Lagrangian has to be written as a function of the coordinates q and the
fictitious-time velocities q′. If the function f is independent of the velocities,
the canonical momenta are invariant under the fictitious-time transformation,
because q′ = f(q) q̇ and

∂L
∂q′

= f(q)
dq̇

dq′
∂L

∂q̇
=
∂L

∂q̇
. (4.34)

From the time-transformed Lagrangian (4.33), the transformed Hamiltonian

H = q′
∂L
∂q′

− L = f(q, q̇) (H − E) (4.35)

is obtained by the usual Legendre transformation. It must be written as a function
of the coordinates and momenta. In some cases the passage from the Lagrangian
to the Hamiltonian description of the dynamics is impossible because the relation
p = ∂L(q, q′)/∂q′ cannot be solved for q′. In these cases, the Hamiltonian (4.35)
can be shown to describe the fictitious-time dynamics by a discussion of the
modified Hamilton’s principle analogous to the derivation of the Lagrangian L
above.
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4.2.2 Lagrangian description

The dynamics of an atomic electron under the combined influences of the nuclear
Coulomb potential, an additional scalar potential V (x) and a magnetic field
represented by a vector potential A(x) is described by the Lagrangian

L =
ẋ2

2
+

1

r
+ V (x)−A · ẋ . (4.36)

This Lagrangian must be transformed to a Lagrangian L describing the fictitious-
time dynamics of the position spinor U . With f(q) = 2r = U†U by (4.12), the
fictitious-time Lagrangian (4.33) reads

L =
1

4
U ′†U ′+

1

8r

〈(
U ′σ3U

†)2〉+E U †U+U †U V (x)−
〈
A(x)U ′σ3U

†〉+2 (4.37)

with x = 1
2
Uσ3U

†. If the constraint (4.9) is used, L simplifies to

L =
1

2
U ′†U ′ + E U †U + U †U V (x)−

〈
A(x)U ′σ3U

†〉+ 2 (4.38)

Both forms of the Lagrangian yield the same “on-shell” dynamics for trajectories
satisfying (4.9). Note that only the kinetic term is influenced by the constraint,
whereas potential and vector potential terms are not.

The momentum conjugate to U is given by

P = ∂U ′L =
1

2r
σ3U

† 〈U ′σ3U
†〉

1
− σ3U

†A , (4.39)

which simplifies to

P = U ′† − σ3U
†A (4.40)

if (4.9) is applied.
As the spinor equation of motion (4.16) is valid under the constraint (4.9)

only, the Lagrangian L provides a suitable description of the dynamics if it re-
produces (4.16) for trajectories satisfying (4.9). The simplified Lagrangian (4.38)
can therefore be used. When equations of motion are derived from (4.38), the
constraint (4.9) must be taken into account by a Lagrangian multiplier. I will
now show, however, that the unconstrained equation of motion [74]

d

dτ
∂U ′L − ∂UL = 0 (4.41)

derived from (4.38) reproduces (4.16) without the constraint being explicitly dealt
with, i.e. the Lagrangian multiplier to be introduced turns out to vanish identi-
cally. I therefore ignore it from the outset.

For the case of vanishing external potentials, (4.41) can easily be seen to yield

U ′′† − 2EU † = 0 , (4.42)
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which is the reversion of (4.18). For the terms containing the potentials, the
calculation of (4.41) is still straightforward, but requires a more intimate famil-
iarity with the properties of the multivector derivative. I will therefore present
the calculation in detail.

The contribution of the scalar potential term

V = U †U V (x(U)) (4.43)

with x(U) = 1
2
Uσ3U

† reads, by (C.28) and (C.33),

∂UV = 2U †V (x) + U †U ∂UV (x(U)) . (4.44)

The chain rule (C.30) then yields for any even multivector M

M ∗ ∂UV (x(U)) = (M ∗ ∂U x(U)) ∗ ∂ � V (4.45)

with

M ∗ ∂U x(U) = (M ∗ ∂U )
1

2
Uσ3U

†

=
1

2
Mσ3U

† +
1

2
Uσ3M

†

=
〈
Mσ3U

†〉
1
.

(4.46)

In the absence of a magnetic field the external force is f = ∂� V , so that

M ∗ ∂UV (x(U)) =
〈〈
Mσ3U

†〉
1
f
〉
=
〈
Mσ3U

†f
〉
. (4.47)

Thus,
∂UV = ∂M (M ∗ ∂UV ) = σ3U

†f , (4.48)

and finally
∂UV = 2U †V (x) + 2U †xf . (4.49)

This is the reversion of the scalar-potential terms in (4.16). Therefore, (4.49)
together with (4.42) indeed yields the correct equation of motion.

To evaluate the contribution of the vector potential term

A =
〈
A(x)U ′σ3U

†〉 (4.50)

to (4.41), first note that

d

dτ
∂U ′A =

d

dτ

(
σ3U

†A(x)
)

= σ3U
′†A(x) + σ3U

†(x′ · ∂ � )A(x) .

(4.51)

By Leibniz’ rule and (4.8),

∂UA =
∗
∂U

〈
AU ′σ3

∗
U †
〉
+

∗
∂U

〈
∗
AU ′σ3U

†
〉

= σ3U
′†A+ ∂U 〈A(x(U))x′〉 .

(4.52)
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The second term on the right-hand side can be evaluated by first calculating
directional derivatives. For an arbitrary even M , (4.46) and the chain rule (C.30)
yield

(M ∗ ∂U ) 〈A(x(U))x′〉 = (M ∗ ∂UA) ∗ ∂ � 〈Ax′〉
= 〈(M ∗ ∂UA(x(U)))x′〉
= 〈(M ∗ ∂Ux) ∗ ∂ � Ax′〉
=
〈〈〈

Mσ3U
†〉

1
∂ �

〉
Ax′〉

=
〈
Mσ3U

† ∂ �

〉
〈Ax′〉 ,

(4.53)

so that

∂U 〈A(x(U))x′〉 = ∂M (M ∗ ∂U) 〈A(x(U))x′〉
= σ3U

† ∂ � (A · x′) .
(4.54)

Equations (4.51), (4.52) and (4.54) combine to

d

dτ
∂U ′A− ∂UA = σ3U

† ((x′ · ∂ � )A− ∂ � (A · x′))

= −σ3U
† (x′ × (∂ � ×A))

= −2U †x(ẋ×B) ,

(4.55)

which is the reversion of the magnetic-field contribution to (4.16).
Note that the derivation given here is valid for arbitrary external potentials

V and A, whereas conventional treatments restrict themselves to the special case
of homogeneous external fields. Also note that the geometric algebra formalism
allows one to do the calculations in a straightforward manner without having to
resort to component decompositions of any of the vectorial or spinorial quantities
involved.

4.2.3 Hamiltonian description

The transition from a Lagrangian to a Hamiltonian description of the dynamics
leads from the Lagrangian (4.37) or (4.38), depending on whether or not the
constraint (4.9) is applied, to the Hamiltonian

H = (U ′ ∗ ∂U ′)L − L , (4.56)

in which the velocity U ′ has to be expressed in terms of the momentum P . The
transformation requires that the relation (4.39) or (4.40) between velocity and
momentum can be solved for the velocity, which is impossible in the case of (4.39).
Thus, the constraint (4.9) is not only needed to obtain an unambiguous equation
of motion for U , but also serves as a condition for a Hamiltonian description of
the spinor dynamics to exist. If it is imposed and an inessential constant of 2 is
added, the Hamiltonian reads

H =
1

2

(
P † +AUσ3

) (
P + σ3U

†A
)
− EU†U − U†U V (x) = 2 (4.57)
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Because it is time-independent, the Hamiltonian (4.57) is a constant of motion.
To describe the physical dynamics, its value must be chosen to be 2, whereas the
physical energy E appears as a parameter in H.

The equations of motion derived from (4.57) read

U ′ = ∂PH = P † +AUσ3 ,

P ′ = −∂UH
= −2E U † − 2U †V (x)− 2U †x ∂ � V

− σ3

(
P + σ3U

†A
)
A− σ3U

† ∗
∂ �

〈
∗
Ax′

〉
,

(4.58)

where
x′ = Uσ3U

′† = Uσ3P + U †U A (4.59)

was used. In terms of coordinates and momenta, the constraint (4.9) reads

〈Uσ3P 〉3 = 0 . (4.60)

Equation (4.60) is equivalent to (4.9) both in the presence and in the absence of
a magnetic field. Taken together, (4.58) and (4.59) lead back to the equation of
motion (4.16).

Finally, let me mention an important subtlety regarding the component de-
composition of the spinor equation. If, according to (4.7), U is represented as
U = u0 + Iu with u =

∑3
k=1 ukσk and pk denotes the momentum component

conjugate to uk, the spinor momentum is P = p0− Ip with p =
∑3

k=1 pkσk. The
negative sign is necessary because in the spinor formulation the bivector Ikpk is
conjugate to Ikuk. Dropping the bivector factors Ik leads to the stated result.

4.3 The Kepler problem

The unperturbed Kepler motion is described by the Hamiltonian

H =
1

2
P †P − E U †U = 2 (4.61)

or the equation of motion (4.18)

U ′′ = 2EU .

If E < 0, this is the equation of motion of an isotropic four-dimensional harmonic
oscillator, whose general solution reads

U = A cos(
√
−2E τ) +B sin(

√
−2E τ) (4.62)

with two constant even multivectors A and B bound, by (4.9) and (4.61), to
satisfy 〈

Aσ3B
†〉

3
= 0 (4.63)
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and

A†A+B†B = − 2

E
. (4.64)

In the case of the pure Kepler motion, the angular momentum vector L and
the Lenz vector ε are conserved. Together, they uniquely specify an orbit [29].
I will now derive the KS-transformed expressions for these constants of motion.
Throughout, the validity of the constraint (4.9) will be assumed.

The angular momentum vector is given by

L = x× ẋ = −I 〈xẋ〉2 . (4.65)

Within the geometric algebra, it is more convenient to introduce the angular
momentum bivector

l = IL = 〈xẋ〉2 , (4.66)

which specifies the orbital plane instead of the direction perpendicular to it.
By (4.3), (4.8) and (4.9),

l =

〈
1

2
Uσ3U

† Uσ3U̇
†
〉

2

=
1

2

〈
UU ′†

〉

2

=
1

2
〈UP 〉2 .

(4.67)

That l is conserved, can be verified by a straightforward differentiation. Al-
ternatively, it can be checked that the Poisson bracket vanishes,

{l,H} = (∂PH) ∗ ∂U l − (∂UH) ∗ ∂P l
= P † ∗ ∂U l + 2E U † ∗ ∂P l

=
1

2

〈
P †P

〉
2
+ E

〈
U †U

〉
2

= 0 .

(4.68)

Note how the Poisson bracket formalism extends not only to multivector coordi-
nates U and P , but also to non-scalar arguments.

The Lenz vector is given by

ε = lẋ− x

r
= l P †σ3U

−1 − Uσ3U
−1 .

(4.69)

To calculate the Poisson bracket {ε,H}, use {l,H} = 0 and

P † ∗ ∂UU−1 = −U−1P †U−1 (4.70)
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to find

{ε,H} =l
{
P †σ3U

−1,H
}
−
{
Uσ3U

−1,H
}

=l
(
P † ∗ ∂U

(
P †σ3U

−1
)
+ 2E U † ∗ ∂P

(
P †σ3U

−1
))

− P † ∗ ∂U
(
Uσ3U

−1
)

=l
(
−P †σ3U

−1P †U−1 + 2EUσ3U
−1
)

− P †σ3U
−1 + Uσ3U

−1P †U−1

=
[
l(−P †σ3U

−1P †σ3U
† + 2EUU †)

− P †U † + Uσ3U
−1P †σ3U

† ]
U †−1

σ3U
−1

(4.71)

Due to the constraint (4.60),

P †σ3U
† = Uσ3P , (4.72)

so that equation (4.71) simplifies to

{ε,H} =
[
l(−P †P + 2EU †U)− P †U † + UP

]
U †−1

σ3U
−1

=
[
− 2lH + 2 〈UP 〉2

]
U †−1

σ3U
−1

= 0 .

(4.73)

Thus, the Lenz vector ε is actually conserved.

4.4 The Kustaanheimo-Stiefel description of

closed orbits

If the initial conditions x(0) and ẋ(0) for a trajectory are given, the pertinent
initial conditions for the spinors U and U ′ can usually be obtained, up to a choice
of gauge, from (4.6) and (4.13). This prescription fails for trajectories starting at
the origin, where the KS transformation is singular. To overcome this difficulty,
note that in the vicinity of the nucleus the Coulomb interaction is so strong that
it dominates all external forces. The dynamics close to the nucleus is therefore
described by the Kepler equation of motion (4.18) and its solution (4.62). With
the appropriate initial conditions implemented, (4.62) reads

U(τ) =
U ′
0√

−2E
sin(

√
−2E τ) . (4.74)

U ′
0 is the initial velocity in KS-coordinates. It must be normalized to

U ′†
0 U

′
0 = 4 . (4.75)

The choice of gauge for U ′
0 is arbitrary.

The position vector corresponding to (4.74) is

x(τ) =
1

2
U ′
0σ3U

′†
0

sin2(
√
−2E τ)

−2E
. (4.76)
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Thus, (4.74) describes an electron moving out from the nucleus in the direction
of the unit vector

s =
1

4
U ′
0σ3U

′†
0 . (4.77)

U ′
0 is therefore a spinor rotating the vector σ3 to the starting direction s and

normalized according to (4.75). In terms of the starting angles ϑ and ϕ it is given
by

U ′
0 = 2 e−I3ϕ/2e−I2ϑ/2e−I3α/2 (4.78)

with an arbitrary gauge parameter α. The exponentials in (4.78) describe a se-
quence of three rotations taking the reference vector σ3 to the starting direction s.
The initial momentum reads

P0 = U ′†
0 = 2 eI3α/2eI2ϑ/2eI3ϕ/2 . (4.79)

Its component decomposition is

p0 = 2 cos
ϑ

2
cos

ϕ+ α

2
,

p1 = 2 sin
ϑ

2
sin

ϕ− α

2
,

p2 = −2 sin
ϑ

2
cos

ϕ− α

2
,

p3 = −2 cos
ϑ

2
sin

ϕ+ α

2
.

(4.80)

To describe the stability of a classical trajectory, a coordinate system with
one coordinate along the trajectory and two coordinates perpendicular to it is
customarily introduced in the neighbourhood of the trajectory. A linear stability
analysis then requires calculating the derivatives of positions and momenta with
respect to the transverse initial conditions. Most conveniently, derivatives with
respect to two orthonormal directions can be used. If these derivatives are to be
calculated within the framework of the KS theory, for a given starting direction
s and a direction sω⊥s, a KS spinor Pω must be found such that a variation of
the initial KS momentum P0 in the direction of Pω corresponds to a variation of
s in the direction of sω.

As the initial momentum is given in terms of the starting angles in (4.79),
the derivatives ∂P0/∂ϑ and ∂P0/∂ϕ can be expected to describe variations of the
starting direction in the directions of increasing ϑ and ϕ, respectively. To check
this and to find the correct normalization of the spinors, I will now construct, for
a fixed direction s, a basis of the spinor space such that one of the basis spinors
describes a variation of initial momentum along the orbit, two give variations
in the directions of two perpendicular unit vectors, and the fourth basis spinor
describes the gauge degree of freedom introduced by the KS regularization.

To this end, I consider a family of trajectories parameterized by an arbitrary
parameter ω. All trajectories start at the nucleus, the starting direction is given
by a family of vectors s(ω). By (4.77), the initial KS momenta P0(ω) then satisfy

s(ω) =
1

4
P †
0 (ω)σ3P0(ω) , (4.81)
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so that in complete analogy with (4.8) and (4.11)

∂s

∂ω
=

1

2

〈
P †
0σ3

∂P0

∂ω

〉

1

(4.82)

and
∂P0

∂ω
=

1

2
σ3P0

∂s

∂ω
=

1

2
P0s

∂s

∂ω
(4.83)

if the gauge condition 〈
P †
0σ3

∂P0

∂ω

〉

3

= 0 (4.84)

is imposed. Equation (4.83) gives the variation in the initial KS momentum
pertinent to a given variation in the starting direction. If two different variations
are given, the scalar product of the momentum variations is

(
∂P0

∂ω1

)†
∗ ∂P0

∂ω2

=
∂s

∂ω1

∗ ∂s

∂ω2

, (4.85)

so that the variations of KS momentum calculated from (4.83) are orthonormal
if the prescribed variations of the starting direction are.

For a fixed starting direction

s = e−I3ϕ/2e−I2ϑσ3e
I3ϕ/2 (4.86)

given by the starting angles ϑ and ϕ, I now introduce the orthogonal vectors

sϑ = e−I3ϕ/2e−I2ϑσ1e
I3ϕ/2 ,

sϕ = e−I3ϕ/2σ2e
I3ϕ/2 .

(4.87)

These are the unit vectors in the directions of ∂s/∂ϑ and ∂s/∂ϕ, respectively.
The orthonormal basis s, sϑ and sϕ of the position space gives rise to the three
orthonormal KS spinors

Ps =
1
2
σ3P0s = 1

2
P0 ,

Pϑ =1
2
σ3P0sϑ=

I2
2
e−I3αP0 ,

Pϕ =1
2
σ3P0sϕ= − I1

2
e−I3αP0 .

(4.88)

This set is complemented by a fourth orthonormal spinor

Pα =
∂P0

∂α
=

1

2
σ3P0I . (4.89)

(Note the analogy with (4.83).) The spinor Pα maximally violates the gauge
condition (4.84) in the sense that

P †
0σ3Pα =

〈
P †
0σ3Pα

〉
3
. (4.90)
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It therefore gives the direction in spinor space corresponding to a gauge trans-
formation, whereas Ps describes a change of momentum along the orbit (i.e. a
change of the energy) and Pϑ and Pϕ give directions perpendicular to the trajec-
tory. The desired separation of the physically distinct degrees of freedom has thus
been achieved. Note that Pϑ = ∂P0/∂ϑ as anticipated, whereas ∂P0/∂ϕ = P0I3/2
does not satisfy (4.84). Instead,

∂P0

∂ϕ
= Pα cosϑ+ Pϕ sinϑ . (4.91)

In components, the four basis spinors read

Ps = cos ϑ
2
cos ϕ+α

2
− I1 sin

ϑ
2
sin ϕ−α

2
+ I2 sin

ϑ
2
cos ϕ−α

2
+ I3 cos

ϑ
2
sin ϕ+α

2
,

Pϑ = − sin ϑ
2
cos ϕ+α

2
− I1 cos

ϑ
2
sin ϕ−α

2
+ I2 cos

ϑ
2
cos ϕ−α

2
− I3 sin

ϑ
2
sin ϕ+α

2
,

Pϕ = − sin ϑ
2
sin ϕ+α

2
− I1 cos

ϑ
2
cos ϕ−α

2
− I2 cos

ϑ
2
sin ϕ−α

2
+ I3 sin

ϑ
2
cos ϕ+α

2
,

Pα = − cos ϑ
2
sin ϕ+α

2
+ I1 sin

ϑ
2
cos ϕ−α

2
+ I2 sin

ϑ
2
sin ϕ−α

2
+ I3 cos

ϑ
2
cos ϕ+α

2
.

(4.92)

These formulae prescribe a basis of the spinor space uniquely up to the choice of
α if ϑ 6= 0, π. At the poles, the angle ϕ is undefined. Because in this case (4.87)
gives a pair of orthonormal tangent vectors for any choice of ϕ, (4.92) can be
used with arbitrary ϕ.

The basis Ps, Pϑ, Pϕ, Pα of KS momentum space can be supplemented by po-

sition spinors Uj = P †
j to obtain the basis of a canonical coordinate system in

spinor space. By construction, this basis set is appropriate for orbits starting
at the nucleus. However, as it is derived from the description (4.74) of a radial
Coulomb orbit, the same basis set is obtained if the construction is carried out
at a finite matching radius r0 in the Coulomb region.

The spinor basis thus obtained can now be used to calculate the stability
determinant

M ′ = det
∂(pϑf

, pϕf
)

∂(ϑi, ϕi)
(4.93)

occurring in the crossed-fields semiclassical Green’s function (2.32). For a trajec-
tory returning to the nucleus at time τ = 0 with a final KS momentum Pf , the
solution (4.74) of the Kepler equation of motion takes the form

U(τ) =
P †
f√

−2E
sin(

√
−2E τ) = −

√
r

2
P †
f ,

P (τ) = Pf cos(
√
−2E τ) =

√
1 + ErPf ,

(4.94)

which is valid within the Coulomb region. The derivative of U and P with respect
to an arbitrary parameter ω1 reads, in complete analogy with (2.60),

∂U

∂ω1
= −

√
r

2

(
∂Pf

∂ω1

)†
+
√
1 + Er

∂Uf

∂ω1
,

∂P

∂ω1
=

√
1 + Er

∂Pf

∂ω1
−
√
2rE

(
∂Uf

∂ω1

)†
.

(4.95)
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The constants ∂Uf/∂ω1 and ∂Pf/∂ω1 are the values of the derivatives obtained
at r = 0.

According to (4.67), the angular momentum component in a plane specified
by a bivector B is

LB = L ∗B =
1

2
〈BUP 〉 . (4.96)

The derivative of LB with respect to a parameter ω1 can then be calculated with
the help of (4.95). It is given by

∂LB

∂ω1
=

1

2

〈
PfB

∂Uf

∂ω1

〉
. (4.97)

As anticipated, it does not depend on r due to angular-momentum conservation.
For the angular momentum component pω2

conjugate to an angular coordinate
ω2, the relevant bivector is

B = s
∂s

∂ω2

, (4.98)

so that
∂pω2

∂ω1

=
1

2

〈
Pfs

∂s

∂ω2

∂Uf

∂ω1

〉
=

〈
Pω2

∂Uf

∂ω1

〉
, (4.99)

where Pω2
denotes the basis spinor corresponding to ω2 by (4.83) with the final

momentum Pf used in place of P0.
I introduce coordinates ϑ̄ and ϕ̄, such that ∂s/∂ϑ̄ = sϑ and ∂s/∂ϕ̄ = sϕ are

unit vectors given by (4.87). The stability determinant M ′ can then be rewritten
as

det
∂(pϑf

, pϕf
)

∂(ϑi, ϕi)
= det




∂pϑ̄f

∂ϑ̄i
sinϑi

∂pϑ̄f

∂ϕ̄i

sin ϑf
∂pϕ̄f

∂ϑ̄i
sinϑi sin ϑf

∂pϕ̄f

∂ϕ̄i



 = sin ϑi sinϑfM

(4.100)
with a 2× 2-determinant

M = det




〈
Pϑ

∂Uf

∂ϑ̄i

〉 〈
Pϑ

∂Uf

∂ϕ̄i

〉

〈
Pϕ

∂Uf

∂ϑ̄i

〉 〈
Pϕ

∂Uf

∂ϕ̄i

〉


 (4.101)

free of any coordinate-induced singularities. In this form, the stability determi-
nant was incorporated into (2.34).

A special case arises in rotationally symmetric systems. Due to the con-
servation of angular momentum, a trajectory in these systems is confined to a
two-dimensional surface in space which contains the symmetry axis. The return-
ing direction of a closed orbit must therefore be contained in the plane spanned
by the initial direction and the symmetry axis. The stability of such an orbit

is characterized by a single monodromy matrix element m12 =
〈
Pϑ

∂Uf

∂ϑ̄i

〉
, which

describes a variation of the initial direction in the plane. The orbit is neutrally
stable with respect to variations perpendicular to the plane.
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If the orbit is directed along the symmetry axis, any two directions perpen-
dicular to it are equivalent. As a consequence, the matrix in (4.101) is diagonal,
and the diagonal elements are equal. Thus, M = m2

12. This relation has already
been used in (2.66).

The derivatives ∂Uf/∂ω needed in (4.101) are evaluated at the position of the
nucleus, so that, as desired, they do not depend on the matching radius. They
can be calculated numerically by integrating the linearized equations of motion

d

dτ

∂U

∂ω
=

(
∂U

∂ω
∗ ∂U

)
∂PH +

(
∂P

∂ω
∗ ∂P

)
∂PH ,

d

dτ

∂P

∂ω
= −

(
∂U

∂ω
∗ ∂U

)
∂UH−

(
∂P

∂ω
∗ ∂P

)
∂UH

(4.102)

along the closed orbit with initial conditions

∂U

∂ω
(0) = 0 ,

∂P

∂ω
(0) = Pω . (4.103)



Chapter 5

Closed orbits in crossed fields

The crucial pre-requisite for any semiclassical quantization is a sufficiently de-
tailed understanding of the underlying classical dynamics. In particular, a quan-
tization based on closed-orbit theory requires the knowledge of all closed orbits
up to a certain maximum length. As all atomic systems in external fields, with
the sole exception of the hydrogen atom in an electric field, are classically non-
integrable, closed orbits must in general be computed numerically. Nevertheless,
it is desirable to obtain a qualitative overview over the set of orbits, because on
the one hand the classification itself plays an important role in the interpretation
of structures observed in quantum spectra and, on the other, it provides a means
to verify the completeness of a numerically computed list of orbits.

For the hydrogen atom in a magnetic field, the systematics of closed orbits
and their bifurcations is known [7, 75–79]. For the hydrogen atom in crossed
electric and magnetic fields, the classical mechanics is much more complicated
because three non-separable degrees of freedom have to be dealt with. Although
a number of closed orbits have been identified in experimental or theoretical
quantum spectra [7–11], a systematic study of these orbits and their bifurcations
is still lacking.

Considerable effort has been spent during the past decade on the study of
the classical mechanics of the crossed-fields hydrogen atom in the limit of weak
external fields [80–87]. This work relies on the observation that for weak external
fields the principal quantum number n or its classical analogue n = 1/

√
−2E

is conserved to a higher degree of precision than the angular-momentum and
Lenz vectors L and A. The latter are conserved in the pure Kepler problem,
but acquire a slow time-dependence in weak fields, so that the electron can be
visualized as moving on a slowly precessing Kepler ellipse.

The most important result in the present context is the observation first de-
scribed in [81] that there are four Kepler ellipses that are unperturbed by the
external fields to first order in the field strength, i.e. among the continuous in-
finity of periodic orbits of the unperturbed Kepler problem, there are four orbits
that remain periodic in the presence of external fields. These fundamental peri-
odic orbits can be regarded as the roots of “family trees” of periodic orbits. More
complicated orbits are created out of the fundamental orbits by bifurcations as

63
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the field strengths increase.

However, none of the fundamental periodic orbits is closed at the nucleus.
Their knowledge therefore does not aid in the classification of closed orbits. A
study of closed orbits in the crossed-fields system and their bifurcations was
performed by Wang and Delos [88]. These authors present orderly sequences of
bifurcations of planar closed orbits (i.e. orbits in the plane perpendicular to the
magnetic field), which they interpret in terms of an integrable model Hamiltonian.

In the present chapter I undertake a systematic study of closed orbits in
the crossed-fields system. As the key to a classification of closed orbits is an
understanding of their bifurcations, section 5.1 will present the general framework
of a local bifurcation theory of closed orbits, and section 5.2 will describe the
generic codimension-one bifurcations. The following sections will then describe
the bifurcation scenarios actually observed in the crossed-fields system, taking the
well-known closed orbits of the hydrogen atom in a magnetic field as a starting
point. Although the present analysis cannot yet claim to have achieved a complete
classification of closed orbits, it does give a detailed impression of how orbits
bifurcate as the electric field strength increases. It thus introduces a high degree
of order into the complex set of closed orbits.

5.1 General bifurcation theory

As described in section 2.1, the dynamics of the hydrogen atom in a single external
field possesses a time-reversal invariance that makes the electron retrace its own
path after an encounter with the nucleus. Therefore, any closed orbit is either
itself periodic or it is one half of a periodic orbit. This symmetry has a profound
influence on the bifurcation theory of closed orbits. As closed orbits possess
repetitions in pure fields, arbitrary m-tupling bifurcations are possible. Due to
the close link between closed orbits and periodic orbits, closed-orbit bifurcations
can be described in the framework of periodic-orbit bifurcation theory developed
by Mayer [12, 79].

In the presence of non-parallel electric and magnetic fields, the time-reversal
invariance is broken, and no general connection between closed orbits and periodic
orbits remains. As a consequence, the techniques of periodic-orbit bifurcation
theory are no longer applicable, and a novel approach to the classification of
closed-orbit bifurcations must be found. In this section, a general framework for
the discussion of closed-orbit bifurcations will be introduced.

The crucial step in the development of the bifurcation theory of periodic orbits
is the introduction of a Poincaré surface of section map in the neighbourhood of
the orbit. The Poincaré map describes the dynamics of the degrees of freedom
transverse to the orbit, and the orbit bifurcates when the transverse dynamics
becomes resonant with the motion along the orbit.

For periodic orbits, a Poincaré map is specified by fixing a surface of section
in phase space which is transverse to the orbit. For a point P on the surface of
section, the trajectory starting at P is followed until it intersects the surface of
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type transformation non-singular matrix
F1(qi, qf) pi = +∂F1/∂qi pf = −∂F1/∂qf B
F2(qi, pf) pi = +∂F2/∂qi qf = +∂F2/∂pf D
F3(pi, qf) qi = −∂F3/∂pi pf = −∂F3/∂qf A
F4(pi, pf) qi = −∂F4/∂pi qf = +∂F4/∂pf C

Table 5.1: Overview of generating functions of different types (cf. [89]).

section again. This intersection point is defined to be the image of P under the
Poincaré map. The periodic orbit itself returns to its starting point, so that it
appears as a fixed point of the Poincaré map.

This prescription is not directly applicable to closed orbits because they do
not return to their starting point in phase space. Therefore, a trajectory starting
on the surface of section will not in general intersect the surface again. To arrive
at a meaningful definition of a Poincaré map, one must use two surfaces of section:
the first transverse to the initial direction of the orbit, the second transverse to
its final direction. A trajectory starting in the neighbourhood of the closed orbit
on the initial surface of section Σi will then have an intersection with the final
section Σf , so that a Poincaré map is well defined. As in the case of a periodic
orbit, the Poincaré map in symplectic.

Unlike with periodic orbits, the notion of a closed orbit is not invariant under
canonical transformations. The distinction between position space and momen-
tum space must therefore be kept. Let (qi, pi) and (qf , pf) be canonical coor-
dinates on the surfaces Σi and Σf chosen so that qi and qf are position space
coordinates in the directions perpendicular to the initial or final directions of the
orbit. The origins of the coordinate systems are fixed so that the position of the
nucleus is qi = 0 or qf = 0, respectively. Closed orbits are then characterized by
qi = qf = 0. In crossed fields three spatial dimensions must be dealt with, so that
each of qi, pi, qf , pf is a two-dimensional vector.

A closed orbit can start in Σi with arbitrary initial momentum pi, but it must
start in the plane qi = 0. The Poincaré map maps this plane into a Lagrangian
manifold in Σf . Closed orbits are given by the intersections of this manifold with
the plane qf = 0. In a less geometrical way of speaking, closed orbits can be
described as solutions of the equation qf (pi, qi = 0) = 0. A particular solution of
this equation, corresponding to the orbit the construction started with, is given
by qf(pi = 0) = 0. If the matrix B = ∂qf/∂pi is non-singular at pi = 0, this
solution is locally unique by the implicit function theorem. Thus, the closed
orbit cannot undergo a bifurcation unless detB = 0. This result was to be
expected in view of the semiclassical amplitude (2.43), because if the coordinates
qi are chosen orthonormal, M = detB is the stability determinant (4.101), and
a bifurcation of closed orbits is known to lead to a divergence of the pertinent
semiclassical amplitudes. It has now been obtained within classical mechanics,
as is appropriate for a purely classical result, which should be independent of any
semiclassical theory.

An overview of the bifurcation scenarios to be expected when detB = 0 can
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be obtained from a description of the possible modes of behaviour of the Poincaré
map. This can most conveniently be achieved if the Poincaré map is represented
by a generating function [89,90]. The generating function can be chosen to depend
on any combination of initial and final positions and momenta, as long as they
form a complete set of independent coordinates. I will adopt the well-known
conventions of Goldstein [89] for denoting different types of generating functions,
which are summarized in table 5.1.

For a generic symplectic map, all possible sets of coordinates and momenta
are independent, so that generating functions of any type exist. At a closed-orbit
bifurcation, however, a degeneracy indicated by the condition that B = ∂qf/∂pi
be singular arises, so that care must be taken in choosing a generating function.
Loosely speaking, if B is singular, pi cannot be determined from qi and qf , so that
it may be conjectured that no generating function of type F1 exists. To confirm
this conjecture, I study a linear symplectic map

qf = Aqi +Bpi , pf = Cqi +Dpi (5.1)

with four matrices A,B,C,D satisfying the symplecticity conditions [90]

A>C = C>A , B>D= D>B , A>D − C>B = 1 ,

AB> = BA> , CD>= DC> , AD> − BC> = 1 ,
(5.2)

where > denotes the transpose. A generating function for the linear map (5.1)
must be quadratic in its variables. From the ansatz

F1(qi, qf) =
1
2
q>f Rqf + q>f Sqi +

1
2
q>i Tqi (5.3)

with matrices R, S, T , the map (5.1) is obtained if

R = −DB−1 , S = B−1> = DB−1A− C , T = −B−1>A . (5.4)

The two expressions given for S are equal by virtue of (5.2). As expected, a
generating function of type F1 does not exist if B is singular. A similar calculation
can be made for the other types of generating functions. For each type, one of the
matrices A,B,C,D must be non-singular. These results are given in table 5.1.
Locally, they can be extended to non-linear maps by means of the implicit function
theorem.

I have thus shown that at a bifurcation of closed orbits the Poincaré map
possesses generating functions of all types except F1. The most convenient choice
is a function of type F4(pi, pf). The transformation equations associated with
this type of generating function read

qi = −∂F4

∂pi
, qf = +

∂F4

∂pf
. (5.5)

Closed orbits are characterized by qi = qf = 0. They agree with the stationary
points of the F4 function. The classification problem of closed-orbit bifurcation
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qf

pf

(a)

qf

pf

(b)

Figure 5.1: Schematic plot of the Lagrangian manifold qi = 0 in Σf for the case
(a) B = ∂qf/∂pi = 0 and (b) D = ∂pf/∂pi = 0. The dashed lines indicate the
position of the manifold at slightly varied parameter values. Only in case (a)
additional intersections with the plane qf = 0 can arise.

theory can thus be rephrased as the problem to determine how stationary points
of a real function change upon the variation of parameters. This question is the
subject of catastrophe theory [91–93].

Catastrophe theory studies smooth real-valued functions f(x) and f̃(x) de-
fined in a neighbourhood of the origin in an n-dimensional configuration space.
They are said to be equivalent if there is a diffeomorphism ψ(x) of the configu-
ration space so that

f̃(x) = f(ψ(x)) . (5.6)

The coordinate transformation ψ maps the stationary points of f̃ to those of f .
In this sense, the distributions of stationary points of f and f̃ agree qualitatively.
Without loss of generality it can be assumed that f and f̃ have stationary points
at the origin, because any stationary point can be moved there by a coordinate
transformation. After adding a constant, one has f(0) = 0.

f is said to be structurally stable if any small perturbation f̃ of f (i.e. f̃(x) =
f(x) + εg(x) with a smooth function g(x) and sufficiently small ε) is equivalent
to f . Notice that catastrophe theory is a purely local theory. It is concerned with
the structural stability or instability of a single stationary point and the pattern
of stationary points that can be generated from a structurally unstable stationary
point by a small perturbation.

In the present context, non-bifurcating closed orbits correspond to structurally
stable stationary points of F4, because a small variation of parameters will bring
about a variation of F4 which is small in the above sense and preserves the
stationary point. The most elementary result of catastrophe theory states that
a stationary point of a function f is structurally stable if its Hessian matrix, i.e.
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the matrix of second derivatives of f , is non-singular. For the linear symplectic
transformation (5.1), the F4 generating function is

F4 =
1
2
p>f AC

−1pf − p>f C
−1>pi +

1
2
p>i C

−1Dpi , (5.7)

so that its Hessian determinant at pi = pf = 0 can be found to be

detHessF4 =
detB detD

detC
. (5.8)

The Hessian matrix of F4 is thus singular if either B = ∂qf/∂pi or D = ∂pf/∂pi
is. It has been shown above that bifurcations of closed orbits can only occur if
detB = 0, i.e. a bifurcating orbit corresponds to a degenerate stationary point
of F4. The case detD = 0 also leads to a degeneracy of F4, but it cannot be
associated with a closed-orbit bifurcation. This can also be understood geometri-
cally: As illustrated in figure 5.1, if detB = 0, the Lagrangian manifold given by
qi = 0 is tangent to the plane qf = 0, so that it can develop further intersections
with that plane upon a small variation of parameters. If detD = 0, the manifold
is tangent to the plane pf = 0, whence, upon a variation of parameters, it can
acquire additional intersections with that plane, but not with the plane qf = 0,
so that no bifurcation of closed orbits can arise.

The discussion of stationary points with degenerate Hessian matrices, also
called “catastrophes”, is simplified considerably by the splitting lemma of catas-
trophe theory [93]. It states that if the dimension of the configuration space is n
and a function f on the configuration space has a stationary point at the origin
whose Hessian matrix has rank n − m, a coordinate system x1, . . . , xn can be
introduced in a neighbourhood of the stationary point so that

f(x1, . . . , xn) = g(x1, . . . , xm) + q(xm+1, . . . , xn) , (5.9)

where q is a non-degenerate quadratic form of n − m variables and the func-
tion g has a stationary point with zero Hessian matrix at the origin. As the
non-degenerate stationary point of q is structurally stable, the behaviour of the
stationary points of f under a small perturbation is determined by g only. The
number of relevant variables is thus only m, which is called the corank of the
catastrophe. It will be assumed henceforth that a splitting according to (5.9) has
been carried out and the non-degenerate part q is ignored, so that the Hessian
matrix of f vanishes at the origin.

Under a small perturbation of the function f , a degenerate stationary point
will in general split into several distinct stationary points. This process will be
used to model bifurcations of closed orbits. The degenerate stationary points
relevant to bifurcation theory are those of finite codimension, i.e. those for which
there are smooth functions g1(x), . . . , gk(x) so that any small perturbation of f
is equivalent to

F (x) = f(x) + α1g1(x) + · · ·+ αkgk(x) (5.10)

with suitably chosen constants αi. The function F (x) is called an unfolding of
f(x), because the degenerate stationary point of f can be regarded as a set of
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several stationary points that accidentally coincide and are “unfolded” by the
parameters αi. The smallest value of k that can be chosen in (5.10) is called the
codimension of f . An unfolding of f with k equal to the codimension of f is
referred to as universal.

In the bifurcation problem, the generating function F4 depends on external
control parameters ρ1, . . . , ρl such as, e.g., the energy E or the external field
strengths. If, for a critical value of the parameters, F4 has a degenerate stationary
point equivalent to that of f , in a neighbourhood of the critical value F4 is
equivalent to the unfolding (5.10), where the unfolding parameters αi are smooth
functions of the control parameters ρj. The critical parameter values themselves
are characterized by the condition that all unfolding parameters vanish, i.e. by
the set of equations

α1(ρ1, . . . , ρl) = 0 ,

. . .

αk(ρ1, . . . , ρl) = 0 .

(5.11)

These are k equations in l unknowns. They can “generically” only be expected to
possess a solution if k ≤ l, that is, the codimension of the degenerate stationary
point must not be larger than the number of external parameters. This construc-
tion introduces a notion of codimension for bifurcations of closed orbits which is
entirely analogous to the codimension of bifurcations of periodic orbits: Bifurca-
tions of a codimension higher than the number of external parameters cannot be
expected to exist because they are structurally unstable. Under a small pertur-
bation of the system they would split into a sequence of “generic” bifurcations of
lower codimensions.

5.2 Codimension-one generic bifurcations

The considerations of the preceding section reduce the bifurcation theory for
closed orbits to the problem of determining all catastrophes having a codimension
smaller than the number of external parameters. In particular, it explains why
only catastrophes of finite codimension are relevant. In the crossed-fields system,
the number of parameters is two, if the scaling properties are taken into account.
However, I will only describe bifurcations of codimension one in the following.
They suffice to describe the bifurcations encountered if a single parameter is
varied while the second is kept fixed. They also give a good impression of the
codimension-two scenarios because a bifurcation of codimension two must split
into a sequence of codimension-one bifurcations as soon as any of the parameters
is changed.

For generic functions without special symmetries, a list of catastrophes of
codimensions up to six with their universal unfoldings is readily available in the
literature [91–93]. The classification of closed-orbit bifurcations presented here
relies on these results.
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5.2.1 The tangent bifurcation

There is a single catastrophe of codimension one, which has corank one and is
known as the fold catastrophe. Its universal unfolding is given by

Φa(t) =
1
3
t3 − at , (5.12)

with a denoting the unfolding parameter. The fold has two stationary points at

t = ±
√
a , (5.13)

where it assumes the stationary values

Φa(±
√
a) = ∓2

3
a3/2 . (5.14)

The second derivative in the stationary points is

Φ′′
a(±

√
a) = ±2

√
a . (5.15)

The stationary points are real if a > 0. If a < 0, there are no stationary points
on the real axis, because the solutions (5.13) are imaginary. These complex
stationary points correspond to closed “ghost” orbits in the complexified phase
space. Ghost orbits can be thought of as preceding real orbits generated in a
bifurcation. Semiclassically, they play a crucial role both in periodic-orbit and
closed-orbit theories [94–96]. As a is varied, a tangent bifurcation occurs at a = 0,
where two complex conjugate ghost orbits turn into two real orbits or vice versa.

All qualitative features of the bifurcation are described by the normal form
(5.12). The stationary points, i.e. the closed orbits, initially move apart as

√
a.

As will become clear in the discussion of uniform approximations in section 6.5,
the difference between the stationary values gives the action difference between
the closed orbits, whereas the second derivatives – or, more generally, the Hessian
determinants – at the stationary points are proportional to the stability determi-
nant M . All these quantities are shown in figure 5.2. When they are compared
to the corresponding quantities calculated for an actual bifurcation in section 5.4,
the qualitative agreement will become clear.

The fold catastrophe (5.12) describes the generation of two closed orbits in a
tangent bifurcation. As this is the only generic catastrophe of codimension one,
it follows that the tangent bifurcation is the only possible type of closed-orbit
bifurcations. In particular, once it has been generated a closed orbit cannot split
into several orbits, as periodic orbits typically do. However, this statement needs
some modification due to the presence of reflection symmetries in the crossed-
fields system.

5.2.2 The pitchfork bifurcation

If the orbit under study is symmetric under one of the reflections, i.e. it is a singlet
or a doublet orbit, the generating function F4 in the neighbourhood of this orbit
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Figure 5.2: The positions of stationary points, stationary values and second
derivatives in the fold catastrophe. Solid lines indicate real stationary points,
dashed lines complex stationary points. Dotted lines are coordinate axes.

must also possess this reflection symmetry. By this constraint, several of the
elementary catastrophes are excluded altogether. For others, the codimension is
reduced because the unfolding can only contain symmetric terms.

One additional catastrophe of codimension one arises, viz. the symmetrized
version of the cusp catastrophe

Φa(t) =
1
4
t4 − 1

2
at2 . (5.16)

This normal form possesses the reflection symmetry t 7→ −t, so that the origin
is mapped onto itself under the symmetry transformation. There is a stationary
point at the origin for all values of the parameter a, corresponding to a closed
orbit which is invariant under the reflection. Additional stationary points are
located at

t = ±
√
a . (5.17)

They are real if a > 0 and are mapped onto each other under a reflection. Thus,
the symmetric cusp (5.16) describes a pitchfork bifurcation at a = 0, where two
asymmetric orbits bifurcate off a symmetric orbit, generating a quartet from a
doublet or a doublet from a singlet.

The stationary values at the asymmetric stationary points are given by

Φa(±
√
a) = −1

4
a2 , (5.18)
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Figure 5.3: The positions of stationary points, stationary values and second
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the second derivative is

Φ′′
a(±

√
a) = 2a . (5.19)

Both the stationary values and the values of the second derivative are real even
for a < 0, when the stationary points themselves are complex. Therefore, these
stationary points correspond to ghost orbits having real actions and stability
determinants. The existence of this remarkable type of ghost orbits is again
a consequence of the reflection symmetry: As the stationary points (5.17) are
imaginary, the reflection t 7→ −t changes a stationary point and its stationary
value into their complex conjugates. On the other hand, the stationary values
are invariant under the reflection, so they must be real. A ghost orbit having this
symmetry property will be referred to as a symmetric ghost orbit.

The characteristic quantities of the symmetric cusp catastrophe are shown
in figure 5.3 as a function of a. Again, they describe the qualitative behaviour
of the bifurcating orbits close to the bifurcation. It should be noted that the
stationary values (5.18) are negative for all values of a, so that for a bifurcation
described by (5.16), the actions of the asymmetric orbits must be smaller than
those of the symmetric orbit. An alternative bifurcation scenario is described
by the dual cusp, viz. the negative of (5.16). The dual cusp is inequivalent to
the regular cusp, but the scenario it describes agrees with the above except that
the stationary values and the second derivatives change their signs, so that the
actions of the asymmetric orbits are now larger than that of the symmetric orbit.
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5.3 Closed orbits in the diamagnetic Kepler

problem

As a basis for the description of closed orbits in the crossed-fields hydrogen atom,
I will choose the closed orbits in the diamagnetic Kepler problem (DKP), i.e.
in the hydrogen atom in a pure magnetic field. For these orbits a complete
classification is available [7,75–79]. It will now be recapitulated briefly. As usual,
the classical quantities will be scaled with respect to the magnetic field strength
B, and the classical dynamics will be described as a function of the scaled energy
Ẽ = EB−2/3.

For low scaled energies Ẽ → −∞, there are two fundamental closed orbits: In
one case, the electron leaves the nucleus parallel to the magnetic field until the
Coulomb attraction forces it back. This orbit is purely Coulombic because the
electron does not feel a Lorentz force when moving parallel to the magnetic field.
The second closed orbit lies in the plane perpendicular to the magnetic field. Its
shape is determined by the combined influences of the Coulomb and magnetic
fields.

Due to time-reversal invariance, both elementary orbits possess arbitrary rep-
etitions. As the scaled energy increases, each repetition of an elementary orbit
undergoes a sequence of bifurcations labelled by an integer ν = 1, 2, 3, . . . in or-
der of increasing bifurcation energy. The orbits born in these bifurcations can be
characterized by the repetition number µ of the bifurcating orbit and the bifur-
cation number ν. They are referred to [7] as vibrators V ν

µ if they bifurcate out of
the orbit parallel to the magnetic field and as rotators Rν

µ if they bifurcate out of
the orbit perpendicular to B.

Further bifurcations create additional orbits from the V ν
µ and Rν

µ or “exotic”
orbits not related to one of the two fundamental orbits. These orbits are of
importance at scaled energies higher than those considered in this work, so that
they will not be discussed further. For the scaled energy Ẽ = −1.4, the scaled
actions and starting angles of the closed orbits are presented in figure 5.4. It
can be seen that only orbits fitting into the classification scheme described above
are present. Furthermore, orbits having a common bifurcation number ν lie on
a smooth curve in the plot. For this reason, I will refer to orbits characterized
by a fixed ν as a series of rotators or vibrators, respectively, and call ν the series
number.

5.4 Closed orbit bifurcation scenarios

In the presence of a magnetic field only, the atomic system possesses a rotational
symmetry around the field axis. As a consequence, all closed orbits except for
the orbit parallel to the magnetic field occur in continuous one-parameter fam-
ilies. When a perpendicular electric field is added, the rotational symmetry is
destroyed. Out of each family, only two orbits survive [97], or, in other words,
each family of orbits splits into two independent orbits.
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Figure 5.4: Actions S̃ as functions of the starting angles ϑi of closed orbits in the
DKP for Ẽ = −1.4.

In a pure magnetic field the starting direction of a family of orbits can be
specified by giving the starting angle ϑi with respect to the field direction. In
crossed fields, two angles are required. In addition to ϑi, measured to the magnetic
field direction, the azimuthal angle ϕi between the electric field and the projection
of the starting direction into the plane perpendicular to B will be used.

5.4.1 Planar orbits

The splitting of a family of orbits upon the introduction of an electric field can
most clearly be seen for planar orbits, i.e. for orbits lying in the plane perpendic-
ular to the magnetic field. Due to the Z-symmetry, this plane is invariant under
the dynamics. Thus, the initial direction of an orbit can be specified by means
of the azimuthal angle ϕi only.

Figure 5.5 shows the actions and initial directions of the planar orbits for
a scaled energy of Ẽ = −1.4 and scaled electric field strengths F̃ = 0.03 and
F̃ = 0.05. At F̃ = 0, the orbits bifurcate off a certain repetition of the planar
closed orbit of the diamagnetic Kepler problem. For low F̃ they can therefore be
assigned a repetition number. It can clearly be discerned in figure 5.5 from the
actions of the orbits.

As expected from the theory of the rotational symmetry breaking [97], there
are two orbits for each repetition number, and they start in opposite directions
from the nucleus. Moreover, the starting angle varies linearly with the repetition
number. These findings are illustrated in figure 5.6, where for a few low repetition
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Figure 5.5: Actions S̃ and azimuthal starting angles ϕi for planar orbits at Ẽ =
−1.4 and F̃ = 0.03 (+ symbols) and F̃ = 0.05 (× symbols).

numbers one of the two orbits is shown. It can be seen that the orbits consist
of more and more “loops” and that the starting angle increases regularly. The
shapes are symmetric with respect to the x-axis, because the orbits are invariant
under the T-transformation. In the terminology of section 2.1 these orbits are
singlets.

A few orbits in figure 5.5 do not fit into this simple scheme. A closer inspec-
tion reveals that these orbits are not singlets, but Z-doublets, and indeed they
obviously occur in pairs. They are generated by symmetry-breaking pitchfork
bifurcations from singlet orbits. Figure 5.7 presents the orbital parameters for
closed orbits involved in a bifurcation of this kind. The plots should be compared
to figure 5.3, which displays the scenario described by the symmetric cusp catas-
trophe. The qualitative agreement between the catastrophe theory predictions
and the numerical findings is evident.

The asymmetric orbits have the surprising property of having equal initial
and final azimuthal angles ϕi = ϕf . According to table 2.3, this property does
not correspond to any of the reflections symmetries of the Hamiltonian, so that it
should not be expected to be generic. Numerically, however, it is found that the
equality holds for all parameter values. The reason for this seemingly non-generic
behaviour is that a closed orbit with equal initial and final directions is actually
periodic. Upon a variation of the parameters a periodic closed orbit must not
only persist as a closed orbit according to the results of section 5.1, it must also
remain periodic unless it is destroyed in a periodic-orbit bifurcation. Together,
these two requirements guarantee that the property of having equal initial and
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final directions is a stable property of a closed orbit.

The initial and final angles of the asymmetric orbits satisfy ϕ
(1)
i = −ϕ(2)

f

because they are symmetry partners and ϕ
(2)
i = ϕ

(2)
f because they are periodic.

Thus, they must fulfil ϕ
(1)
i = −ϕ(2)

i . At the bifurcation, the initial angles of the
two orbits must coincide, so that a bifurcation can only take place when ϕi = 0
or ϕi = π, and it actually does take place every time one of these conditions is
fulfilled. This process can be seen in figure 5.5, e.g., at S/2π ≈ 25: At F̃ = 0.03,
the symmetric orbit has not yet crossed the line ϕi = π, so that no bifurcation
has occurred. At F̃ = 0.05, this line has been crossed and two asymmetric orbits
have been created.

As the electric field strength is increased, the dependence of the starting angle
on the repetition number ceases to be linear. Instead, the curves interpolating
the functions S(ϕi) start to develop humps, so that at certain values of S, i.e.
at certain repetition numbers, more than two possible values of ϕi exist. This
development is illustrated in figure 5.8. The humps indicate the occurrence of
tangent bifurcations generating additional pairs of singlet orbits. This is the
type of bifurcation described by the fold catastrophe (5.12). Orbital parameters
for orbits involved in a bifurcation of this kind are shown in figure 5.9. As for
the pitchfork bifurcation, a comparison of that figure to the catastrophe theory
predictions in figure 5.2 reveals that the bifurcation is well described qualitatively
by the fold catastrophe.
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lines: real orbits, dashed-dotted lines: ghost orbits.

Once additional singlet orbits have been generated in a tangent bifurcation,
doublet orbits can be generated by pitchfork bifurcations in the same way as from
the original singlet orbits, i.e. a bifurcation will occur whenever a singlet orbit
crosses one of the lines ϕi = 0 or ϕi = π. This is illustrated in figure 5.10, which
presents the tangent bifurcation already shown in figure 5.9 at F̃ ≈ 0.11. At
F̃ = 0.135, one of the orbits thus generated crosses the line ϕi = 0, and two dou-
blet orbits are created from it. Together, the two bifurcations form what Wang
and Delos [88] call the “normal sequence” of bifurcations, whereas a pitchfork
bifurcation of a singlet orbit generated at F̃ = 0, which is not preceded by a
tangent bifurcation, is called a “truncated series”. These authors introduce an
integrable model Hamiltonian to explain why this kind of sequences can often
be observed for planar orbits. The bifurcation theory of sections 5.1 and 5.2
sheds new light on this question, suggesting that normal sequences can actually
be expected to occur even more generally than surmised by Wang and Delos. In
particular, although the crossed-fields system is close to integrable at the field
strengths considered here, integrability is not needed to make pitchfork bifur-
cations a generic phenomenon. Instead, the presence of a reflection symmetry
suffices to reduce its codimension from two to one. The sequence of a tangent
and a pitchfork bifurcation, represented as a sequence of a fold and a symmetric
cusp catastrophe, can be regarded as an unfolding of the symmetrized version of
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the butterfly catastrophe [92, 96]

Φa,b(t) =
1
6
t6 − 1

4
at4 − 1

2
bt2 , (5.20)

which is of codimension two, so that its unfolding can be expected to occur
frequently in codimension one.

A third bifurcation can be discerned in figure 5.10: At F̃ ≈ 0.225, a singlet
orbit generated at F̃ = 0 and a singlet orbit generated in the tangent bifurcation
discussed above collide and are destroyed. This is an instant of an inverse tangent
bifurcation, which can be described by the fold catastrophe in the same way
as the “regular” tangent bifurcation. It forms the third building block for the
bifurcation scenario changing the pattern of planar orbits as the electric field
strength is increased.

Besides the three bifurcations described above, in figure 5.10 three further
zeros of the stability determinant M̃ occur for certain real orbits, indicating the
presence of even more bifurcations. These bifurcations involve non-planar orbits,
i.e. they are pitchfork bifurcations breaking the Z-symmetry all planar orbits
possess. They will be discussed further in subsequent sections. At the moment
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Figure 5.11: Scaled actions and polar starting angles of closed orbits at Ẽ = −1.4
and F̃ = 0 (pure magnetic field, + symbols), F̃ = 0.05 (× symbols) and F̃ =
0.1 (∗ symbols). Due to the Z-symmetry, the figure should be extended to be
symmetric with respect to the line ϑi = π/2.

it suffices to note that in this scenario six individual bifurcations take place in a
comparatively small interval of the electric field strength. This is the first example
of a phenomenon to be encountered repeatedly: In the crossed-fields hydrogen
atom bifurcations of closed orbits abound, exacerbating both the classical and
the semiclassical treatment of the dynamics.

5.4.2 Non-planar orbits

The transition from the rotationally-symmetric case of a pure magnetic field to
crossed fields occurs for non-planar orbits in much the same way as for planar
orbits. As soon as a small perpendicular electric field is present, a one-parameter
family of DKP orbits is destroyed and splits into two isolated closed orbits. These
orbits start in opposite directions with respect to the electric field, so that their
azimuthal starting angles ϕi differ by π, in complete analogy with what was shown
in figure 5.5. An additional complication arises because the polar starting angle
ϑi is no longer bound to the fixed value π/2, so that the two orbits will in general
have different ϑi. Figure 5.11 presents the polar starting angles and the scaled
actions of the closed orbits for the scaled energy Ẽ = −1.4 in a pure magnetic
field and for two different perpendicular electric field strengths. It is obvious from
the figure how a family of orbits splits in two isolated orbits and the two orbits
move apart as the electric field strength is increased. This process takes place in
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the same way for both rotator and vibrator orbits.

An exceptional role is played by the DKP orbit parallel to the magnetic field.
This orbit is isolated even in a pure magnetic field. In the presence of a perpen-
dicular electric field it is distorted and torn away from the magnetic field axis,
but it remains isolated. It does not split into two orbits. This process is also
apparent from figure 5.11. Notice again that closed orbits in crossed fields do
not possess repetitions. Any repetition of the parallel DKP orbit gives rise to a
closed orbit in crossed fields (for sufficiently small F̃ ), but these orbits are not
repetitions of each other. They have, in particular, different starting angles.

The symmetries of the closed orbits are worth noting. All non-planar orbits
described so far are doublets. More precisely, the vibrator orbits are T-doublets,
i.e. they are invariant under the T operation. Their initial and final polar angles
are small, as the orbits are mainly directed along the magnetic field axis.

For the rotator orbits the situation is more complex. Their main component
is the motion in the plane perpendicular to the magnetic field, whereas the z-
component is comparatively small. They have, therefore, initial and final polar
angles close to π/2, so that it is conceivable that they can start at an angle
ϑi < π/2 “above” the x-y-plane and return at ϑf > π/2 “below” that plane.
This is in fact the case for the rotators of the first series. They turn out to be
C-doublets.

The second series of rotators contains orbits which, in the case of a pure
magnetic field, are composed of a first-series orbit and its Z-reflected counterpart.
The orbits of the second series therefore have ϑi = ϑf and are T-doublets. By
the same token, orbits of the third series return “below” the x-y-plane again and
are C-doublets, and higher series of rotators alternatingly contain T-doublets and
C-doublets.

The distribution of symmetries is illustrated in figure 5.12(a). It extends the
data given in figure 5.11 to longer orbits and classifies the orbits according to
their symmetries. Notice that the set of orbits shown is obviously incomplete at
starting angles around ϑi ≈ 0.45, where rotator and vibrator orbits coexist. This
incompleteness will be discussed further in section 6.4.

So far, only orbits present at arbitrarily low electric field strengths have been
described. As the electric field strength increases, further bifurcations occur.
Their general pattern can be identified in figures 5.11 and 5.12(a). The most ob-
vious consequence of the bifurcations is the appearance of quartet orbits in each
series of both rotator and vibrator orbits. They are generated by pitchfork bifur-
cations from the adjacent doublet orbits. As figure 5.13 reveals if it is compared
to figure 5.7, this bifurcation is very similar to a pitchfork bifurcation of planar
orbits. A difference arises because, due to the absence of Z-symmetry, the angle
ϑi is not restricted to a fixed value. As the C-symmetry to be broken concerns the
azimuth angles, it still is predominantly the angle ϕi that shows a square root
behaviour at the bifurcation and obtains an imaginary part when ghost orbits
exist. Nevertheless the polar angle ϑi also acquires a small imaginary part. The
real part of ϑi apparently behaves linear close to the bifurcation, although for
electric field strengths above the critical value a square root behaviour must be
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Figure 5.13: Orbital parameters close to a pitchfork bifurcation of a first-series
rotator and a repetition number of µ = 38. The bifurcation creates a quartet of
orbits from a C-doublet. (∆S̃ = S̃ − 2π × 18.297822.)

present. It is too small to be seen in the figure. Even though in quantitative
terms the ϑ-direction is only marginally involved in the bifurcation, its presence
has the important consequence that the quartet orbits are no longer constrained
to be periodic. As the distance from the bifurcation is increased, the periodic-
ity condition ϕi = ϕf is increasingly, albeit slowly, violated. The same features
can be found for the bifurcations introducing the quartet orbits into the vibrator
series.

The second important type of bifurcations is a tangent bifurcation introducing
new doublet orbits into the series. The occurrence of this phenomenon can be
noticed in figure 5.11, if the numbers of orbits of a given repetition number are
compared for different electric field strengths. An example of this bifurcation is
given in figure 5.14. The tangent bifurcation involves both angles to roughly equal
extent. The two doublet orbits thus generated are implanted into the regular
pattern of their series, so that one of them subsequently undergoes a pitchfork
bifurcation which creates a quartet. This phenomenon is entirely analogous to
the “normal sequence” of bifurcations that was found for planar orbits, except
that the quartet orbits thus generated are not periodic.

As the electric field strength increases, the rotator orbits of a given series are
torn apart and span an ever wider interval of ϑi. Those moving towards higher
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Figure 5.14: “Normal sequence” of bifurcations for non-planar rotator orbits of
the second series and a repetition number of µ = 54. (∆S̃ = S̃ − 2π× 31.84035.)
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Figure 5.15: Destruction of T-doublet orbits in a collision with a singlet orbit.
(∆S̃ = S̃ − 2π × 27.60324.)
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Figure 5.16: Destruction of quartet orbits in a collision with Z-doublet orbits.
(∆S̃ = S̃ − 2π × 26.569655.)

values of ϑi eventually hit the plane ϑi = π/2, where they collide with their Z-
reflected partner and are destroyed. It turns out that there is always a planar orbit
involved in the collision, so that it is a pitchfork rather than a tangent bifurcation
that destroys the non-planar orbits. Depending on whether the non-planar orbits
colliding with the plane are doublets or quartets, the planar orbit must be a
singlet or a Z-doublet, respectively. If the destruction scenario is regarded in the
direction of decreasing field strengths, it appears as the creation of orbits with
broken Z-symmetry from an orbit possessing this symmetry. It is therefore the
Z-breaking analogue of the T- and C-symmetry breaking bifurcations described
above. As this type of bifurcation involves a planar orbit, it must give rise to a
zero in the stability determinant M̃ of the planar orbit. In fact, the examples
given in figures 5.15 and 5.16 for both the destruction of a doublet and a quartet
are two of the three bifurcations whose presence was inferred from figure 5.10 the
discussion of the planar orbits.

The scenario just described is not restricted to rotator orbits. As can be seen
in figure 5.11, the short vibrator orbits can, even at low electric field strengths,
reach rather high values of ϑi. At F̃ = 0.15550, the first of them collides, at
ϑi = π/2, with its Z-reflected counterpart and is annihilated. This is a pitchfork
bifurcation in which one of the planar orbits with repetition number µ = 1 takes
part. Similarly, longer vibrators are destroyed in collisions with planar rotators
of the appropriate repetition numbers. This example demonstrates, that the
distinction between vibrators and rotators, which was borrowed from the case
of vanishing electric field, does not apply, strictly speaking, if an electric field is
present. Although it is generally useful for rather high electric field strengths, it
can fail in some instances. This is clearly the case when a bifurcation involves
both vibrator and rotator orbits.

A collision with the plane perpendicular to the magnetic field occurs only for
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Figure 5.17: Simple bifurcation scenario for vibrator orbits of repetition number
µ = 41. (∆S̃ = S̃ − 2π × 24.50221.)

vibrators of low repetition numbers, and only for vibrators that descend from
the orbit parallel to the magnetic field. For longer orbits, the usual scenario is
different. At low electric field strength there is, for sufficiently high repetition
numbers, one orbit stemming from the orbit parallel to the magnetic field and
one or several pairs of orbits created from non-parallel vibrators. It can be seen in
figure 5.11, however, that for certain repetition numbers two of these orbits can
be missing. This happens when the descendant of the parallel orbit and one of
the other vibrators annihilate in a tangent bifurcation. A simple example of how
this can come about is provided by the orbits with the repetition number µ = 41.
Their bifurcations are illustrated in figure 5.17. Two of the orbits obviously
bifurcate from a common family at F̃ = 0, whereas the orbit proceeding from the
parallel orbit is isolated there and starts at ϑi = 0. It then merges with one of
the other orbits in a tangent bifurcation to form a pair of ghost orbits.

This bifurcation is as simple as one could expect. For the neighbouring vi-
bration number µ = 42 the scenario is more complicated. It is illustrated in
figure 5.18. In this case, one of the orbits generated in the rotational symmetry
breaking at F̃ = 0, which is a T-doublet, undergoes a pitchfork bifurcation and
gives birth to a quartet of orbits before it annihilates with the descendant of the
parallel orbit. The quartet then collides with the third, leftover T-doublet and is
destroyed in a second pitchfork bifurcation.
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Figure 5.18: Complicated bifurcation scenario for vibrator orbits of repetition
number µ = 42. (∆S̃ = S̃ − 2π × 25.09941.)

Corresponding to the three elementary bifurcations, there are three ghost
orbits involved in the scenario. For one of them, the starting angles ϑi and ϕi

show a peculiar behaviour at the electric field strength F̃0 = 0.08750: Whereas ϑi

exhibits a square root behaviour, changing from nearly real to nearly imaginary,
the real part of ϕi changes discontinuously by π/2, and the imaginary part of ϕi

seems to diverge. Neither the action nor the stability determinant of the orbit, on
the contrary, show any kind of special behaviour. In particular, M̃ is non-zero,
so that there cannot be a bifurcation of the ghost orbit.

The Cartesian components of the unit vector s in the starting direction are
given in figure 5.19. For all of them either the real or the imaginary parts are
small, so that their numerical calculation is hard. Nevertheless, to within the
numerical accuracy all components are smooth at F̃0, although the angles ϑi
and ϕi used to calculate them are not. Thus, the singularity must be due to
the transformation from Cartesian to angular coordinates. In the real case it is
obvious that the (ϑ, ϕ) coordinate chart is singular at ϑ = 0. To elucidate the
details in the case of ghost orbits, I assume a model situation where sz = cosϑi
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Figure 5.19: Cartesian components of the unit vector s specifying the starting
direction of the ghost orbit (sx = sinϑi cosϕi, sy = sin ϑi sinϕi, sz = cosϑi).
Vertical dotted lines mark the field strength F̃0 = 0.08750 where the singularity
of Imϕi is encountered.

is exactly real and sz = 1 at F̃ = F̃0. For ghost orbits, sz is not bound to be
smaller than 1, so that generically, to first order in ε = F̃ − F̃0, cosϑi − 1 ∝ ε.
Therefore, ϑi ∝

√
ε shows a square root behaviour and changes from purely real

to purely imaginary values. At the same time, sin ϑi ∝
√
ε has a zero, so that

for sx = sin ϑi cosϕi and sy = sin ϑi sinϕi to assume finite values, sinϕi and
cosϕi must diverge as ε−1/2. This is only possible if the imaginary part of ϕi is
large. More precisely, if Imϕi > 0 is assumed to be large, sinϕi and cosϕi are
proportional to e−iϕi, whence

ϕi =
1

2i
ln ε+O

(
ε0
)

(5.21)

achieves the desired divergence of sinϕi and cosϕi. Now Re ln ε = ln |ε| diverges
at ε = 0, whereas Im ln ε changes discontinuously from 0 to ±π, depending on
what branch of the logarithm is chosen. This behaviour results in the observed
divergence of Imϕi and a discontinuous jump in Reϕi of size π/2.

Whereas the starting vector s is a smooth function of F̃ in the neighbourhood
of the singularity, the starting values (4.80) in KS coordinates are not, because
they depend on the half angles ϑi/2 and ϕi/2. With the above value for ϕi,
the angular functions sinϕi/2 and cosϕi/2 diverge as ε−1/4. Therefore, the KS
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Figure 5.20: Starting values of the ghost orbit in KS coordinates as given by
(4.80) with α = 0.

coordinates proportional to cos ϑi/2 must diverge as ε−1/4, whereas those propor-
tional to sin ϑi/2 vanish in a non-smooth manner as ε1/4. It is somewhat ironic
that in this case it is the KS transformation, which was thought of as regularizing
the equations of motion, that introduces singularities. This type of singularity
can occur for ghost orbits only. It is due to the circumstance that, contrary
to Cartesian coordinates, KS coordinates rely for their definition on a specified
reference vector σ3. A more detailed study of the geometry of the complex KS
transformation than that presented here should help to clarify the precise nature
of the singularity and determine if it is actually inevitable or can be eliminated
by a generalized gauge transformation.

In the actual scenario sz will not be exactly equal to 1 at F̃0 because this
is a situation of real codimension two. However, if Im sz is small, the singular
behaviour described above will be closely approximated. Indeed, a closer look
at ϑi (see figure 5.21) reveals that it is actually smooth, but close to F̃ = F̃0 it
changes extremely rapidly from almost real to predominantly imaginary values.
Similarly, the real part of ϕi is smooth, although it changes over an even smaller
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range of F̃ . From the numerical data it cannot be determined if Imϕi is also
smooth or actually diverges. From the above discussion it is clear that it must be
smooth, because the coordinate singularity at ϑi = 0 is not actually encountered.

It should be noted that the singularity described here can occur for ghost
orbits only. In the real case, as the pole ϑi = 0 on the real unit sphere (which
still has codimension two) is approached, both sx and sy must vanish instead of
assuming finite values, so that no divergences of any kind are required.

With the discussion of this somewhat unexpected singularity occurring in
the “regularizing” KS coordinates, I finish the description of the bifurcation sce-
narios in crossed fields. I have demonstrated that, even though only two types
of elementary bifurcations exist, they form a rich variety of bifurcation scenar-
ios that re-shape the distribution of closed orbits as the electric field strength
is increased. It remains to find a classification scheme for closed orbits in the
crossed-fields regime.

5.5 The classification of closed orbits

The fundamental classification scheme used in the above description of closed
orbit bifurcations is the distinction between rotators and vibrators. This distinc-
tion was adopted from the case of vanishing electric field strength, so it can be
expected to be applicable if the electric field is not too strong. In fact, from
figure 5.12(a) it is obvious that for Ẽ = −1.4 and F̃ = 0.1 orbits can uniquely
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be classified as rotators or vibrators and can be assigned both a series number
and a repetition number. However, for long orbits neighbouring series of rotators
already start to overlap in the plot, and if the electric field strength is increased
to F̃ = 0.6, all orbits get completely mixed up, producing the somewhat messy
picture shown in figure 5.12(b). Although the pattern of orbits is still dominated
by the magnetic field1, figure 5.12(b) suggests that there is no way to achieve a
classification.

A more suitable starting point for a classification is provided by the com-
plete trajectories. Of course, since the classification must gradually break down
for sufficiently strong electric fields, it can only be based on heuristic criteria.
The criteria I am going to propose are largely based on the behaviour of the z-
coordinate of the motion as a function of time. To illustrate them, this function
is plotted for rotators of roughly equal length from different series in figure 5.22.
Figure 5.23 shows the analogous data for vibrators.

First of all, vibrators are connected to an orbit along the z-axis in the pure
magnetic field case. In this limit, the motion takes place either “above” the x-
y-plane, i.e. in the half-space z > 0, or “below” the plane. Rotators, on the
contrary, stem from the elementary orbit in the plane. Their motion takes place
both above or below the plane. Rotators can therefore be distinguished from
vibrators if the maximum and minimum values of the coordinate z are compared:
For a rotator, they must have roughly equal absolute values, whereas for a vibrator
“above” the plane, the minimum value is much smaller in magnitude than the
maximum value.

For the vibrators of a given length shown in figure 5.23, this criterion gets
better the higher the series of the vibrator is chosen. For the vibrator of the first
series, which is closest to the domain of rotators, the excursion into the lower half
space is of the same order of magnitude as that into the upper half space. As the
electric field strength increases further, the vibrator orbit will eventually become
indistinguishable, by the present criteria, from a rotator of the second series.

It has already been noted in the discussion of orbital symmetries that a rotator
of the first series that starts from the nucleus into the upper half space returns to
it from the lower half space, whereas a rotator of the second series returns from
the upper half space. This alternation between motion in the upper and lower
half spaces is obvious from figure 5.22. It can be used to determine the series
of a rotator. If the value of z(τ) in a maximum is compared to its value in the
subsequent minimum, the transitions between motion in the upper and lower half
spaces can easily be monitored.

Assigning a series number to a vibrator is considerably more difficult. It relies
on the beat structure present in z(τ) for a vibrator. Subsequent maxima of this
function have varying heights. I consider the maxima that have minimal height

1A convenient way of comparing the relative strengths of the electric and magnetic fields
is provided by the scaling with the energy described in section 2.1. If the energy is scaled to
Ẽ = −1, for the present parameter values the scaled field strengths are B̃ = 0.60 and F̃ = 0.30,
so that the magnetic field is still stronger than the electric field, although the latter is no longer
negligibly small.
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Figure 5.22: Rotor orbits of the (a) first, (b) second and (c) third series: scaled
coordinate z̃ as a function of the scaled pseudotime τ̃ for Ẽ = −1.4 and F̃ = 0.2.
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compared to neighbouring maxima, i.e. the minima of the beats apparent in
figure 5.23. The height of these beat minima slowly oscillates, and the number
of their oscillations turns out to give the series number of the vibrator. It can
be found by counting the number of minima in the oscillation. Notice that the
method uses extrema of the third order: the minima in the minima in the height of
maxima. It therefore requires vibrators of sufficiently high repetition numbers, so
that many maxima of z(τ) exist. The method will fail when applied to vibrators
of very small repetition numbers. However, these vibrators exist for fairly high
scaled energies only, where even in the absence of an electric field the dynamics
is mixed or chaotic. In these regions, the classification suggested here might not
be meaningful at all.

Finally, orbits can be assigned a repetition number. For vibrators, this can be
done by simply counting the number of maxima in z(τ). For rotators, maxima in
ρ(τ) must be counted, where ρ = (x2 + y2)1/2 is the distance from the magnetic
field axis. In this case, an additional difficulty arises because ρ cannot assume
negative values, so that between two maxima corresponding to repetitions of
the elementary orbits, additional maxima arise from the “swing-by” around the
nucleus. These maxima tend to be extremely small and narrow close to the
beginning and the end of an orbit, so that they are hard to detect, but they
can reach considerable heights in the middle of an orbit. The present form of
the classification algorithm, which is certainly open to improvements, counts a
maximum in ρ(τ) if its height exceeds a certain fraction of the height of the
previous maximum. In this form, the assignment of rotator repetition numbers
turns out to be the least robust part of the classification procedure.

The criteria described above readily lend themselves to a numerical implemen-
tation, so that the classification of orbits can be achieved automatically. As an
example, the rotators of the first series are shown in figure 5.24 for three different
electric field strengths. Although the neat “wiggly-line” structure characterizing
the series in figure 5.11 quickly breaks down for larger electric field strengths, the
distinction between different series persists. Figure 5.24(c) should be compared
to figure 5.12(b). It might appear surprising that the messy-looking set of orbits
still allows for a classification, but with the help of the criteria just described
an ordered pattern of closed orbits can still be discerned. In this sense, the
classification scheme derived from the DKP turns out to be remarkably robust.
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Figure 5.24: Rotators of the first series for Ẽ = −1.4 and (a) F̃ = 0.2, (b)
F̃ = 0.4, and (c) F̃ = 0.6. C-doublets are indicated by × symbols, quartets by
∗ symbols.



Chapter 6

Semiclassical crossed-fields
spectra

After the description of the closed orbits in the crossed-fields hydrogen atom,
I now turn to the discussion of their impact on quantum mechanical photo-
absorption spectra. I will present the results of both a low- and a high-resolution
semiclassical quantization of the crossed-fields system based on closed-orbit the-
ory. In the latter case, only the strongest spectral lines will be resolved. The
reason why a more detailed semiclassical quantization cannot be achieved will be
identified by means of a detailed semiclassical analysis of a quantum spectrum. It
will be shown that the semiclassical spectrum is distorted by a multitude of closed-
orbit bifurcations. I will then describe uniform approximations that smooth the
divergences caused by bifurcations and devise a method to include uniform ap-
proximations in a semiclassical quantization. Due to the diversity of closed-orbit
bifurcation scenarios in the crossed-fields hydrogen atom, however, a systematic
inclusion of all relevant uniform approximations poses great technical difficulties.
For this reason, the hydrogen atom in an electric field will be analysed along these
lines in chapter 7: In that system, a single type of bifurcations occurs, so that
the semiclassical quantization in the presence of bifurcations can be carried out
in detail.

As mentioned in chapter 3, the way of recording a quantum spectrum which
is most suitable to semiclassical investigations is provided by scaled-energy spec-
troscopy. A spectrum then consists of a list of the scaling parameters wn char-
acterizing the quantum states for a given scaled energy Ẽ and scaled electric
field strength F̃ , if the usual scaling with the magnetic field strength is used, i.e.
B̃ = 1.

6.1 The quantum spectrum

If Schrödinger’s equation for the crossed-fields hydrogen atom is rewritten in
terms of the scaled energy and the scaled electric field strength, a quadratic
eigenvalue problem for the scaling parameter w is obtained. An exact numerical

97
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method of solution for the quadratic eigenvalue problem has become available
only recently [10]. I resort to the method introduced by Main [48], which relies
on an approximate linearization of the eigenvalue problem to compute eigenvalues
in a small spectral interval. The accuracy of the linearization can be verified by
comparing results calculated using different overlapping intervals. The eigen-
values are obtained to a relative accuracy of at least 10−7, which is far beyond
the typical accuracy of semiclassical approximations, so that the algorithm is well
suited to this study.

In the following I will discuss quantum and semiclassical photo-absorption
spectra obtained for the scaled energy Ẽ = −1.4 and the scaled electric field
strength F̃ = 0.1 with the initial state |2p0〉 and light linearly polarized along the
magnetic field axis. A quantum spectrum for these parameter values is shown in
figure 6.1. As for a semiclassical analysis (see section 6.4) it is essential to have
as many eigenvalues available as possible, the calculation was extended up to
w = 100. This value is close to the limit of what can be reached with the computer
power available, as regards both computing time and memory requirements. The
spectrum shown in figure 6.1 contains nearly 30,000 lines, many of which are too
weak to be discernible in the plot.

The eigenenergies of the field-free hydrogen atom satisfy

E = w−2Ẽ = − 1

2n2
, (6.1)

so that in the scaled spectrum the unperturbed n-manifolds appear equidistantly
spaced at

w =
√
−2Ẽ n . (6.2)

These spacings can clearly be recognized in figure 6.1. At low values of w, neigh-
bouring n-manifolds are isolated. Furthermore, in this region the magnetic quan-
tum number m is nearly conserved. This is apparent from the fact that each
n-manifold contains a central group of strong levels corresponding to m = 0,
which can be excited even at F̃ = 0, and adjacent groups of considerably weaker
levels with m = ±1. Levels with higher magnetic quantum numbers are too weak
in this region to be seen in the figure. At higher values of w, the conservation
of m is violated, and individual n-manifolds acquire strong side bands. At even
higher w, different n-manifolds strongly overlap. Throughout the spectral range
shown, groups of strong lines indicating the centres of different n-manifolds are
clearly discernible.

6.2 Low-resolution semiclassical spectra

To obtain a semiclassical approximation to a scaled photo-absorption spectrum,
the closed-orbit theory formulae of chapter 2 must be rewritten in terms of scaled
quantities. Since the angular coordinates ϑ and ϕ obviously do not scale, the
scaling properties of the semiclassical amplitude (2.43) are determined by those
of the stability determinant M . By virtue of (4.101) the scaling prescription
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Figure 6.1: Quantum photo-absorption spectrum at the scaled energy Ẽ = −1.4
and the scaled electric field strength F̃ = 0.1. The initial state is |2p0〉, the light
is polarized along the magnetic field axis. The plot shows the squared dipole
matrix elements, which for graphical reasons are multiplied by w. The strengths
of the extraordinarily strong lines of the lowest n-manifolds at w < 7.5 are scaled
down by a factor of 0.2.
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is M = w2M̃ , so that the oscillatory part (2.41) of the semiclassical response
function reads

gosc(w) =
1

w

∑

c.o.

Ãc.o. exp
(
iwS̃c.o.

)
(6.3)

with

Ãc.o. = 4π
Y∗(ϑf , ϕf)Y(ϑi, ϕi)√

|M̃ |
ei(π/2) µ , (6.4)

which is of the form anticipated in (3.2), with γ = −1.
When low-resolution photo-absorption spectra are to be calculated from (6.3),

a method of cut-off must be adopted to deal with the divergence of the semiclas-
sical closed-orbit sum. For this section, I choose a Gaussian cut-off, i.e. (6.3) is
replaced with

goscσ (w) =
1

w

∑

c.o.

Ãc.o. exp

(
iwS̃c.o. −

S̃2
c.o.

2σ2

)
, (6.5)

so that orbits with scaled actions larger than the cut-off action σ are smoothly
suppressed. This smoothing corresponds to a convolution of the quantum signal
with the Gaussian

fσ(w) =
σ√
2π

exp
(
−w2σ2/2

)
, (6.6)

whereby individual spectral lines are replaced with Gaussians of width 1/σ. The
function fσ is normalized according to

∫ ∞

−∞
fσ(w) dw = 1 , (6.7)

so that the smoothing does not change the average spectral density taken over
an interval larger than 1/σ.

To facilitate the comparison of (6.5) with the convoluted quantum spectrum,
I added the smooth part of the spectrum to goscσ , which was calculated by convo-
luting the quantum spectrum with fσ=1. This function is broad enough to wipe
out the distinction between neighbouring principal quantum numbers. Results
obtained for σ = 20 and σ = 50 are shown in figure 6.2. In both cases it is ap-
parent that the large-scale structure of equidistant principal quantum numbers is
well reproduced by the semiclassical approximation. In the quantum spectra, the
substructure of the individual n-shells can be discerned to a certain degree, given
by the smoothing width 1/σ. In the case of σ = 20, much of this fine structure is
also present in the semiclassical spectrum, but often the agreement is not good
quantitatively. In particular, the peaks corresponding to the lowest n-manifolds
are considerably wider in the semiclassical than in the quantum spectrum.

If the cut-off action is increased to σ = 50, finer details are resolved in the
quantum spectrum. At the same time, the semiclassical closed-orbit sum becomes
more oscillatory to reproduce this fine structure. It appears, however, to be some-
what over-oscillatory, developing structures absent from the quantum spectrum.
This type of behaviour is typical of closed-orbit sums in non-integrable systems.
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Figure 6.2: Smoothed quantum (upper halves) and semiclassical (lower halves,
inverted) photo-absorption spectra with cut-off action (a) σ = 20 and (b) σ = 50.
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Thus, it can be questioned if the low-resolution closed-orbit sum can meaningfully
be extended to even longer orbits. A high-resolution quantization based on the
present semiclassical approximation will be presented in the following section.

6.3 High-resolution semiclassical spectra

For the calculation of a scaled semiclassical spectrum, the method of semiclassical
quantization by harmonic inversion of δ function signals described in section 3.1
can be applied. This technique requires the inclusion of closed orbits up to a maxi-
mum scaled action, i.e. it replaces the Gaussian cut-off used for the low-resolution
semiclassical spectra presented in the previous section with a rectangular cut-off.
A rough estimate for the required cut-off action can be obtained by using first-
order perturbation theory. This approach cannot be expected to yield precise
results, but if the field strengths are small, a reasonable estimate is obtained for
low n-manifolds.

To first order in the external field strengths, the atomic energy levels are given
by [98]

Enq = − 1

2n2
+ ωq , (6.8)

where

ω =
1

2

√
B2 + 9n2F 2 (6.9)

and q = −(n − 1),−(n − 1) + 1, . . . , n − 1. If (6.8) is rewritten in terms of
eigenvalues of w for a scaled spectrum, one obtains

wnq =
√

−2Ẽ n+
√

−2Ẽ ω̃q ≈
√
−2Ẽ n+

q

−4Ẽ
(6.10)

with

ω̃ = n3ω =
1

8Ẽ2

√
9F̃ 2 − 2Ẽ ≈ 1

2
(−2Ẽ)−3/2 . (6.11)

The last approximation could be made because in the region of low field strengths
F̃ is small, whereas Ẽ is large. Therefore, to first order each n-manifold splits
into 2n − 1 lines. To higher order in the field strengths, the degeneracy is lifted
completely, and the lines split into groups characterized by n and q and containing
n − q − 1 levels. For low electric field strength and the initial state |2p0〉, it is
mainly the states with q = 0 that contribute to the spectrum. The group q = 0
contains n−1 individual levels, but in a photo-absorption spectrum every second
level is absent due to parity selection rules, so that the group effectively consists
of approximately n/2 lines.

The splitting of lines in a q group, and thus the effective spectral density, is a
second-order effect. To estimate it, therefore, second-order perturbation theory is
required. To circumvent this necessity, I assume the spectral lines in a group to be
evenly scattered across an interval whose width is the distance of groups obtained
from first-order perturbation theory. In view of the spectrum in figure 6.1, this
approximation appears reasonable. I can therefore estimate the spectral density
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by regarding the q = 0 group as containing n/2 lines in an interval whose width
is the distance between groups, viz. 1/(−4Ẽ). The spectral density is therefore
ρ̄ = −2Ẽ n, and the required signal length is

S̃max = 4πρ̄ = −8πẼ n . (6.12)

As the number of levels in a group with q 6= 0 is smaller than for q = 0, this
signal length should suffice for all groups whose levels are strong enough to be
semiclassically detected in the spectrum. For the case Ẽ = −1.4 and n = 9, i.e.
w = 15.06, this estimate yields S̃max/2π = 50.

In the present case, the quantum spectrum is known. From the spectrum, a
test signal composed of the given spectral lines can be constructed. If a sufficiently
long part of this signal is subjected to a high-resolution harmonic analysis, the
known frequencies must be regained. The signal length required for the harmonic
inversion to succeed can thus be determined. This approach confirms that the
perturbative result (6.12) yields good results if n is odd. For even n, (6.12) should
be used with n replaced with n− 1, because the q = 0 groups in the manifold n
and n−1 actually contain the same number of spectral lines. In practice, because
the semiclassical signal contains some noise, the required signal length must be
expected to be slightly larger than for the ideal test signal.

According to (6.12), to compute levels at high quantum numbers n a long
semiclassical signal is needed, which can be hard or even impossible to obtain.
I calculated closed orbits up to S̃max = 200, so that the orbital data is available
for nearly 18,000 closed-orbit multiplets. However, for reasons to be described
below a useful semiclassical signal can be constructed up to S̃max/2π ≈ 60 − 70
only, so that, from the above estimate, the semiclassical calculation cannot reach
manifolds much higher than n = 10. On the other hand, the semiclassical ap-
proximation must be expected to yield more accurate results for higher quantum
numbers. Thus, when a high-resolution semiclassical spectrum is to be calculated,
a compromise must be made between the contradictory requirements of describ-
ing a spectral region at sufficiently high quantum numbers and with a sufficiently
low spectral density.

Results obtained for Ẽ = −1.4 and F̃ = 0.1 with a signal length of S̃max/2π =
60 and the method of δ function decimated signal diagonalization (method 4 of
section 3.2.4) are compiled in table 6.1. The table contains the quantum eigen-
values of w and their dipole matrix elements for levels satisfying 〈2p0|D|f〉2 > 0.7.
It is obvious at a glance that out of the multitude of spectral lines with intensities
varying over many orders of magnitude (most of which are not contained in the
table) only the strongest lines were detected in the semiclassical spectrum. The
semiclassical eigenvalues given are characterized by having small imaginary parts,
small error parameters (see chapter 3) and large amplitudes as well as being stable
with respect to a variation of numerical parameters. The calculation operates at
the edge of convergence, and in a few cases one can be in doubt whether a level
should be included according to these fairly “soft” criteria, but in general a clear
decision can be made. Semiclassical values for the transition strengths are not
given because they are not reasonably well converged and depend strongly on the
numerical parameters.
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n wf (scl.) wf (qm.) 〈2p0|D|f〉2
9.88321 1.3617
9.91431 3.1145
9.97747 1.7474

10.05366 10.05912 51.0512
6 10.09551 10.09621 20.9313

10.15461 10.15378 7.0060
10.24076 0.9608
10.26612 2.0777
10.31803 1.9385

11.56497 2.5663
11.60898 11.60820 2.5875
11.66889 11.67341 2.3104
11.72048 11.73128 32.8808

7 11.75121 16.7278
11.78850 10.0092
11.84856 5.6249
11.92188 1.9229
11.95821 1.7923
12.01338 2.4821

13.23441 1.3668
13.25629 2.5141
13.30255 1.9971

13.36921 13.36913 2.8189
13.40177 13.40568 30.8875

8 13.44313 13.43744 16.0829
13.48737 13.48146 4.8263

13.54340 4.3111
13.59258 1.0747
13.61133 1.9475
13.65111 1.4081
13.70866 2.9676

14.91192 2.1880
14.94654 2.9922
14.99711 1.4563

9
15.06960

15.06470 3.2226

15.07888 25.1866
15.10074 8.4317

n wf (scl.) wf (qm.) 〈2p0|D|f〉2
15.12905 15.12748 10.3140
15.17892 15.17491 2.2476
15.23623 15.23830 3.1064

9 15.26111 15.27005 1.7749
15.30024 2.3710
15.34449 1.0296
15.40389 3.3462

16.57908 0.7173
16.58435 1.7007
16.60357 1.7437

16.64355 16.63843 2.9662
16.69069 16.69180 0.9974
16.74965 16.75258 22.9143

16.76016 3.4901
10 16.78346 16.78269 11.1809

16.81329 16.81827 6.6898
16.86870 0.9825

16.93431 16.93323 2.0584
16.94303 1.4143
16.96000 1.4406
16.99085 2.3893
17.09909 3.5870
17.25847 0.7647

18.25950 2.1201
18.27572 0.9781
18.29004 2.6665
18.33096 2.7709

18.42131 18.42600 20.2420
18.45136 6.1451
18.45555 3.5970

11 18.47472 18.47149 7.2231
18.50996 4.0510
18.61835 1.7975
18.62818 1.2089
18.64563 2.2348
18.68226 2.2558
18.79427 3.6707

18.93585 18.95442 1.0263

Table 6.1: Semiclassical and quantum eigenvalues wf of the scaling parameter for
Ẽ = −1.4 and F̃ = 0.1. See text for a detailed description. The dipole matrix
elements 〈2p0|D|f〉2 were obtained from a quantum spectrum.
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One might expect that in each n-manifold it is the strongest lines that are
detected semiclassically, and in general this expectation is confirmed by the nu-
merical data. This can clearly be seen, e.g., in the manifold n = 6, which contains
the most stably converged lines in the spectrum. There are, however, a few con-
spicuous exceptions, e.g. at n = 7, where strong lines are missing whereas com-
paratively weak lines are found. For n = 5, no lines at all can be computed from
the given semiclassical signal. If the signal length is decreased to S̃max/2π = 50,
the three strongest lines appear in the spectrum in this manifold.

At higher n, the number of strong lines in the quantum spectrum increases.
So does the number of lines in the semiclassical spectrum until n = 11, where
only three semiclassical lines are found. They appear rather arbitrarily scattered
across the quantum spectrum, and their convergence is notably worse than in
lower manifolds. It is clear that in this n-shell the semiclassical quantization
with the given signal is about to break down. At n = 12, no lines can be detected
semiclassically. As, from the above discussion, this failure was to be expected
because the required signal length becomes too large, the obvious way to improve
convergence seems to be to use a longer signal. However, if the signal length
is increased to S̃max/2π = 70, no reasonably converged semiclassical lines can
be found in any n-manifold. Neither are results improved if the technique of
harmonic inversion of cross-correlated closed-orbit sums [5, 99] is applied. This
method has proven powerful in reducing the signal length required in a semiclas-
sical quantization. In the present case, however, because the cross-correlation
increases the total number of frequencies obtained from the harmonic inversion,
the true eigenvalues are hidden among a multitude of spurious frequencies, and
no useful results can be obtained.

For the time being, therefore, the results given in table 6.1 represent what can
be achieved in the semiclassical quantization of the crossed-fields hydrogen atom.
They confirm the applicability of the closed-orbit theory approach in principle,
but they also reveal a fundamental problem in its present formulation. From
the analysis of the ideal test signal it is clear that the signal length available is
sufficient for a stable signal analysis. Thus, if the semiclassical results are not
good, the semiclassical signal itself, rather than the signal analysis, must be to
blame. This conclusion is confirmed by the observation that an increased signal
length destroys the results rather than improves them. I therefore start searching
for a flaw in the construction of the semiclassical photo-absorption spectrum.

The most conspicuous problem has already been mentioned in the description
of figure 5.12: The set of closed orbits available is incomplete. In no series
of rotators or vibrators can arbitrarily long orbits be calculated. In the case
of vanishing electric field (see figure 5.4) there is a critical angle ϑc which the
starting angles of both rotators and vibrators approach as the orbits get longer.
This convergence indicates that the orbits approach a separatrix between two
families of tori in phase space. If sufficiently long orbits are studied, there are
many closed orbits with very similar initial conditions, so that they are hard to
find numerically. For the closed-orbit search I use a shooting algorithm where a
trajectory is launched from the nucleus in a given initial direction and followed



106 CHAPTER 6. SEMICLASSICAL CROSSED-FIELDS SPECTRA

0

5

10

15

20

0 50 100 150 200

|~ M
|1/

2

~
S/2π

Figure 6.3: Stability determinants of vibrators as a function of the action for
Ẽ = −1.4, F̃ = 0.1.

for a given time. Newton’s method is then used to adjust the initial conditions
and the fictitious-time orbital period in such a way that the trajectory returns
to the nucleus. This procedure must be repeated for different initial directions
forming a sufficiently fine mesh if a complete set of closed orbits is required. To
find closed orbits close to the separatrix, the initial conditions must be specified
to an ever higher degree of accuracy. The situation is exacerbated in crossed
fields, because each DKP orbit is split into two or more individual orbits, and
because two initial angles ϑi and ϕi are to be varied in the shooting method,
so that choosing an ever finer mesh size quickly exhausts the computer power
available.

Because close to the separatrix Newton’s method tends to converge to orbits
whose initial conditions are quite far apart from where the root search originally
started, I implemented a globally convergent root search using the backtracking
algorithm described in [59, chapter 9.7]. In practice, this algorithm did not help
to find any additional orbits close to the separatrix. As it drastically increases
the computer time, it was abandoned again.

A weakness of the closed-orbit search might be the simple Adams-Bashforth
integration scheme used to solve the equations of motion. Possibly, a symplectic
integrator might have proven more stable in the critical region. However, as the
equations of motion are not separable into a purely kinetic and a purely potential
part, an implicit integrator is required. Its implementation would have required
rather large an effort. As the incompleteness of the semiclassical signal did not
seem to be the crucial problem in the quantization, I did not pursue this point
further.
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The region of phase space where the unknown orbits are located is lying
close to a separatrix, so that it is highly unstable. The orbits can therefore
be expected not to contribute much to the semiclassical signal. The magnitude
of an orbit’s contribution to the closed-orbit sum (2.41) is determined mainly
by its stability determinant M . Figure 6.3 shows the stability determinants of
the vibrator orbits for Ẽ = −1.4, F̃ = 0.1 as a function of the scaled action.
Different series of vibrators can clearly be discerned in the plot. It is indeed
unstable orbits with large M̃ that are missing in the data set, but on the other
hand the stability determinants of the missing orbits are not large enough to
regard the corresponding semiclassical amplitudes as negligibly small. Because a
vast majority of orbits has small M̃ and was found, one can still hope that useful
results can be obtained from the semiclassical signal, at least for quantum states
not located in the separatrix region in phase space, but it is clear that the quality
of the semiclassical signal is reduced by its incompleteness.

To assess in detail the detrimental effect of the missing orbits and of any other
sources of error that may exist, I carry out a semiclassical analysis of the quantum
spectrum.

6.4 Semiclassical recurrence spectra

As described in section 3.1, in a scaled photo-absorption spectrum every closed
orbit contributes a purely sinusoidal modulation which can be extracted from
the spectrum either by a conventional Fourier transform or by means of a high-
resolution method. The spectral analysis yields information about classical orbits
returning to the nucleus. For this reason, the transformed spectrum is referred to
as a recurrence spectrum. High-resolution methods extract the scaled actions and
scaled semiclassical amplitudes of individual orbits and thus yield more complete
information about the semiclassical spectrum than the Fourier transform, but
they fail if the average density of closed orbits per unit of scaled action is too large.
By contrast, due to its linearity the Fourier transform can be applied to any part
of the recurrence spectrum with equal ease and numerical stability, irrespective
of the spectral density. In dense regions, it will not be able to identify individual
closed orbits, but it will nevertheless yield a recurrence spectrum that can be
compared to the classical data. In this section I will present results obtained
by both the Fourier transform and a high-resolution method. The semiclassical
recurrence spectra will be compared to classical results in order to identify the
reason why the semiclassical signal is only partially suitable to a semiclassical
quantization.

Using either method, it is essential to note that the semiclassical closed-orbit
formula cannot be expected to yield accurate results for the lowest levels. Thus,
the low n-manifolds must be excluded from the semiclassical analysis, i.e. the
analysis is based on the quantum spectrum given in an interval [wmin, wmax] in-

stead of [0, wmax]. This shift introduces an additional phase factor eiwminS̃c.o. into
each closed-orbit contribution, which can easily be corrected for if the action S̃c.o.

is determined by a high-resolution method. For the Fourier transform, this kind
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of correction is impossible, so that a fast oscillation eiwminS̃ arises in the Fourier
recurrence spectrum. To circumvent this difficulty, only the absolute value of the
Fourier spectrum will be discussed in the following.

Furthermore, to minimize the impact of boundary effects due to the finite
length of the semiclassical spectrum, a smooth Gaussian cut-off with width κ
centred at w0 = (wmin+wmax)/2 is introduced. In analogy with (6.6), the smooth-
ing replaces the peaks of the semiclassical recurrence spectrum by Gaussians of
width 1/κ. The recurrence spectra presented here were calculated from the quan-
tum spectrum shown in figure 6.1, for Ẽ = −1.4 and F̃ = 0.1, with wmin = 20,
wmax = 100, and κ = 10. For the high-resolution recurrence spectra, the method
of δ function decimated signal diagonalization was used.

For low scaled actions, where only few closed orbits exist, the high-resolution
analysis can be applied. Results are shown in figure 6.4, which compares both the
scaled actions and the real and imaginary parts of the semiclassical amplitudes
extracted from the quantum spectrum to the classical results. For most closed
orbits, the agreement is excellent. Exceptions occur for the shortest orbits, where
the actions of rotator and vibrator orbits are too similar to be resolved by the
harmonic inversion. At somewhat larger actions, the three orbits in each group
fall apart into two rotator orbits with similar actions and a vibrator orbit with
a slightly larger action. Note that it is the vibrator orbit which has the largest
amplitude. In this parameter regime, the spectrum is far from being dominated
by planar orbits, as has often been observed in the literature [8, 84].

These observations can be made even more clearly if the absolute values of
the amplitudes are considered. They are shown in figure 6.5, where the results of
the high-resolution analysis are also compared to those of the Fourier transform.
Notice that for the Fourier transform the semiclassical amplitude is given by the
area under a peak rather than the peak height, so that an immediate comparison
to the high-resolution results is difficult. In figure 6.5, the Fourier transform was
arbitrarily scaled so that the peak heights roughly match the values of the high-
resolution amplitudes. For isolated orbits identified both in the Fourier transform
and the high-resolution spectrum, the agreement between the two methods is
excellent. Where several peaks overlap in the semiclassical spectrum, no direct
comparison is possible because the peak phases cannot be determined from the
figure.

Figure 6.5 also extends the results shown in figure 6.4 to higher actions. In
this region the density of closed orbits starts to increase because, on the one
hand, rotators of the first series exist and, on the other, bifurcations of closed
orbits generate additional orbits. Apart from the fact that many orbits cannot be
identified individually even by the high-resolution method, the most conspicuous
feature of figure 6.5 is that for many orbits the semiclassical amplitudes calculated
from the classical data are considerably larger than those extracted from the
quantum spectrum. In some cases, this is obvious at a glance, but a closer
inspection of the figure reveals that this phenomenon is rather common. Some
specific cases will be described in detail in section 6.5.

The occurrence of exceedingly large semiclassical amplitudes is a well-known



6.4. SEMICLASSICAL RECURRENCE SPECTRA 109

-100

0

100

200

300

400

500

600

700

0 2 4 6 8 10

R
e 

~ A
c.

o.

~
S/2π

-200

-100

0

100

200

300

400

500

0 2 4 6 8 10

Im
 ~ A

c.
o.

~
S/2π

Figure 6.4: High-resolution recurrence spectrum for Ẽ = −1.4 and F̃ = 0.1.
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sion of the quantum spectrum.
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problem of both closed-orbit and periodic-orbit theory. It is associated with
bifurcations of classical orbits, where, in the case of closed orbits, the stability
determinant M vanishes and the closed-orbit amplitude (2.43) diverges. Close to
the bifurcation, M is small. The semiclassical amplitude of the bifurcating orbit
is therefore large and exceeds the value determined from the quantum spectrum.
In a classical context, it has been shown in section 5.1 that vanishing M is both a
necessary and sufficient condition for a bifurcation of closed orbits. In the context
of semiclassical closed-orbit theory, it is necessary to overcome the divergence of
the closed-orbit formula occurring close to a bifurcation. This problem will be
addressed in section 6.5, after the impact of the bifurcations on the semiclassical
signal at hand has been investigated further.

Whereas, in figure 6.5, the vibrator orbits are sufficiently isolated to be re-
solved by both the harmonic inversion and the Fourier transform across the entire
range of actions, the rotators occur in groups of several orbits having nearly iden-
tical actions. They are not resolved properly by either method. Instead, the
Fourier transform produces peaks describing the collective contribution of the or-
bits in a group. The harmonic inversion fits this contribution with fewer actions
and amplitudes than the actual number of orbits. Although the results can be ex-
pected to reproduce the quantum spectrum fairly well, the principal virtue of the
high-resolution analysis – that it is capable of giving individual rather than collec-
tive contributions – is lost. It is therefore pointless to extend the high-resolution
analysis to higher actions unless a significantly longer quantum spectrum can be
obtained, and only the Fourier transform will be used henceforth.

Figure 6.6 displays the Fourier recurrence spectrum with smoothing κ = 10 for
scaled actions up to S̃/2π = 100 and compares it to the semiclassical spectrum.
These results extend the semiclassical analysis of quantum spectra to significantly
longer orbits than investigated in previous studies. They allow a verification of
closed-orbit theory all the way up to the long orbits. It is immediately apparent
from the figure that the quantum recurrence spectrum retains its pronounced
peak structure. This is to be expected from closed-orbit theory, and indeed the
peak locations are given by the actions of closed orbits for long as well as for short
orbits. The basic idea of closed-orbit theory that recurrence peaks are related to
classical closed orbits is therefore confirmed in principle even for very long orbits.

Even for the largest actions considered, the quantum and semiclassical re-
currence spectra agree quantitatively for some peaks. For most peaks, however,
the peak heights in the quantum and semiclassical spectra disagree. There are
quantum peaks that are smaller in the semiclassical spectrum or even completely
absent. They can be attributed to missing orbits. On the other hand, in many
cases the semiclassical peaks are significantly higher than the quantum peaks,
sometimes by several orders of magnitude. Exceedingly high peaks can be traced
back to bifurcations of closed orbits if the possibility is ignored that a quantum
peak can be small because orbits missing in the semiclassical spectrum interfere
destructively with the orbits present. This latter mechanism becomes the more
implausible the larger the semiclassical peak is in comparison to the quantum
peak.
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Figure 6.6: Absolute value R(S̃) of the recurrence spectrum with κ = 10 (see
text). Upper part: Fourier transform of the quantum spectrum, lower part (in-
verted): smoothed semiclassical recurrence spectrum.
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Taken together, the effects of missing orbits and of bifurcating orbits distort
the semiclassical recurrence spectrum to the point where it can no longer be
expected to provide a suitable basis for a quantization. A close inspection of the
recurrence spectrum suggests that the problem posed by bifurcating orbits is more
severe. Exceedingly high peaks do not only occur frequently, but in addition the
very fact that they are high increases their detrimental effect on the semiclassical
photo-absorption spectrum. Unless a suitable scheme for dealing with bifurcating
orbits can be devised, no improvement of the semiclassical signal can be expected.
I therefore turn to a description of the semiclassical treatment of bifurcating orbits
by means of uniform approximations.

6.5 Uniform approximations

6.5.1 The construction of uniform approximations

The crucial step in the derivation of the semiclassical closed-orbit formula is the
stationary-phase evaluation of the integrals in (2.27), where the semiclassical
Green’s function is projected onto the channel functions. This approximation
leads to the sum (2.28) over individual closed orbits, and it assumes that the
closed orbits are sufficiently isolated to yield independent stationary-phase con-
tributions to the integral. This assumptions fails close to a bifurcation of closed
orbits, because orbits involved in a bifurcation approach each other arbitrarily
closely before they eventually collide. It is this close approach of orbits that
causes the divergence of the individual closed-orbit amplitudes.

This diagnosis of the problem already implies its cure: If close to a bifurca-
tion several closed orbits cannot be regarded as isolated, a collective contribution
of the bifurcating orbits must be found. This solution was first suggested by
Ozorio de Almeida and Hannay [100] in the context of periodic-orbit theory.
Their original approach was extended by different authors, so that today uniform
approximations are a well-established tool of semiclassical physics. In the con-
text of semiclassical trace formulae, uniform approximations for all generic types
of periodic-orbit bifurcations were derived by Sieber and Schomerus [101–103].
Analogous work was done in the context of closed-orbit theory by Main and
Wunner [96], although in this case a systematic classification of the generic bifur-
cations was missing. Of particular importance is the observation that bifurcations
of codimension higher than one are relevant to semiclassics, although on a classical
level they are not generically encountered. They appear as sequences of generic
bifurcations, which, if the individual bifurcations are sufficiently close, must be
described collectively by a single uniform approximation. Several examples of
uniform approximations for these complicated bifurcation scenarios have been
described in the literature [96, 104–107].

The principal requirement a uniform approximation must satisfy is to asym-
ptotically reproduce the known isolated-orbits approximation when the distance
from the bifurcation grows large, because in this limit the stationary-phase ap-
proximation can be expected to be accurate. In the following, I will advocate a
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somewhat heuristic technique for the construction of a uniform approximation,
which is easy to handle and yields a smooth interpolation between the asymptotic
isolated-orbits approximations on either side of the bifurcation. It will first be
described in general terms. In subsequent sections, uniform approximations de-
scribing the generic types of codimension-one bifurcations of closed orbits will be
derived. I will then come to a discussion of how these uniform approximations can
be used to improve the semiclassical recurrence spectra presented in the preced-
ing section, and some complicated bifurcation scenarios presenting open problems
will be described. Further applications of this method will be given in section 7.4.

In the present section, uniform approximations for semiclassical spectra re-
corded at fixed field strengths, rather than scaled spectra, will be described.
In these spectra, the divergence of the isolated-orbits approximation is actually
encountered as the energy is varied across the bifurcation energy. The modifica-
tions required for scaled spectra are straightforward. They will be described in
section 6.5.4.

It was shown in section 5.1 that a bifurcation scenario can be described by
a normal form Φa(t) depending on n ≥ 1 variables t and m ≥ 1 parameters a.
For the generic codimension-one bifurcations, Φa(t) is either the fold catastrophe
(5.12) or the symmetrized cusp catastrophe (5.16). Let, for a given bifurcation
scenario, Φa(t) be a suitable normal form, i.e. for any fixed value of the parameters
a there are stationary points of Φa(t) corresponding to the closed orbits involved
in the bifurcation. The parameters a must then depend on the energy E to
reproduce the bifurcations of the closed orbits.

For the uniform approximation I make the ansatz

Ψ(E) = I(a) eiS0(E) (6.13)

with

I(a) =

∫

�
n

dnt p(t) eiΦa(t) . (6.14)

Here, the functions S0(E) and p(t) as well as the parameter values a(E) have to
be determined. All of them must be smooth functions of E.

To find the asymptotic behaviour of the uniform approximation (6.13) far
from the bifurcations, (6.14) is evaluated in the stationary-phase approximation,
which yields

Ψ(E) ≈
∑

ti

(2πi)n/2 p(ti)√
|HessΦa(ti)|

ei(S0(E)+Φa(ti)) e−iπνi/2 , (6.15)

where the sum extends over all stationary points ti of Φa(t) that are real at
the given a, Hess Φa is the Hessian determinant of Φa, and νi is the number of
negative eigenvalues of Hess Φa(ti). This expression is supposed to reproduce the
isolated-orbits approximation

Ψ(E) ≈
∑

c.o. i

Ai(E) eiSi(E) . (6.16)
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In this case, the sum extends over all closed orbits involved in the bifurcation that
are real at the given energy E. If the normal form Φa(t) has been chosen suitably,
there is a one-to-one correspondence between these orbits and the stationary
points ti. A comparison of (6.15) to (6.16) yields the conditions

Si(E) = S0(E) + Φa(ti) (6.17)

and

Ai(E) =
(2πi)n/2 p(ti)√
|HessΦa(ti)|

e−iπνi/2 . (6.18)

These equations must be valid for real orbits. In most bifurcation scenarios, all
orbits are real at least at certain energies. In these cases, it appears natural to
postulate (6.18) also to hold for ghost orbits. The parameter values one obtains
are then smooth functions of the energy even at the bifurcations where the orbits
become ghosts. In some instances, bifurcations involving only ghost orbits occur
[107, 108]. In these cases, the condition (6.18) still produces smoothly varying
parameters and enforces the desired asymptotics.

The numbers νi of negative eigenvalues change discontinuously at a bifurca-
tion. For orbits which are real on either side of the bifurcation, so do the Maslov
indices contained in the semiclassical amplitudes Ai. These changes must com-
pensate each other if the values p(ti) are to be continuous across the bifurcation.
For these orbits, therefore, the change of Maslov index occurring in a bifurcation
must be equal to the change in νi and can be determined from the normal form.
For ghost orbits, Maslov indices are not well defined classically. They must be
chosen such as to make p(ti) continuous.

In some cases, in particular when many ghost orbits are involved, it can be
easier to use semiclassical amplitudes not involving the Maslov indices, i.e. to
decompose them as

Ai = Aie
−iµiπ/2 , (6.19)

where µi are the Maslov indices. In terms of the Ai, (6.18) reads

Ai(E) =
(2πi)n/2 p(ti)√
|Hess Φa(ti)|

. (6.20)

In the uniform approximation

Ψ(E) = I(a) eiS0(E)−iµ0π/2 (6.21)

a Maslov factor must be added to obtain the correct overall phase, i.e. µ0 = µi−νi
for an arbitrary real orbit i. In (6.20), the apparent discontinuity has disappeared,
real orbits are given the correct Maslov phases in the asymptotic stationary phase
approximation by the indices νi, and there is no need to ascribe a Maslov index
to a ghost orbit.

The normal form parameters a and the action S0(E) can be determined
from (6.17). They usually turn out to be unique. The amplitude function p(t),



116 CHAPTER 6. SEMICLASSICAL CROSSED-FIELDS SPECTRA

on the contrary, is unknown. Once the parameters a have been found, (6.18)
specifies its values p(ti) at the stationary points of Φa(t). These values, of course,
do not suffice to identify p(t) uniquely, so that there is considerable freedom in
the choice of p(t). Usually, if there are k orbits participating in the bifurcation
scenario, I will approximate p(t) by a polynomial of degree k − 1. This choice
is justified by the observation that the uniform approximation is needed only
close to a bifurcation, where all orbits are close to t = 0. Thus, in the spirit
of the stationary-phase approximation, the dominant contributions to the inte-
gral (6.14) stem from the neighbourhood of t = 0, whereas the regions of large t
do not contribute. A suitable approximation to p(t) must therefore be precise
close to the origin. This is achieved by a Taylor series expansion, which leads to
the polynomial ansatz.

Simple as it might appear, however, this choice can bring about a mathemati-
cal difficulty: A polynomial p(t) diverges as t→ ∞, so that there is no guarantee
that the integral (6.14) will converge. If it does not, its divergence is an artefact
of the choice of p(t), because by construction the regions of large t should not
significantly influence the value of the integral. In this case, a suitable regulariza-
tion scheme must be applied. It can be justified by verifying that the regularized
integral possesses the correct asymptotics.

A slightly simpler form of the uniform approximation is obtained if the func-
tion p(t) is assumed to be a constant. This approximation does not exactly repro-
duce the desired asymptotics, but as the transition across the bifurcation mainly
results in a change of the stationary points of Φa(t) rather than essential changes
in p(t), it can be expected to capture the principal features. In particular, in the
immediate vicinity of the bifurcations all orbits are extremely closely spaced, so
that the p(ti) must be nearly equal. The amplitude equations (6.18), with p(ti)
set equal to a constant p0, can then be read as a set of consistency conditions
the semiclassical amplitudes Ai must satisfy close to the bifurcation. Thus, the
normal form allows one to derive the ratios of the semiclassical amplitudes of
the bifurcating orbits. It turns out in practice that these consistency conditions
guarantee that the higher-order polynomial coefficients determined from (6.18)
remain finite at the bifurcation energies. Notice, however, that they are in gen-
eral non-zero, so that the two forms of the uniform approximation are slightly
different even at the bifurcation energies.

It is clear from the above description that there is a certain arbitrariness
in the procedure. This arbitrariness can be reduced to the choice of a suitable
amplitude function p(t), because by the splitting lemma and the classification
theorems of catastrophe theory the uniform approximation can always be brought
into the form (6.13) by a suitable coordinate transformation, provided a normal
form Φa(t) equivalent to the actual action function is given. For the case of
the hydrogen atom in an electric field, Shaw and Robicheaux [31] calculated a
uniform approximation by numerically computing the Lagrangian manifold in
the final surface of section (see section 5.1) and then fitting it with a polynomial.
This method is much more tedious than the one presented here because it requires
more input data than only the actions and recurrence amplitudes of the closed
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orbits. By the fit, the information is then reduced to a parametric ansatz, so that
the advantage over the method described here is lost. However, the method by
Shaw and Robicheaux does provide a means of actually calculating the coordinate
transformation leading to (6.13) and thus to determine the amplitude function
p(t), should the simple Taylor series approximation turn out not to be sufficiently
accurate.

In the following sections, uniform approximations for the two generic codimen-
sion-one bifurcations described in section 5.2 will be derived along the lines given
here. They serve the double purpose of illustrating the abstract description given
above and to extend the results of reference [5] to a complete uniform approxi-
mation possessing the correct asymptotics. The uniform approximations to be
derived are analogous to those for isochronous and period-doubling bifurcations
of periodic orbits given by Schomerus and Sieber [102].

6.5.2 The fold catastrophe uniform approximation

The simplest closed-orbit bifurcation is the creation of two orbits in a tangent
bifurcation. It is described by the fold catastrophe (5.12)

Φa(t) =
1
3
t3 − at .

This normal form has stationary points at t = ±√
a, which are real if a > 0. Its

stationary values are (5.14)

Φ(±
√
a) = ∓2

3
a3/2 .

By (6.17), the actions S1 and S2 of the bifurcating orbits must satisfy

S1 = S0(E)− 2

3
a3/2 ,

S2 = S0(E) +
2

3
a3/2 .

(6.22)

For these equations to hold, one must assume S1 < S2 if the orbits are real and
ImS1 > 0, ImS2 < 0 if they are ghosts. These conditions determine how the
orbits are to be associated with the stationary points of Φa(t). Equation (6.22)
can be solved for

S0(E) =
S1 + S2

2
(6.23)

and
|a| =

(
3
4
|S2 − S1|

)2/3
. (6.24)

The observation that the bifurcating orbits are real if a > 0 and ghosts if a < 0
fixes the sign of a. Both S0(E) and a have thus be determined.

For the semiclassical amplitudes, (6.18) yields

A1 =

√
π

|a|1/4 p(+
√
a) e+iπ/4 ,

A2 =

√
π

|a|1/4 p(−
√
a) e−iπ/4 .

(6.25)
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With the ansatz
p(t) =

p0
2π

+
p1
2π

t (6.26)

for the amplitude function p(t), I can solve for the parameters p0 and p1 to obtain

p0 =
√
π |a|1/4 e−iπ/4(A1 + iA2) ,

p1 =
√
π
|a|1/4√
a

e−iπ/4(A1 − iA2) .
(6.27)

The simpler form of the uniform approximation with p(t) = p0 is obtained if
p(t) = p0/2π. In this case p1 = 0 and thus A1 = iA2. Unless the semiclassical
amplitudes satisfy this condition, p1 diverges as the bifurcation is approached,
and the complete uniform approximation is no longer finite. It takes the form

Ψ(E) = (p0I0 + p1I1)e
iS0(E) (6.28)

with

Ik =
1

2π

∫
dt tk eiΦa(t) . (6.29)

The integral I0 can be evaluated in terms of the Airy function [44] as

I0 = Ai(−a) , (6.30)

whereas I1 is given by its derivative

I1 = i
d

da
I0 = −i Ai′(−a) . (6.31)

With these results, the uniform approximation (6.28) can be computed once the
classical quantities S1, S2 and A1,A2 are known. After some rearrangements,
(6.28) can be found to agree with the uniform approximation derived by Schome-
rus and Sieber [102] for isochronous bifurcations of periodic orbits, although its
present form is much simpler.

6.5.3 The cusp catastrophe uniform approximation

The normal form for the symmetrized cusp catastrophe is given by (5.16)

Φa(t) =
1
4
t4 − 1

2
at2 .

It has stationary points at t = 0 and t = ±√
a and describes a pitchfork bi-

furcation, where two asymmetric orbits bifurcate off an orbit invariant under a
reflection. I denote their actions and amplitudes by Ssym, Sasym and Asym,Aasym,
respectively, where Aasym is understood to be the cumulative amplitude of both
asymmetric orbits.

As Φa(t = 0) = 0, the reference action S0(E) must be chosen equal to the
action of the symmetric orbit. The action difference is given by the stationary
value of Φa(t), so that

∆S = Ssym − Sasym = 1
4
a2 , (6.32)
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and

a = ±2
√
∆S . (6.33)

The parameter a has to be chosen positive if the asymmetric orbits are real, and
negative otherwise. As has already been mentioned in section 5.2.2, the normal
form Φa given by (5.16) is only applicable if Sasym < Ssym. In the opposite case,
it must be replaced with −Φa.

Due to the reflection symmetry, the amplitude function must be an even
function of t. I make the ansatz

p(t) = p0 + p2t
2 . (6.34)

and solve (6.18) for the coefficients

p0 =

√
a

2π
Asym eiπ/4 ,

p2 =
e−iπ/4

2
√
πa

(
Aasym −

√
2 iAsym

)
.

(6.35)

The simple uniform approximation with p(t) = p0 corresponds to p2 = 0 or

Aasym =
√
2 iAsym . (6.36)

Only under this condition does p2 remain finite as a→ 0.
The complete uniform approximation reads

Ψ(E) =

∫
dt p(t) eiΦa(t) = p0I0 + p2I2 (6.37)

with

Ik =

∫
dt tk eiΦa(t) . (6.38)

The integral I0 can be evaluated analytically in terms of Bessel functions [109]:

I0 =
π

2

√
|a| e−ia2/8

[
eiπ/8 J−1/4

(
a2

8

)
+ sign a e−iπ/8 J1/4

(
a2

8

)]
. (6.39)

Although it is not apparent at first sight, I0 is a smooth function of a. This can
be verified if the series expansion [44]

Jν(x) =
(x
2

)ν
rν(x) (6.40)

with rν(x) a power series in x2 is used. In terms of rν(x),

I0 =
π

2
e−ia2/8

[
2eiπ/8 r−1/4

(
a2

8

)
+
a

2
e−iπ/8 r1/4

(
a2

8

)]
, (6.41)
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Figure 6.7: Uniform approximation (6.37) for a tangent bifurcation. Solid line:
uniform approximation, long-dashed line: isolated-orbits approximation, short-
dashed line: simple uniform approximation.

which is indeed smooth. The second integral I2 can be evaluated from

I2 =

∫
dt 2i

d

da
eiΦa(t)

=2i
dI0
da

=iπ
√
|a| e−ia2/8

{(
1

2a
− i

a

4

)[
eiπ/8 J−1/4

(
a2

8

)
+ sign a e−iπ/8J1/4

(
a2

8

)]

+
a

8
eiπ/8

[
J−5/4

(
a2

8

)
− J3/4

(
a2

8

)]

+ sign a
a

8
e−iπ/8

[
J−3/4

(
a2

8

)
− J5/4

(
a2

8

)]}
.

(6.42)

This derivation contains an interchange of differentiation and integration which
achieves a regularization of the divergent integral I2. It can be justified by ver-
ifying that the asymptotic behaviour of (6.42) for a → ±∞ agrees with the
stationary phase approximation to (6.38).

The calculation of the uniform approximation (6.37) is thus complete. It is
illustrated in figure 6.7 for the case of a pitchfork bifurcation generating a quartet
of orbits from a C-doublet in the first series of rotators at the repetition number
µ = 57. For graphical purposes, only the absolute value of Ψ(F̃ ) is shown. The
uniform approximation is plotted at a fixed scaled energy Ẽ = −1.4 for varying
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scaled electric field strength F̃ , so that F̃ takes over the role of the energy E in
the above discussion. The bifurcation takes place at F̃c = 0.0901. It is obvious
that the isolated-orbits approximation diverges there, whereas both forms of the
uniform approximation remain finite. For F̃ > F̃c, if the distance from the
bifurcation is large enough, the complete uniform approximation agrees with the
isolated-orbits formula and reproduces the beats caused by the interference of
the different real orbits. Because the pattern of beats is primarily determined
by the phases of the interfering oscillations, i.e. the actions, it is also given
by the simple uniform approximation. However, the simple approximation does
not describe the amplitudes of the interfering contributions correctly, so that
the heights of the beats differ from their correct values. At F̃ < F̃c, both the
complete and the simple uniform approximation asymptotically agree with the
isolated-orbits formula, and all three diverge as F̃ → 0. This divergence is caused
by the rotational symmetry-breaking at F̃ = 0, which is a bifurcation not taken
into account by the normal form (5.16).

6.5.4 Uniformized recurrence spectra

The formulae derived in the preceding sections give the uniform approxima-
tions directly in terms of the semiclassical actions and amplitudes. This cir-
cumstance makes them easy to apply to scaled spectra: I simply put S = wS̃ and
Ac.o. = wγÃc.o.. As w is varied, the bifurcation is not encountered because the
classical mechanics does not change, so that the isolated-orbits approximation
does not actually diverge. However, if w is small, the action differences between
the bifurcating orbits are also small, so that the presence of the bifurcation is
felt and the isolated-orbits formula produces exceedingly large contributions. For
large w, the action differences also grow large, so that the isolated-orbits approx-
imation should be recovered in the limit of large w.

These findings are illustrated in figure 6.8 for the same bifurcation as in
figure 6.7 for fixed scaled energy Ẽ = −1.4 and scaled electric field strength1

F̃ = 0.2 and varying w. As anticipated, in the limit of w → ∞ the complete
uniform approximation agrees with the isolated-orbits formula, whereas the sim-
ple approximation correctly reproduces the beats, but has a smaller amplitude.
Problems with the uniform approximation arise in the region of small w. To
achieve a finite value of the contribution to the unscaled semiclassical spectrum
Ψ(w) = w−1Ψ̃(w), the contribution to the scaled spectrum should vanish linearly
in w. Whereas the simple approximation actually seems to vanish, albeit slowly,
as w → 0, the complete uniform approximation assumes a finite value. This
failure is due to the fact that the neighbourhood of the stationary points that
contributes to the integral (6.14) becomes arbitrarily large in this limit. Thus, the
Taylor series approximation (6.34) to the amplitude function cannot be expected
to be accurate throughout the region where it is needed. What is more, as the

1If F̃ = 0.1 is chosen as above, the scaled action difference is too small for the uniform
approximation to reach its asymptotic behaviour for reasonably small w.
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Figure 6.8: Uniform approximation as in figure 6.7 for the scaled spectrum at
Ẽ = −1.4 and F̃ = 0.2.

neighbourhood of the bifurcating orbits increases indefinitely, further closed or-
bits not participating in the bifurcation and not taken into account by the normal
form (5.16) are eventually encountered. Therefore, the uniform approximations
cannot be used in the limit w → 0. In any case, however, this limit is beyond the
validity of the semiclassical approximation, so that there is no need to study it
further.

The scaled uniform approximation can be used to improve the semiclassical
recurrence spectrum, but this requires some effort: Whereas the isolated-orbits
approximation yields δ function peaks in the recurrence spectrum, which are
replaced with Gaussians due to the smoothing of the recurrence spectrum (see
section 6.4), the uniform approximation is a complicated function of w. It must
be subjected to a numerical Fourier transform in the same was as the quantum
spectrum is if its contribution to the recurrence spectrum is to be evaluated.
Because a bifurcation involves orbits with roughly equal actions, the uniform
approximation will produce a recurrence peak at the appropriate action. An
example is shown in figure 6.9. It was calculated for the bifurcation already
described in figures 6.7 and 6.8. The Gaussian smoothing used in section 6.4
was replaced with a rectangular window, so that a number of side peaks appear.
In this case, the Fourier transform of both the uniform approximation and the
isolated-orbits approximation was taken over the rectangular window w ∈ [40, 60].
The bifurcating orbits have the scaled action S̃/2π ≈ 21.86, which is where the
Fourier peaks are centred in both approximations. The peak produced by the
uniform approximation is considerably smaller.
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Figure 6.9: Contribution to the recurrence peak calculated from the uniform
approximation (solid line) and the isolated-orbits approximation (dashed line)
for the same bifurcation as in figure 6.7, Ẽ = −1.4 and F̃ = 0.1.

If this uniformization procedure is carried out for all excessively high bifurca-
tion peaks, it should be possible to bring the semiclassical recurrence spectrum
in figure 6.6 into agreement with its quantum counterpart. In practice, however,
several obstacles stand in the way. First of all, in many cases ghost orbits must
be included in the uniform approximation. They must be found and identified
as pertinent to a given bifurcation before the uniformization can be performed.
Furthermore, even if all relevant orbits are real, those orbits connected with each
other in a bifurcation must be recognized in the data set. This is by no means
an easy task. For example, if in a given series of rotators and for a given winding
number a quartet of orbits appears, there are two different doublet orbits out
of which they may have bifurcated, and it is not clear in general which of them
must be taken for the uniform approximation. In a single case, this can be found
out fairly comfortably by hand. If many orbits are to be classified, however, it
is essential to do the grouping automatically. I have not been able to devise
a practical algorithm for this task, so that a automatized uniformization of all
bifurcation peaks is presently impossible.

Apart from these rather technical difficulties, there are also some obstacles of
more fundamental importance. Consider, e.g., the two high semiclassical peaks
at S̃/2π ≈ 25 in figure 6.5. They are notably too high, and they are well-isolated
from neighbouring recurrence peaks, so that they may appear to be the ideal
testing ground for the uniformization procedure. These peaks are generated by
vibrators with repetition numbers µ = 41 and µ = 42, respectively. The pertinent



124 CHAPTER 6. SEMICLASSICAL CROSSED-FIELDS SPECTRA

bifurcation scenarios were described in detail in section 5.4.2. The “simple”
scenario taking place at µ = 41 (see figure 5.17) consists of two orbits being
generated in the rotational symmetry-breaking at F̃ = 0, followed by a tangent
bifurcation destroying one of them and a third orbit. To smooth this bifurcation
peak, a uniform approximation describing the complete scenario must be found,
which requires the construction of a suitable normal form. Although a uniform
approximation for the symmetry-breaking is available [110–112], the derivation
of the pertinent normal form relies on principles different from the catastrophe
theory classification used here, and it is not clear how these two can be united
into a single normal form. Thus, the construction of a uniform approximation for
this bifurcation scenario, and even more so for the more complicated scenario at
µ = 42 (see figure 5.18), remains an open problem to be solved in the future. It
can be solved within the framework of uniformization presented in section 6.5.1,
but will require a novel way of constructing normal forms.

The approach to high-resolution semiclassical quantization described in sec-
tion 3.1 and applied to the crossed-fields system in section 6.3 relies on the har-
monic inversion of a Fourier transformed semiclassical spectrum, i.e. of a re-
currence spectrum. The above method of uniformizing the bifurcation-induced
excessively high recurrence peaks in a semiclassical spectrum would therefore, if
it could be implemented systematically, also pave the way to the inclusion of uni-
form approximations into a high-resolution semiclassical quantization, which has
not been possible so far. As the classical dynamics of the crossed-fields system is
obviously too complicated to permit a systematic uniformization of all relevant
bifurcation peaks, I resort to a system with simpler classical behaviour, namely
the hydrogen atom in an electric field. This system is classically integrable, so
that an overview over all closed orbits can easily be obtained. Nevertheless, bi-
furcations of closed orbits abound, rendering the system an ideal testing ground
for the methods developed here. It will be described in detail in the following
chapter.



Chapter 7

Stark effect

The classical dynamics of the hydrogen atom in a homogeneous electric field is
well known to be integrable because the Hamilton-Jacobi equation is separable in
parabolic coordinates [113]. It can therefore be regarded as the simplest atomic
system apart from the field-free hydrogen atom, and consequently its semiclassical
treatment is of fundamental importance. Due to the integrability, of course, the
EBK torus quantization rules apply, and a semiclassical calculation of photo-
absorption spectra based on the existence of quantized classical tori was indeed
carried out by Kondratovich and Delos [114, 115].

Closed-orbit theory is intended to be applicable to atomic systems exhibiting
either regular, chaotic or mixed classical behaviour, so that it is of vital interest
to see how it can be applied to this apparently simple example. It turns out that,
although the closed orbits of the Stark system are easy to describe and classify,
a multitude of bifurcations exist. Thus, in a closed-orbit theory treatment this
system presents all difficulties to be expected in a generic mixed regular-chaotic
system. On the other hand, the sequence of bifurcations can easily be understood,
so that the technical difficulties encountered in the crossed-fields hydrogen atom
are absent. One can therefore hope that the semiclassical quantization based on
uniform approximations can be applied successfully in this case.

In section 7.1 the classical dynamics of the Stark system will be described.
It will be shown that the KS description of the dynamics immediately paves
the way to a separation of the equation of motion, without having to resort to
Hamilton-Jacobi theory. Again, the geometric algebra formulation streamlines
the calculation. In sections 7.2 and 7.3, the closed orbits and their bifurcations
are discussed. Semi-analytic formulae for all relevant orbital parameters will be
derived which have not been given in the literature so far. In section 7.4, two
pertinent uniform approximations are derived. The first of these is not new, but
it is derived in a much simpler way as was done previously and it is brought into
a form that is considerably easier to apply. The second uniform approximation is
new in this thesis. It describes a sequence of two bifurcations, and it is the first
uniform approximation introduced in the literature which relies on a configuration
space with non-trivial topology. Section 7.5 concludes by presenting both low- and
high-resolution semiclassical spectra. They prove that uniform approximations
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can indeed be included into a high-resolution semiclassical quantization. The
results solve the long-standing problem of a closed-orbit theory quantization of
the Stark effect and serve as a prototype example for the application of the novel
method to other systems.

7.1 Separation of the equation of motion

In this section it is shown that the spinor equation of motion (4.19) can easily be
separated and solved by elementary means. I then proceed to discuss the closed
orbits present in this situation. The KS transformation leads to a remarkably
compact representation of the closed orbits. It will further be shown that the
sequence of closed orbit bifurcations found by Gao and Delos [116] from numeri-
cally calculated Poincaré surface of section plots can be derived by simple analytic
arguments.

Sections 7.1–7.3 present purely classical calculations. Scaling with the electric
field strength F according to the prescriptions of section 2.1 is used throughout.
For the sake of simplicity, I refrain from marking the scaled quantities with a tilde.
From section 7.4 on, the distinction between scaled and unscaled quantities will
be taken up again.

The electronic motion for a hydrogen atom in an electric field F can be de-
scribed by the Hamiltonian

H =
1

2
P †P − E U †U +

1

2
U †U

〈
F Uσ3U

†〉 = 2 (7.1)

or the equation of motion

U ′′ = 2

(
E − 1

2

〈
F Uσ3U

†〉− 1

2
F Uσ3U

†
)
U . (7.2)

If the electric field, whose field strength is unity due to scaling, is assumed to point
along the σ3-axis, F = σ3, a separation of (7.2) can be achieved by decomposing
the spinor U according to

U = U1I1 + U2 , (7.3)

where
Uj = αj + I3βj ∈ C(I 3) , αj , βj ∈ R , (7.4)

are “complex numbers”, with the role of the imaginary unit played by the bivector
I3. (remember I23 = −1.) Inserting this bicomplex decomposition of the position
spinor into (7.2), I find

U ′′
1 I1 + U ′′

2 = 2E (U1I1 + U2) + 2
(
U1U

†
1U1I1 − U2U

†
2U2

)
, (7.5)

which can immediately be separated into

U ′′
1 = 2EU1 + 2U1U

†
1U1 ,

U ′′
2 = 2EU2 − 2U2U

†
2U2 .

(7.6)



7.1. SEPARATION OF THE EQUATION OF MOTION 127

Thus, the equation of motion (7.2) for the four-dimensional spinor U has been
reduced to two independent complex differential equations. Further reduction can
be achieved by introducing polar coordinates

Uj = ρje
I3ϕj , j = 1, 2 . (7.7)

Separating the real and imaginary parts of (7.6), I obtain

ρ′′j − ρjϕ
′
j
2 − 2Eρj ∓ 2ρ3j = 0 , (7.8)

2ρ′jϕ
′
j + ρjϕ

′′
j = 0 . (7.9)

Equation (7.9) yields
d

dτ

(
ρ2jϕ

′
j

)
= 0 , (7.10)

so that
Λj = ρ2jϕ

′
j (7.11)

is a constant of motion. It characterizes the “angular momentum” in the abstract
complex plane C(I 3). In terms of Uj , it can be written as

Λj = −I3
〈
U ′
jU

†
j

〉
2
= −I

〈
U ′
jσ3U

†
j

〉
3
. (7.12)

With the decomposition (7.3), the constraint equation (4.9) reads
〈
U ′
1σ3U

†
1

〉

3
=
〈
U ′
2σ3U

†
2

〉

3
, (7.13)

so that Λ1 = Λ2, and with the help of (4.67) I can identify

Λ1 = Λ2 = −〈I3l〉 = L3 (7.14)

as the physical angular momentum component along the electric field axis, which
is a constant of motion.

The radial equation (7.8) simplifies to

ρ′′j =
L2
3

ρ3j
+ 2Eρj ± 2ρ3j . (7.15)

It can be integrated to yield

ρ′j
2
= ±ρ4j + 2Eρ2j −

L2
3

ρ2j
+ cj (7.16)

with integration constants c1 and c2 related by the pseudo-energy conservation
condition (7.1). Integrating a second time, I finally obtain

τ =

∫
dρ1√

ρ41 + 2Eρ21 −
L2
3

ρ21
+ c1

=
1

2

∫
dη√

η3 + 2Eη2 + c1η − L2
3

,

τ =

∫
dρ2√

−ρ42 + 2Eρ22 −
L2
3

ρ22
+ c2

=
1

2

∫
dξ√

−ξ3 + 2Eξ2 + c2ξ − L2
3

,

(7.17)
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which gives the orbital parameter τ as an elliptic integral in the coordinates
ρ1 and ρ2. Equivalently, the coordinates turn out to be elliptic functions of τ .
The coordinates ξ = ρ22 and η = ρ21 correspond to the conventional parabolic
coordinates [113] ξ = r + z and η = r − z.

In the case of closed orbits, L3 = 0, so that ϕ1 and ϕ2 are constants. By
(7.16), ρ′2j = cj at the nucleus. The initial conditions for an orbit starting at the
nucleus at time τ = 0 thus read

ρ1(0) = 0 , ρ2(0) = 0 ,

ρ′1(0) =
√
c1 , ρ′2(0) =

√
c2 .

(7.18)

The pseudo-energy condition (7.1) yields

c1 + c2 = 4 . (7.19)

The separation constants describe the distribution of energy between the uphill
and the downhill motion. For the initial velocities (7.18) to be real, they must
satisfy

0 ≤ cj ≤ 4 , j = 1, 2 . (7.20)

According to the radial equations of motion (7.16), for real orbits ρj can only
assume values which make

fj(ρj) = ±ρ4j + 2Eρ2j + cj > 0 . (7.21)

For the motion in the ρj-direction to be bounded there must be a real turning
point, where fj(ρj) = 0, because otherwise ρj will keep increasing forever. From
the factorized form

f1(ρ1) = (ρ21 − ρ21+)(ρ
2
1 − ρ21−) , (7.22)

with

ρ21± = −E ±
√
E2 − c1 , (7.23)

it is obvious that for E < 0 the zeros of f1(ρ1) are real if

c1 < E2 (7.24)

and complex otherwise. Therefore, a closed orbit can only exist if (7.24) holds.
For energies E below the Stark saddle energy ES = −2, this does not impose
any restrictions beyond (7.20). For E > ES, there must be a sufficiently strong
component of the motion in the uphill direction so that the energy of the downhill
motion does not suffice to cross the saddle.

For the ρ2 motion I obtain similarly

f2(ρ2) = −(ρ22 − ρ22+)(ρ
2
2 − ρ22−) , (7.25)

with

ρ22± = E ±
√
E2 + c2 . (7.26)
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The coordinate ρ2+ is real for any c2 > 0. Therefore, the ρ2-motion is always
bounded for real orbits.

With the help of the factorizations (7.22) and (7.25), the elliptic integrals
(7.17) can easily be reduced to Legendre’s standard integral of the first kind [44]

τ =
1

ρ+
F
(
arcsin

(
ρ+√
c1
ρ1

)∣∣∣∣m1

)

=
1

ρ−
F
(
arcsin

(
ρ−√
c2
ρ2

)∣∣∣∣m2

)
.

(7.27)

The parameters are

m1 =
ρ21−
ρ21+

=
c1
ρ4+

,

m2 =
ρ22+
ρ22−

= − c2
ρ4−

,

(7.28)

and the abbreviations

ρ+ = ρ1+ , ρ− =
√
−ρ22− (7.29)

were introduced.

Equation (7.27) can be solved for ρ1 and ρ2 in terms of Jacobi’s elliptic func-
tions [44] to yield

ρ1(τ) =

√
c1
ρ+

sn (ρ+τ |m1) ,

ρ2(τ) =

√
c2
ρ−

sn (ρ−τ |m2) .

(7.30)

These results incorporate the initial conditions (7.18).

Together with Λj = L3 = 0, (7.11) and (7.3), equation (7.30) yields the KS
spinor

U(τ) = ρ1(τ)e
I3ϕ1I1 + ρ2(τ)e

I3ϕ2

= eI3ϕ/2 (ρ1(τ)I1 + ρ2(τ)) e
I3α/2 .

(7.31)

The angle ϕ = ϕ1 + ϕ2 describes a rotation around the electric field axis, and
α = ϕ2 − ϕ1 is a gauge parameter. This equation neatly unifies the position
information concerning an orbit into a single position spinor. It can serve as a
convenient starting point for further investigations of the crossed-field regime. It
is also apparent from (7.31) that, apart from the freedom of gauge inherent in
the KS transformation, Stark orbits occur, as expected, in one-parameter families
generated by a rotation around the electric field axis.
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7.2 Closed orbits

Closed orbits are characterized by the condition that at a pseudotime τ0 > 0 the
electron returns to the nucleus, so that

ρ1(τ0) = ρ2(τ0) = 0 . (7.32)

In the simplest cases, either ρ1 or ρ2 vanishes identically. The electron then moves
along the electric field axis.

If c1 = 0, the downhill coordinate ρ1 is zero. The electron leaves the nucleus
in the uphill direction, i.e. in the direction of the electric field, until it is turned
around by the joint action of the Coulomb and external fields and returns to the
nucleus at a pseudotime

τ2 = 2
K(m2)

ρ−
, (7.33)

where K(m) denotes the complete elliptic integral of the first kind [44]. Thus,
τ2 corresponds to a half period of ρ2 and, due to the freedom of gauge in KS
coordinates, to a full period of the uphill orbit in position space. The uphill orbit
is repeated periodically and closes again at τ0 = lτ1 with integer l.

The second case of axial motion is obtained if c1 = 4, which corresponds to
a downhill motion opposite to the direction of the electric field. The ρ1 motion
closes at pseudotimes τ = kτ1 with

τ1 = 2
K(m1)

ρ+
, (7.34)

if the energy E is less than the saddle point energy ES = −2. If E > ES, the
electron crosses the Stark saddle and the orbit does not close.

In the case of a non-axial orbit, the uphill and downhill motions must close
at the same time

τ0 = kτ1 = lτ2 . (7.35)

If (7.35) is satisfied for any given integer values of k and l, the orbit returns to
the nucleus after k half periods of ρ1 and l half periods of ρ2, corresponding, in
Cartesian coordinates, to k full periods in the downhill and l full periods in the
uphill direction. I therefore refer to k and l as the downhill and uphill repeti-
tion numbers, respectively, and identify a non-axial closed orbit by its repetition
numbers (k, l).

By (7.23), (7.26) and (7.28), the half-periods τ1 and τ2 depend on the separa-
tion constant c1. For given k and l, (7.35) can therefore be read as an equation
for c1, thus determining the initial conditions of a closed orbit. I am now going
to investigate the solution of this equation to determine the conditions for a (k, l)
orbit to exist.

Figure 7.1 shows the dependence of τ1 and τ2 on c1 for a fixed energy E. For
all c1, the uphill period τ2 is smaller than the downhill period τ1. Furthermore,
as c1 → −∞ I obtain from (7.33) and (7.34), to leading order,

τ1 − τ2 ≈
2K(−1)

(−c1)5/4
, (7.36)
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Figure 7.1: Downhill period τ1 and uphill period τ2 as a function of the separation
constant c1.

whereas

τ1 ≈
2K(−1)

(−c1)1/4
, (7.37)

so that the ratio τ1/τ2 approaches 1 from above. On the other hand, τ1 diverges
at c1 = E2, so that τ1/τ2 → ∞ as c1 → E2. Thus, for any energy E < 0 and
positive integers k, l with l > k, there is a unique solution c1 to (7.35). It is in
the range −∞ < c1 < E2. There is no solution for l ≤ k, since τ1 is complex for
c1 > E2 whereas τ2 remains real. Therefore, orbits (k, l) with l ≤ k do not exist.

A real closed orbit must satisfy 0 ≤ c1 ≤ 4 due to (7.18) and (7.19). If
c1 > 4, the initial velocity ρ′2(0) is imaginary, hence ρ2(τ) will be imaginary at all
times. Similarly, ρ1(τ) will be imaginary if c1 < 0. In both cases, if the complex
conjugate of the ghost orbit is taken, one of the KS coordinates changes sign.
This change of sign does not alter the Cartesian coordinates, and consequently
all ghost orbits are invariant with respect to complex conjugation. By the same
token, the starting angle of a ghost orbit is defined up to complex conjugation
only. I will always choose the imaginary part of starting angles to be positive.
The properties of real and ghost orbits are summarized in table 7.1.

To investigate the bifurcations a closed orbit undergoes, I will now discuss the
dependence of c1 on E for fixed repetition numbers k, l. For any energy E and
c1 = 0, the downhill period τ1 is equal to the period

τCoul =
π√
−2E

(7.38)

of the pure Coulomb dynamics. For c1 = 4, the uphill period τ2 equals τCoul. For
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c1 c2 ρ1 ρ2 m1 m2

pre-bifurcation ghost c1 > 4 c2 < 0 ∈ R ∈ iR > 0 > 0
real orbit 0 ≤ c1 ≤ 4 0 ≤ c2 ≤ 4 ∈ R ∈ R > 0 < 0
post-bifurcation ghost c1 < 0 c2 > 4 ∈ iR ∈ R < 0 < 0

Table 7.1: Comparison of real and ghost orbits

any other value of c1, both τ1 and τ2 converge to τCoul as E → −∞, whence in this
limit τ1/τ2 → 1. Thus, τ1/τ2 < l/k at c1 = 4 if E is sufficiently low. The solution
to (7.35) must then lie in the interval c1 ∈ [4, E2], so that the (k, l)-orbit is a
ghost. As E increases, c1 decreases. At the critical energy Egen where c1 = 4, a
real (k, l) orbit is generated. It bifurcates off the downhill orbit that is located at
c1 = 4. For E > Egen, c1 decreases further. When the energy Edest where c1 = 0 is
reached, the (k, l) orbit collides with the uphill orbit and becomes a ghost again.
As the singularity of τ1 approaches zero as E ↗ 0, there is an Edest < 0 for any
(k, l).

The bifurcation energies Egen and Edest can be determined from (7.35) if c1 = 4
is prescribed for the generation of an orbit, or c1 = 0 for its destruction. For these
cases, equation (7.35) simplifies to

l

k
=

23/2

π
√

1 +
√
1− ε

K
(

ε
(
1 +

√
1− ε

)2

)
(7.39)

in terms of the dimensionless variable ε = 4/E2 = (ES/E)2 for the generation of
the (k, l) orbit and

k

l
=

23/2

π
√
1 +

√
1 + ε

K
(

−ε
(
1 +

√
1 + ε

)2

)
(7.40)

for its destruction. These equations provide a simple and stable method to de-
termine the bifurcation energies. They can be expected to yield more accurate
results then the numerically computed monodromy matrix elements used by Gao
and Delos [116].

The sequence of bifurcations described above is illustrated in figure 7.2, where
characteristic data of the orbit (4, 5), and the downhill and uphill orbits it bi-
furcates from, is shown. The bifurcation energies Egen = −2.3597 and Edest =
−1.3790 are characterized by the conditions c1 = 4 and c1 = 0, respectively. The
transition between real and ghost orbits can most clearly be seen from the energy
dependence of the starting angle ϑi, which is real between the bifurcation energies
and acquires a non-zero imaginary part outside this interval. In addition, at the
bifurcation energies the actions and orbital periods of the non-axial orbit coincide
with those of the appropriate axial orbits. Note that the action of the non-axial
orbit is always smaller than that of the axial orbits.

It is also apparent from figure 7.2 that the monodromy matrix element m12

vanishes at the bifurcations. For the axial orbits, further zeros of m12 appear in
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Figure 7.2: Orbital parameters close to the bifurcations of the orbit (4, 5). Solid
line: non-axial orbit (4, 5), long-dashed line: fifth uphill orbit, short-dashed line:
fourth downhill orbit. Vertical lines indicate the bifurcation energies Egen =
−2.3597 and Edest = −1.3790, respectively

figure 7.2. They correspond to additional bifurcations these orbits undergo. As
k < l for a non-axial orbit, the lth repetition of the uphill orbit undergoes l − 1
bifurcations, where the orbits (k, l) with k = 1, . . . , l − 1 are destroyed. All four
bifurcation energies of the fifth uphill orbit are visible in figure 7.2. A downhill
orbit, on the contrary, undergoes infinitely many bifurcations before it ceases to
exist at E = −2. Only the first members of this infinite cascade are resolved in
figure 7.2.

The separation parameter c1 for a closed orbit must be calculated numerically
from (7.35). Once it is known, all orbital parameters can be found analytically.
The pertinent formulae will now be derived.

First of all, comparing the closed-orbit initial conditions (7.18) to (4.80), I
obtain the following relations for the initial and final angle ϑ = ϑi = ϑf

2 cos
ϑ

2
=

√
c1 , 2 sin

ϑ

2
=

√
c2 , (7.41)

so that

ϑ = 2 arccos

√
c1
2

. (7.42)

The angle ϑ determined from (7.42) is obviously real and confined to the interval
0 ≤ ϑ ≤ π if 0 ≤ c1 ≤ 4, as was to be expected for a real orbit. For a pre-
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bifurcation ghost orbit, i.e. c1 > 4, the equations (7.41) can be satisfied if ϑ = iα
is chosen purely imaginary with

2 cosh
α

2
=

√
c1 , 2i sinh

α

2
=

√
c2 . (7.43)

This choice of ϑ, which is unique up to the addition of multiples of 4π, makes
ϑ continuous at the bifurcation. Similarly, for c1 < 0, i.e. for a post-bifurcation
ghost orbit, I set ϑ = π + iα with

2i sinh
α

2
=

√
c1 , 2 cosh

α

2
=

√
c2 . (7.44)

Again, the real part makes ϑ continuous at the bifurcation. In both cases I assume
α > 0, which is possible because the orbit is invariant under complex conjugation.

Using the KS spinor (7.31) and P = U ′†, I obtain the action integral

S =

∫ τ0

0

ρ′21 dτ +

∫ τ0

0

ρ′22 dτ

= 2k

∫ √
c1/ρ+

0

ρ′1 dρ1 + 2l

∫ √
c2/ρ−

0

ρ′2 dρ2 .

(7.45)

The equations of motion (7.16) then yield

S = 2k

∫ √
c1/ρ+

0

√
f1(ρ1) dρ1 + 2l

∫ √
c2/ρ−

0

√
f2(ρ2) dρ2

=
2kc1
3m1ρ+

I(m1) +
2lc2

3m2ρ−
I(m2)

(7.46)

with
I(m) = (m− 1)K(m) + (m+ 1)E(m) (7.47)

and the complete elliptic integrals of the first and second kinds K(m) and E(m)
[44]. As can be seen from (7.45), S is real for both real and ghost orbits.

Similarly, the physical-time period of a closed orbit is given by

T =

∫ τ0

0

ρ21 dρ1 +

∫ τ0

0

ρ22 dρ2

=
2kc1
m1ρ

3
+

(K(m1)− E(m1)) +
2lc2
m2ρ

3
−
(K(m2)− E(m2)) .

(7.48)

As is the action, the period T is always real.
The calculation of the monodromy matrix element m12 is more difficult. It

proceeds from the 2× 2 Jacobian matrix

J =
∂ρ(τ0)

∂p(0)
(7.49)

that describes the change of the final position upon a variation of the initial
momentum. The initial and final momenta are given by

p(0) =

(√
c1√
c2

)
, p(τ0) =

(
(−1)k

√
c1

(−1)l
√
c2

)
, (7.50)
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They have norm 2 by (7.19). As the monodromy matrix characterizes variations
perpendicular to the orbit, m12 is obtained from J by projecting onto unit vectors
perpendicular to the momenta (7.50). Thus,

m12 =
1

2

(
(−1)l

√
c2 , −(−1)k

√
c1
)
· J · 1

2

( √
c2

−√
c1

)
. (7.51)

Since the dynamics is separable, the matrix J is diagonal, whence

m12 = (−1)l
c2
4

∂ρ1(τ)

∂p1(0)

∣∣∣∣
τ=τ0

+ (−1)k
c1
4

∂ρ2(τ)

∂p2(0)

∣∣∣∣
τ=τ0

. (7.52)

For the remaining derivatives I find from (7.30)

∂ρ1(τ)

∂p1(0)
=

(
∂

∂p1(0)

√
c1
ρ+

)
sn (ρ+τ |m1) +

√
c1
ρ+

∂

∂p1(0)
sn (ρ+τ |m1) . (7.53)

A similar expression holds for ρ2. If a non-axial orbit (k, l) is considered, the first
term in (7.53) vanishes at τ = τ0 by virtue of the resonance condition (7.35). The
second term can be evaluated in a elementary, but lengthy calculation to yield

m12 = (−1)k+l km1c2

4ρ+
√
E2 − c1

(
2Ed(m1)− ρ2+K(m1)

)

+ (−1)k+l lm2c1

4ρ−
√
E2 + c2

(
2Ed(m2)− ρ2−K(m2)

) (7.54)

with

d(m) =
E(m)

m(1−m)
− K(m)

m
. (7.55)

From (7.54) it can be verified that, up to a choice of sign, the matrix element
m12 for the orbit (nk, nl), which is the nth repetition of (k, l), equals n times
the matrix element for the orbit (k, l), as has been shown previously by Gao and
Delos [116] by an abstract argument using the neutral stability of the orbits. It is
also clear from (7.54) that m12 vanishes when the orbit undergoes a bifurcation,
because m1 → 0 as c1 → 0, and K(m1) and d(m1) both approach finite limits.

For an uphill orbit the second term in (7.53) vanishes because c1 = 0, whereas
the first term is nonzero in general because the axial orbits do not obey a reso-
nance condition akin to (7.35). The derivative reads

∂ρ1(τ)

∂p1(0)

∣∣∣∣
c1=0

=
sin(

√
−2E τ)√
−2E

, (7.56)

so that

m12 = (−1)l
sin(

√
−2E τ0)√
−2E

. (7.57)

Similarly, the matrix element for a downhill orbit is

m12 = (−1)k
sin(

√
−2E τ0)√
−2E

. (7.58)
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Figure 7.3: Periods of the shortest closed orbits, labelled by their Maslov indices,
as a function of energy (schematic). Solid lines: non-axial orbits, short-dashed
lines: downhill orbits, long-dashed lines: uphill orbits.

Finally, the Maslov indices of the closed orbits need to be determined. For
the uphill orbits, I proceed as follows: First, there is a caustic whenever the orbit
reaches either the nucleus or the turning point, totalling to 2l−1 caustics. Second,
the Maslov index increases by two (corresponding to two independent directions
transverse to the orbit) whenever the orbit is intersected by neighbouring trajec-
tories, i.e. when (7.56) vanishes. This occurs, by (7.56), after a pseudotime τCoul,
so that the intersections contribute 2[τ0/τCoul] to the Maslov index. [x] denotes
the integer part of x. Third, according to the derivation in section 2.4 the Maslov
index must be increased by one, so that for an uphill orbit it finally reads

µ = 2

(
l +

[
lτ2
τCoul

])
. (7.59)

Using the same reasoning, I find

µ = 2

(
k +

[
kτ1
τCoul

])
, (7.60)

for a downhill orbit. As the downhill period τ1 is always larger than τCoul, the
downhill Maslov index (7.60) is equal to 4k for sufficiently low E.

The Maslov index of a non-axial orbit involves the number of zeros of m12

encountered along the orbit, which is hard to find from (7.31). Instead, I exploit
the observation made in section 6.5.1 that the change of Maslov indices in a
bifurcation can be determined from the normal form describing the bifurcation.
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A normal form suitable for the bifurcations in the Stark effect will be given in
section 7.4. It predicts that in a bifurcation the Maslov index of the axial orbit
increases by two, which is consistent with (7.59) and (7.60), and the Maslov index
of the non-axial orbit takes the intermediate value. A schematic drawing of the
shortest orbits and their bifurcations in shown in figure 7.3. It implies that the
Maslov index of a non-axial orbit is

µ = 2(k + l)− 1 . (7.61)

Since along the orbit there are k − 1 zeros of ρ1 and l − 1 zeros of ρ2, each
corresponding to an intersection with the electric field axis and thus contributing 1
to the Maslov index, there must be k + l − 1 zeros of m12. This result can be
confirmed numerically.

For ghost orbits, Maslov indices cannot be determined by counting caustics.
The uniform approximation to be developed requires the semiclassical ampli-
tude of the non-axial orbit to be continuous across the bifurcation. This can be
achieved if the Maslov index (7.61) is assigned to the ghost orbit and the factor
sinϑ in (2.66), which was derived for real orbits, is replaced with | sinϑ|, which
is real and invariant under the exchange of the starting angle with its complex
conjugate.

7.3 Bifurcations at low energies

From the discussion of the closed orbits in the preceding section is has become
clear that, although the Stark system is integrable, bifurcations of closed orbits
abound. For a semiclassical treatment to be successful, therefore, suitable uniform
approximations must be constructed. I will turn to this problem in section 7.4.
Without any detailed knowledge of the uniformization procedure, however, it is
evident that there are two regions where the construction of uniform approxima-
tions poses a particular challenge:

First, as the Stark saddle energy ES = −2 is approached from below, the
downhill orbit undergoes infinitely many bifurcations in a finite energy interval
before it is destroyed. The periods of the closed orbits thus created, as the
period of the downhill orbit itself, grow arbitrarily large. The actions, however,
remain finite, so that the action differences between the orbits stemming from two
successive bifurcations become arbitrarily small. Similar cascades of isochronous
bifurcations have been found, e.g., in the diamagnetic Kepler problem [117] and
in Hénon-Heiles type potentials [118]. Their uniformization remains an open
problem. A detailed discussion of this cascade in the Stark system must be
referred to future work.

Second, non-axial orbits with winding ratios z = l/k close to one are created
and destroyed at low energies, and their generation and destruction are closely
spaced (see figure 7.9 on page 152). Therefore, at low energies a uniform ap-
proximation describing both the creation of a non-axial orbit from the downhill
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orbit and its destruction at the uphill orbit is required. It will be derived in sec-
tion 7.4.2. As a prerequisite, to quantitatively assess its necessity, the asymptotic
behaviour of closed-orbit bifurcations at low energies will be investigated in detail
in this section.

Bifurcation energies can be determined from equations (7.39) and (7.40). As
a winding ratio z = l/k close to one corresponds to low bifurcation energies and
small values of the parameter ε = (ES/E)2, approximate bifurcation energies can
be obtained by expanding the right hand sides of (7.39) and (7.40) in a Taylor
series around ε = 0. I then find the generation and destruction energies

Egen = −
√
3

2
√
z − 1

− 35

16
√
3

√
z − 1 +O (z − 1)3/2 , (7.62)

Edest = −
√
3

2
√
z − 1

+
23

16
√
3

√
z − 1 +O (z − 1)3/2 , (7.63)

for an orbit with a given rational z, so that the energy difference

∆E = Edest − Egen =
29

8
√
3

√
z − 1 +O (z − 1)3/2 (7.64)

indeed vanishes as z → 1.

However, the crucial parameter determining whether or not the bifurcations
can be regarded as isolated is not the difference of the bifurcation energies, but
rather the action differences between the non-axial orbit and the two axial orbits.
For the simple uniform approximation to be applicable, at any energy at least
one of the two action differences must be large. In other words (see figure 7.2),
at the critical energy where the actions of the downhill and the uphill orbits are
equal, the difference between their action and the action of the non-axial orbit
must be large.

To begin with, the actions of the downhill and uphill orbits are given by

Sdown
up

=
√
2π(−E)−1/2 ± 3π

4
√
2
(−E)−5/2 +

35π

32
√
2
(−E)−9/2

± 1155π

512
√
2
(−E)−13/2 +

45045π

8192
√
2
(−E)−17/2 +O(−E)−19/2 . (7.65)

The critical energy for the orbit (k, l) is characterized by the condition kSdown =
lSup, so that Sdown/Sup = z. I solve this equation for the critical energy

Ecrit = −
√
3

2
√
z − 1

−
√
3

8

√
z − 1− 69

√
3

64
(z − 1)3/2

+
209

√
3

256
(z − 1)5/2 +O(z − 1)7/2 . (7.66)

As expected, the critical energy lies between the two bifurcation energies. If it is
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substituted into (7.65), the critical action of the axial orbits

Sax = kSdown =
2πk

31/4
(z − 1)1/4 +

3πk

4 · 31/4 (z − 1)5/4

− 455πk

576 · 31/4 (z − 1)9/4 +O(z − 1)13/4 (7.67)

is obtained
To determine the critical action of the non-axial orbit, the separation parame-

ter c1 for this orbit at the critical energy must be calculated from equation (7.35),
which can be rewritten as

τ2
τ1

− z = 0 . (7.68)

Substituting the critical energy (7.66) into (7.68), I find

τ2
τ1

− z =
29(c1 − 2)

24
(z − 1)2 +

219 c21 − 876 c1 + 526

144
(z − 1)3

+
17951 c31 − 107986 c21 + 188112 c1 − 76688

9216
(z − 1)4 +O(z − 1)5 . (7.69)

I now make a power series ansatz for c1, insert it into (7.69) and solve for the
coefficients to find

c1 = 2 +
175

87
(z − 1)− 175

174
(z − 1)2 +O(z − 1)3 . (7.70)

From the knowledge of the critical energy and the separation parameter, the
critical action of the non-axial orbit is found to be

Snon =
2πk

31/4
(z − 1)1/4 +

3πk

4 · 31/4 (z − 1)5/4

− 1151πk

576 · 31/4 (z − 1)9/4 +O(z − 1)13/4 . (7.71)

This result agrees with (7.67) in leading and next-to-leading order. The critical
action difference is

∆Scrit =
29πq

24 · 31/4 (z − 1)5/4 +O(z − 1)9/4 (7.72)

with q = l − k. If the critical action difference is written as a function of the
critical energy by (7.66), it reads

∆Scrit =
29πq

32
√
2
(−Ecrit)

−5/2 +O(−Ecrit)
−7/2 . (7.73)

Note that due to delicate cancellations occurring during the calculation, all terms
of the series expansions given above are needed to obtain the leading-order result
(7.73). Due to these cancellations, the critical action difference is proportional to
a high power of the energy, so that it vanishes fast at low energies.
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Figure 7.4: Numerically calculated critical action differences (crosses) for q =
l − k = 1 as a function of the critical energies. The solid line gives the leading-
order result (7.73).

Figure 7.4 shows numerically computed critical action differences as a function
of the pertinent critical energies for q = 1. The leading-order result (7.73) is
indicated by the solid line. It is accurate even at fairly high energies.

The results of this section confirm that at low energies a uniform approxima-
tion describing both the generation and the destruction of a non-axial orbit is
required. It will be derived in section 7.4.2.

7.4 Uniform approximations

In the following sections I present the semiclassical treatment of the Stark effect.
From now on, scaled quantities will again be marked with a tilde.

7.4.1 Isolated bifurcations

It has become clear in section 7.2 that the apparently simple dynamics of the
hydrogen atom in an electric field contains numerous bifurcations of closed or-
bits. They will turn out to spoil the semiclassical spectrum (see section 7.5)
unless a suitable uniform approximation is derived. For an isolated single bi-
furcation where a non-axial orbit is born out of a downhill orbit or destroyed
in a collision with an uphill orbit, a suitable uniform approximation was given
by Gao and Delos [30]. These authors constructed a semiclassical wave function
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near a bifurcation and essentially redid the derivation of closed-orbit theory us-
ing that wave function. Their uniform approximation was extended by Shaw and
Robicheaux [31] to include ghost orbits. In this section I will demonstrate that
their result can be obtained within the general framework presented in section
6.5.1. It will be shown that with the help of the known recurrence strengths of
the isolated orbits only the semiclassical divergences can be uniformized. The
necessity to construct a semiclassical wave function does not arise. In particular,
in contrast to previous work [30,119], the present derivation does not depend on
any knowledge about the ionic core.

According to section 6.5.1, the crucial step in the construction of a uniform
approximation is the choice of a suitable ansatz function whose stationary points
describe the classical closed orbits. In the Stark system, the structure of the
bifurcations is determined by the rotational symmetry of the system. Non-axial
orbits occur in one-parameter families generated by the rotation of any particular
member around the electric field axis, whereas the axial orbit is isolated at all
energies except at a bifurcation. The normal form must share these symmetry
properties.

I choose the normal form Φ to be defined on a plane with Cartesian coordinates
(x, y) or polar coordinates

x = r cosϕ , y = r sinϕ . (7.74)

Due to the rotational symmetry, Φ must be a function of the radial coordinate r
only, independent of the angle ϕ. To be a smooth function of x and y, it must be
a function of r2. Any such function has a stationary point at the origin x = y = 0
that corresponds to the axial orbit because it is rotation invariant. Any stationary
point at a non-zero radial coordinate rc occurs on a ring r = rc and describes a
family of non-axial orbits. A normal form suitable to describe the bifurcations
occurring in the Stark system must therefore have stationary points on a ring
with radius rc that shrinks to zero as the bifurcation is approached.

These requirements are fulfilled by the normal form

Φa(x, y) =
1
4
r4 − 1

2
ar2 (7.75)

with a real parameter a. Note that this is the symmetric cusp normal form
already used in section 5.2, but with the variable r now interpreted as a radial
rather than a Cartesian coordinate.

Apart from the trivial stationary point at the origin, (7.75) has a ring of
stationary points at r =

√
a, which is real if a > 0 and imaginary if a < 0. Thus,

(7.75) describes a family of non-axial real orbits present for a > 0 which then
contracts onto an axial orbit and becomes a family of ghost orbits.

The uniform approximation using the normal form (7.75) reads

Ψ(E) = I(a) eiSax(E) , (7.76)

where Sax(E) denotes the action of the axial orbit and

I(a) =

∫
dx dy p(x2 + y2) eiΦa(x,y) , (7.77)
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with an arbitrary smooth rotationally symmetric function p(r2) used to adjust the
amplitudes. A stationary-phase approximation to (7.77) must treat the stationary
points at the origin and away from the origin differently. The contribution of the
origin can easily be evaluated in Cartesian coordinates. It yields

I(a)|r=0 =
2πi

|a| p(0) e
−i

π
2
ν0 = −2πi

a
p(0) , (7.78)

where

ν0 =

{
0 : a < 0

2 : a > 0
(7.79)

is the number of negative eigenvalues of the Hessian matrix. From this number
it is apparent that the Maslov index of the axial orbit increases by 2 in the
bifurcation.

The contribution of the non-axial orbits is present if a > 0. Due to the
rotational symmetry, a straightforward stationary-phase approximation to this
contribution fails because the stationary points are not isolated. For this reason,
the amplitude condition (6.18) cannot be applied literally. In polar coordinates,
the integration over the angle ϕ yields the constant 2π, and the stationary-phase
approximation can be applied to the remaining integral over r. This yields

I(a)|ring = 2π
√
πi p(a) e−ia2/4 . (7.80)

Note that the contribution of the non-axial orbit remains finite as a→ 0.
The conditions analogous to (6.17) and (6.18) read

Snon = Sax − a2/4 , (7.81)

Aax = −2πi

a
p(0) , Anon = 2π

√
πi p(a) (7.82)

in terms of the actions and recurrence amplitudes of the axial and non-axial
orbits. According to (7.81), the action of the non-axial orbits must always be
smaller than that of the axial orbit out of which it bifurcates. This is the case
for all bifurcations in the Stark system. The opposite case could be treated by
changing the normal form Φa into −Φa. The normal form parameter

a = ±2
√
Sax − Snon (7.83)

can be determined from (7.81). The sign of a has to be chosen according to
whether the non-axial orbits are real or complex.

Equation (7.82) gives conditions the function p(r2) must satisfy. As usual, a
simple form of the uniform approximation is obtained by setting p(r2) equal to a
constant. This choice imposes the constraint

1 + i√
2π

Anon = −aAax (7.84)



7.4. UNIFORM APPROXIMATIONS 143

on the semiclassical amplitudes. Note that both sides of this equation are finite
as a→ 0. In particular, Anon is continuous at a = 0. This condition was used in
section 7.2 to fix the Maslov indices for the ghost orbits. The actual semiclassical
amplitudes satisfy (7.84) close to the bifurcation, but the agreement is satisfactory
in the immediate neighbourhood of the bifurcation only.

To improve the uniform approximation, I choose a first-order polynomial

p(r2) = p0 + p1(r
2 − a) (7.85)

for the amplitude function. The coefficients p0 and p1 are chosen to satisfy (7.82)
for arbitrary amplitudes:

p0 =
Anon√

2π π(1 + i)
, p1 =

1

2πia

(
aAax +

1 + i√
2π

Anon

)
. (7.86)

By (7.84), p1 remains finite at the bifurcation. Thus, the uniform approximation
(7.76) assumes the form

Ψ(E) =

[ Anon

(1 + i)
I0 +

1

a

(
aAax +

1 + i√
2π

Anon

)
I1

]
eiSax (7.87)

with the integrals

I0 =
1

21/2 π3/2

∫
dx dy eiΦa(x,y) , I1 =

1

2πi

∫
dx dy (r2 − a) eiΦa(x,y) . (7.88)

I0 can be evaluated in terms of the Fresnel integrals [44]

C(x) =

∫ x

0

cos
(
π
2
t2
)
dt , S(x) =

∫ x

0

sin
(
π
2
t2
)
dt (7.89)

to yield

I0 = e−ia2/4

[
1 + i

2
− C

(
− a√

2π

)
− iS

(
− a√

2π

)]
. (7.90)

I1 can be reduced to

I1 =
1

2i
e−ia2/4

∫ ∞

−a

dv v eiv
2/4 (7.91)

with v = r2 − a. The integral in (7.91) diverges at v = ∞. It can be regularized
by adding a small exponential damping factor e−εv2 and letting ε→ 0 at the end.
This procedure yields

I1 = 1 . (7.92)

The regularization can be justified by noting that the stationary phase approxi-
mation to (7.88) also yields I1 = 1, so that (7.92) has the required asymptotic
behaviour.

The calculation of the uniform approximation (7.76) is thus finished. As an
example, the uniform approximation for the bifurcation of the (4,5) non-axial
orbit off the downhill orbit is compared to the simple closed-orbit formula in
figure 7.5. Obviously, the uniform approximation (7.87) smooths the divergence
of the isolated-orbits approximation and, as desired, asymptotically reproduces
the simple approximation perfectly.
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Figure 7.5: Uniform approximation for the generation of the (4,5) non-axial orbit
from the downhill orbit for the electric field strength F = 10−8. Solid line:
Uniform approximation (7.87), dashed line: isolated-orbits approximation.

7.4.2 Non-isolated bifurcations

The uniform approximation for single bifurcations derived in section 7.4.1 cannot
be applied if a closed orbit undergoes several bifurcations in a small energy range.
As was discussed in detail in section 7.3, it is essential at low energies to construct
a uniform approximation capable of simultaneously describing both bifurcations
of a non-axial orbit.

A normal form describing the sequence of bifurcations must possess two iso-
lated stationary points corresponding to the uphill and downhill orbits and a ring
of stationary points related to the family of non-axial orbits. As the normal form
parameters are varied, the ring must branch off the first isolated stationary point
and later contract onto the second. This is impossible if the normal form is to
be defined in a plane, but it is easily achieved if the normal form is based on a
sphere. It can then be chosen such as to have isolated stationary points at the
poles and a ring of stationary points moving from one pole to the other. A normal
form satisfying these requirements is

Φa,b(ϑ) = b(cos ϑ− a)2 . (7.93)

It is given in terms of the polar angle ϑ on the sphere. Due to the rotational
symmetry, it is independent of the azimuth angle ϕ, and it contains two real
parameters a and b needed to match the two action differences between the three
closed orbits.
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If, in the vicinity of the poles, Φa,b is expanded in terms of the distance
ρ = sin ϑ from the polar axis, it reads

Φa,b = b(a− 1)2 + ba

(
1
4
ρ4 +

a− 1

a
ρ2
)
+O

(
ρ6
)

(7.94)

around ϑ = 0 and

Φa,b = b(a + 1)2 − ba

(
1
4
ρ4 +

a+ 1

a
ρ2
)
+O

(
ρ6
)

(7.95)

around ϑ = π, so that in both cases (7.93) reproduces the simpler normal form
(7.75) up to re-scaling. From the coefficients of the quadratic terms in (7.94) and
(7.95) it is apparent that a ring of stationary points bifurcates off ϑ = 0 at a = 1,
and off ϑ = π at a = −1.

These conclusions are confirmed by a discussion of the full normal form (7.93).
The ring of stationary points is located at the polar angle ϑnon satisfying

cosϑnon = a . (7.96)

This angle qualitatively corresponds to the starting and returning angle of the
non-axial orbit in that it describes its motion from the downhill orbit at ϑ = 0
to the uphill orbit at ϑ = π. Quantitatively, ϑnon can not directly be identified
with the classical angle ϑ because the energy-dependence of the normal form
parameters a and b is fixed by matching the action differences rather than the
angles. If −1 ≤ a ≤ 1, the angle ϑnon defined by (7.96) is real. If a > 1,
ϑnon is purely imaginary, corresponding, by table 7.1, to a pre-bifurcation ghost
orbit. For a < −1, ϑnon is of the form ϑnon = π + iα, as is characteristic of a
post-bifurcation ghost.

The bifurcation scenario described by the normal form (7.93) is summarized
in figure 7.6. For b = 1, the stationary values of (7.93), the complex polar angles
ϑ where stationary points occur and the second derivative of Φa,b with respect to
ϑ are shown as a function of a. Due to the rotational symmetry, the latter is well
defined even at the poles.

Figure 7.6 should be compared to figure 7.7, which displays the orbital data
pertinent to an actual bifurcation scenario. The qualitative agreement between
figure 7.6 and figure 7.7 is obvious, so that (7.93) can be seen to describe the
bifurcations correctly. (Note that a is a decreasing function of E.)

As the normal form (7.93) has been chosen such as to vanish at the non-axial
stationary point ϑnon, the pertinent uniform approximation reads

Ψ(E) = I(a, b) eiSnon(E) , (7.97)

where Snon(E) denotes the action of the non-axial orbit and

I(a, b) =

∫ π

0

dϑ

∫ 2π

0

dϕ p(ϑ) eiΦa,b(ϑ) (7.98)



146 CHAPTER 7. STARK EFFECT

0

2

4
Φ

a,
b

-4

-2

0

2

Φ
a,

b’
’

0

π/2

π

-2 -1 0 1 2
a

R
e 

ϑ

0

π/2

π

-2 -1 0 1 2
a

Im
 ϑ

Figure 7.6: Bifurcation scenario described by the normal form (7.93) for b = 1.
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with an amplitude function p(ϑ) to be determined below.
The connection with closed-orbit theory is again established with the help of

a stationary-phase approximation. If |a| > 1, the only real stationary points of
Φa,b are located at the poles, and the asymptotic approximation to (7.98) reads

I(a, b) ≈ − πi

b(1− a)
p(0)eib(1−a)2 − πi

b(1 + a)
p(π)eib(1+a)2 . (7.99)

If |a| < 1, the contribution

I(a, b)|ϑnon
= 2π

√
πi

b
p(ϑnon) (7.100)

has to be added to (7.99). Together with the desired closed-orbit theory asym-
ptotics, these expressions lead to the conditions

∆Sdown = Sdown − Snon = b(1− a)2 ,

∆Sup = Sup − Snon = b(1 + a)2 ,
(7.101)

and

Adown = − πi

b(1− a)
p(0) , Aup = − πi

b(1 + a)
p(π) ,

Anon = 2π

√
πi

b
p(ϑnon)

(7.102)

connecting the actions and amplitudes of the downhill, uphill and non-axial orbits
to the normal form parameters a and b and to the values of the amplitude function
p(ϑ).

Equation (7.101) can be solved for the normal form parameters to yield

a =

√
∆Sup ∓

√
∆Sdown√

∆Sup ±
√
∆Sdown

(7.103)

and

b =
∆Sdown

(1− a)2
=

∆Sup

(1 + a)2
, (7.104)

where the upper or lower sign has to be chosen if the non-axial orbit is real or
complex, respectively.

As usual, setting p(ϑ) equal to a constant in (7.102) yields the constraints

1 + i

2

√
b

2π
Anon = −b(1− a)Adown

1 + i

2

√
b

2π
Anon = −b(1 + a)Aup

(7.105)

the amplitudes must satisfy close to the individual bifurcations. These con-
straints, although different in form, must agree with (7.84), because the extended
normal form (7.93) reduces to (7.75) as the bifurcations are approached.
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To obtain a complete uniform approximation, I take the ansatz

p(ϑ) = p0 + p1(cosϑ− a) + p2(cosϑ− a)2 (7.106)

for the amplitude function. The coefficients are given by

p0 = p(ϑnon) ,

p1 =
(1 + a)2p(0)− 4a p(ϑnon)− (1− a)2p(π)

2(1− a2)
,

p2 =
(1 + a)p(0)− 2p(ϑnon) + (1− a)p(π)

2(1− a2)

(7.107)

with the values p(0), p(π) and p(ϑnon) determined from (7.102). Due to (7.105),
all coefficients are finite everywhere.

With this choice, the uniform approximation (7.97) reads

Ψ(E) = p0I0 + p1I1 + p2I2 (7.108)

with the integrals

I0 =

∫ 2π

0

dϕ

∫ π

0

dϑ sinϑ eib(cos ϑ−a)2

= 2π

√
π

2b

(
C

(√
2b

π
(1− a)

)
+ iS

(√
2b

π
(1− a)

)

+C

(√
2b

π
(1 + a)

)
+ iS

(√
2b

π
(1 + a)

))
(7.109)

in terms of the Fresnel integrals (7.89),

I1 =

∫ 2π

0

dϕ

∫ π

0

dϑ sin ϑ (cosϑ− a) eib(cos ϑ−a)2

=
πi

b

(
eib(1+a)2 − eib(1−a)2

) (7.110)

and

I2 =

∫ 2π

0

dϕ

∫ π

0

dϑ sinϑ (cos ϑ− a)2 eib(cos ϑ−a)2

= −i
d

db
I0

= −πi
b

(
(1− a) eib(1−a)2 + (1 + a) eib(1+a)2

)
+

i

2b
I0 .

(7.111)

All integrals are finite without requiring any regularization. This somewhat atyp-
ical behaviour can be traced back to the fact that the domain of integration in
this case is compact.
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Figure 7.8: Uniform approximation for the generation and destruction of the
(20,21) non-axial orbit for the electric field strengths (a) F = 10−2, (b) F =
10−6, (c) F = 10−10. Solid lines: Uniform approximation (7.108), long-dashed
lines: uniform approximation (7.87) for isolated bifurcations, short-dashed lines:
isolated-orbits approximation.
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As an example, figure 7.8 compares the uniform approximation (7.108) for
the orbit (20,21) and three different electric field strengths to the isolated-orbits
approximation and to the uniform approximation (7.87) for isolated bifurcations.
For the latter, the non-axial orbit and the axial orbit for which the action differ-
ence is smaller are combined into the uniform approximation, whereas the second
axial orbit is treated as isolated.

For the high electric field strength F = 10−2 in figure 7.8(a), in the energy
range shown none of the uniform approximations reaches the asymptotic region
where they agree with the isolated-orbits approximation on either side of the bi-
furcations. Between the two bifurcations, the isolated-bifurcations approximation
appears just to arrive at its asymptotic behaviour before the second bifurcation is
felt. The behaviour of the complete uniform approximation is completely different
here.

If the field strength is decreased, both uniform approximations reach their
asymptotic regions faster. For F = 10−6, they approach the isolated-orbits ap-
proximation at roughly equal pace on both sides of the bifurcations. Between
the bifurcations, the isolated-bifurcations approximation now clearly attains its
asymptotic behaviour, whereas the complete uniform approximation exhibits
qualitatively similar behaviour, but differs significantly from the other two in
quantitative terms. It requires the even lower field strength of F = 10−10 used
in figure 7.8(c) until both uniform approximations agree with the isolated-orbits
result in the region between the bifurcations.

The complete uniform approximation was constructed because in the energy
region between the bifurcations the isolated-bifurcations approximation must fail
for low energies and high field strengths. However, the complete uniform ap-
proximation turns out to reach its asymptotic agreement with the isolated-orbits
results considerably more slowly than the isolated-bifurcations approximation. In
cases where the latter reproduces the isolated-orbits results between the bifur-
cations, of course, no further uniformization is required. The observation that
the complete uniform approximation yields less precise results than the isolated-
bifurcations approximation sheds some doubt on its reliability in cases where the
latter fails. In practice, it might be found to do more harm than good.

In this case one is facing the problem discussed in section 6.5.1 that a uniform
approximation is not specified uniquely if it is required to asymptotically repro-
duce the isolated-orbits approximation. The uniform approximation constructed
here satisfies the asymptotic requirements, but must be assumed, from the numer-
ical results, to deviate considerably from the correct semiclassical contribution.
The problem is probably connected to the non-trivial spherical topology of the
configuration space of the uniform approximation: The construction of uniform
approximations as described in section 6.5.1 relies on the observation that the
unknown phase function in the diffraction integral can be mapped to a certain
standard form by a suitable coordinate transformation. The fundamental theo-
rems of catastrophe theory guarantee that this is possible locally. In a Cartesian
configuration space and close to a bifurcation, all stationary points of the normal
form are close to the origin, so that coordinate regions away from the origin can,



7.5. SEMICLASSICAL SPECTRA 151

in the spirit of the stationary-phase approximation, be assumed not to contribute
to the diffraction integral, whence a local mapping of the exponent function to the
normal form and a local approximation to the amplitude function by means of a
Taylor series suffice to obtain good results. On the spherical configuration space,
a global approximation to the unknown functions must be sought because the
stationary points are distributed across the sphere: There is a stationary point
at each pole. In the case at hand, I tried replacing the (cosϑ − a)2-term in the
amplitude function (7.106) with sin ϑ, which also gives only a rough approxima-
tion to the actual amplitude function and has no significant effect on the result.
The construction of a quantitatively more reliable uniform approximation will
presumably require a deeper global understanding of the bifurcation scenarios.

7.5 Semiclassical spectra

A low-resolution semiclassical photo-absorption spectrum can be obtained from
the closed-orbit sum (2.47) by including orbits with an orbital period up to a
maximum Tmax only. In order to resolve individual energy levels, Tmax must be
larger than the Heisenberg time TH. A rough estimate for TH can be obtained
from perturbation theory. To first order in the electric field strength, the energy
splitting between two adjacent spectral lines with principal quantum number n
is [98] ∆Ep = 3nF , so that the scaled perturbative Heisenberg time is

T̃H,p =
2πF 3/4

∆Ep

=
2π

3

√
−2Ẽ . (7.112)

This estimate is reasonable (although it may not be quantitatively precise) as
long as different n-manifolds do not overlap. If they do, the mean level spacing
is much smaller and the Heisenberg time therefore much larger than given by
(7.112).

Multiples of the scaled perturbative Heisenberg time (7.112) are plotted in fig-
ure 7.9 together with the scaled energies and scaled periods of bifurcating orbits.
For low scaled energies, the periods of bifurcating orbits are well approximated
by T̃H,p. Therefore, there is no parameter range where the closed-orbit sum can
be extended up to the Heisenberg time without involving bifurcations, so that the
uniformization of bifurcations must be an essential ingredient to any closed-orbit
theory quantization of the Stark effect.

These findings can be confirmed numerically. Figure 7.10 displays the oscilla-
tory part of the photo-absorption cross section as calculated from the closed-orbit
sum. All spectra presented in this section are non-scaled spectra calculated for
the hydrogen atom in an electric field F = 10−8, corresponding to w = 100 and
Ẽ = 104E, with the initial state |1s〉 and light linearly polarized along the electric
field axis. Small discontinuities are introduced in the low-resolution spectra be-
cause a closed orbit abruptly disappears from the truncated sum when its period
increases beyond the chosen cut-off time T̃max. The discontinuities can be avoided
by choosing a smooth cut-off function to gradually switch off the contribution of
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Figure 7.9: Bifurcations of non-axial orbits off the downhill (+) and uphill (×)
orbits in a scaled period vs. scaled energy plot. Bifurcation energies and scaled
periods of the bifurcating orbits are indicated. Dashed lines: single, double and
triple scaled perturbative Heisenberg time (7.112).

an orbit when its period approaches the cut-off time. The changes in the spectra
are hardly visible, and as excellent results can be obtained with the simple hard
cut-off, no smoothing will be used henceforth.

For the spectrum in figure 7.10(a), a scaled cut-off time of T̃max = 5, well below
the perturbative Heisenberg time, was chosen. Consequently, one can distinguish
groups of levels characterized by a fixed principal quantum number n, but no
individual spectral lines can be resolved in the plot. The small oscillations are an
artefact of the closed-orbit sum and cannot be identified with spectral lines. This
is clear from the observations that the frequency of the oscillation increases with
increasing cut-off time and that virtually the same oscillations are visible within
an n-manifold and between manifolds.

At low energies, different n-manifolds do not overlap, so that spectral regions
with high oscillator strength density alternate with regions where no spectral lines
are present. (As the smooth part of the semiclassical spectrum has been omitted,
the bottom line of the semiclassical spectrum is shifted to negative values of the
oscillator strength density.) At E ≈ −4.7× 10−4, neighbouring n-manifolds start
to overlap. In the overlap regions the spectral density is considerably higher than
in regions of isolated n-manifolds.

To improve the resolution, the cut-off time must be increased. Figure 7.10(b)

displays the results for a scaled cut-off time of T̃max = 6.5. At low energies, this is
still below the perturbative Heisenberg time, and no significant improvement of
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Figure 7.10: Closed-orbit sum without uniform approximations as a function of
energy at the electric field strength of F = 10−8 with scaled cut-off time (a)

T̃max = 5, (b) T̃max = 6.5. At E > −5 × 10−4, the latter is dominated by
bifurcation-induced divergences.
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Figure 7.11: Low-resolution semiclassical spectrum using the uniform approxi-
mation for isolated bifurcations with scaled cut-off time T̃max = 8.

the resolution can be found. At high energies, bifurcations start to occur, and a
dense sequence of bifurcation-induced divergences covers the semiclassical signal.
As the cut-off time is further increased, bifurcations occur at ever lower energies
and destroy ever larger parts of the semiclassical spectrum. It is thus obvious that
in its simple form the closed-orbit sum is useless for a complete quantization.

If, on the contrary, the uniform approximations are included, the closed-orbit
sum can be extended to longer orbits. Figure 7.11 shows the uniformized closed-
orbit sum with the simple uniform approximation of section 7.4.1 for a scaled
cut-off time T̃max = 8, which is slightly larger than the perturbative Heisenberg
time. As will also be done in all subsequent semiclassical spectra, the uniform
approximation was applied for bifurcating orbits whose action difference is less
than 2π. If for a given orbit several other orbits satisfy this requirement, a
more complicated uniform approximation describing several bifurcations should
be used. For the time being, I resolve this conflict by calculating the simple
uniform approximation for the two orbits with the smallest action difference and
treating all other orbits as isolated.

Although individual spectral lines can be discerned in figure 7.11, it would
be hard to obtain precise values of the energy levels and, in particular, of the
associated dipole matrix elements from this figure. A more reliable method of ex-
tracting the spectral information from the semiclassical data is clearly desirable.
To this end, I will use the generalized version of the harmonic inversion method
introduced in section 3.4, thus proving it is indeed suitable for a semiclassical
quantization including uniform approximations. As discussed in section 3.1, the
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cut-off time of the closed orbit sum must be chosen larger than twice the Heisen-
berg time for this purpose.

The perturbative Heisenberg time thus suggests choosing a scaled cut-off time
of T̃max = 15, which can be expected to be sufficient as long as different n-
manifolds do not overlap. Figure 7.12 shows the low-resolution spectrum for this
cut-off time. Figure 7.13 presents the energy levels and transition matrix elements
obtained from it by the harmonic inversion procedure and compares them to the
exact quantum results.

In the region of isolated n-manifolds the quantum and semiclassical spectra
can indeed be compared line by line to reveal good agreement in both the position
and the intensity of spectral lines. Note, in particular, that the low-resolution
semiclassical spectrum apparently ascribes considerable amplitudes to spectral
lines in the middle of an n-manifold, whereas the quantum amplitudes nearly
vanish. The high-resolution semiclassical spectrum correctly identifies these am-
plitudes as being very small. Furthermore, it can be seen from the magnified
low-resolution spectrum of the manifold n = 31 in figure 7.14(a) that the spec-
tral lines, in particular the weak lines close to the centre of the manifold, appear
asymmetric in the semiclassical spectrum: They extend farther to the right than
to the left. Nevertheless, the high-resolution analysis identifies the lines correctly.

Figure 7.14(b) shows the low-resolution spectrum for the manifold n = 31

with a signal length of T̃max = 40. It can be seen that the spectral lines close to
the centre of the manifold become smaller in comparison to the outer lines, thus
approaching the true semiclassical spectrum, but that the asymmetry of the lines
is exacerbated: They are clearly saw-tooth shaped, rising steeply on the left and
falling off gently to the right.

At E ≈ −4.7×10−4, neighbouring n-manifolds overlap for the first time, thus
doubling the density of spectral lines. It can be seen in figure 7.13 that at this
energy the harmonic inversion of the given semiclassical signal abruptly breaks
down. It recovers at slightly higher energies, where again only levels of a single
n-manifold are present. At E ≈ −4.5 × 10−4 and E ≈ −4.2 × 10−4, pairs of
levels belonging to different n-manifolds are so close to being degenerate that
they cannot be resolved by the harmonic inversion. In the semiclassical spectrum
they appear as single lines with amplitudes equal to the sum of the two quantum
amplitudes.

Similar effects can also be observed at higher energies. However, as the energy
and the density of spectral lines are further increased, the harmonic inversion
gradually ceases to yield meaningful results. In the high-energy region at E ≈
−3.2× 10−4, a few lines can, somewhat arbitrarily, be identified, whereas most of
the lines from the quantum spectrum are absent. In this region the cut-off time
of the semiclassical signal is evidently, and expectedly, too small.

As discussed in sections 3.1 and 3.2, the harmonic inversion always yields
some spurious spectral lines together with an error parameter ε that can be used
to distinguish between true and spurious lines. In figure 7.13, only lines with an
error parameter ε < 6× 10−8 have been included. This threshold value will also
be used for all other semiclassical spectra presented in this section. The selection
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Figure 7.12: Low-resolution semiclassical spectrum with scaled cut-off time
T̃max = 15.
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Figure 7.13: High-resolution semiclassical (sc) and quantum (qm, inverted)
photo-absorption spectrum. The scaled cut-off time for the semiclassical spec-
trum is T̃max = 15.
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Figure 7.14: The manifold n = 31 in the low-resolution semiclassical spectrum
with scaled cut-off time (a) T̃max = 15 and (b) T̃max = 40.
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of “good” semiclassical eigenvalues is therefore solely based on criteria inherent in
the semiclassical quantization procedure, no lines are selected according to how
well they fit the quantum results. As can be seen from figure 7.13, some spurious
lines pass the selection. They are all characterized by having small amplitudes,
so that they exert little influence on the semiclassical signal. Only rarely does it
occur that a true spectral line of considerable amplitude is removed. If the region
of overlapping n-manifolds, where the signal is too short to resolve the spectral
lines, is ignored, the only instance of this error present in the above spectrum can
be found at E ≈ −5.1× 10−4.

To improve the resolution, the cut-off time needs to be increased. As in the
spectral region around E ≈ −3.2×10−4 three (or even four) different n-manifolds
overlap, the true Heisenberg time can be expected to be close to three times its
perturbative value. Figure 7.9 suggests choosing a scaled cut-off time of T̃max =
40. Results obtained with this semiclassical signal are shown in figure 7.15. In the
low-energy spectral range, the amplitudes of the spurious lines have diminished.
Thus, even in this range the longer signal yields a better semiclassical spectrum.
In the region of overlapping n-manifolds around E ≈ −3.8 × 10−4, all spectral
lines are well resolved. At E ≈ −3.2× 10−4, groups of three closely spaced lines
can be identified in the quantum spectrum. In many cases, all three of them are
resolved in the semiclassical spectrum. In a few cases, nearly degenerate lines
appear in the semiclassical spectrum as a single line whose amplitude is the sum
of the two quantum amplitudes.

The most difficult spectral region appears at E ≈ −4.2×10−4. In this region,
spectral lines belonging to neighbouring n-manifold are so close to being degener-
ate that they are hard to distinguish even in the quantum spectrum. This degen-
eracy is somewhat accidental, as it will be lifted as the electric field strength is
varied, but it nevertheless poses a particular challenge to the harmonic inversion.
Even with the signal length of T̃max = 40, the degenerate levels cannot be resolved
semiclassically. Their resolution would presumably require a significantly longer
semiclassical signal. As an alternative, the harmonic inversion of cross-correlated
signals has proven powerful in resolving nearly degenerate levels [99,120]. It can
be combined with the novel quantization procedure for non-scaling systems in
an obvious way and can be expected to considerably reduce the signal length
required to identify the unresolved spectral lines.

Results obtained with T̃max = 30 for lower energies are shown in figure 7.16.
In this region all n-manifolds are well isolated. As the splitting of levels within
a manifold is smaller than at higher energies, the perturbative Heisenberg time
is T̃H,p = 9.4 at E = −10−4. Therefore, the chosen signal length should easily
suffice to resolve the spectral lines. This is indeed achieved, the quantum and
semiclassical spectra can be compared line by line.1 However, the agreement be-
tween the spectra is not as perfect as was found at higher energies. In particular,
considerable contributions to the semiclassical spectrum arise at the centres of the

1Most of the small spurious lines between the manifolds can be removed if a stricter quality
criterion for the semiclassical lines is applied. In figure 7.16, the same threshold ε < 6 × 10−8

as in previous figures is used.
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Figure 7.15: High-resolution semiclassical (sc) and quantum (qm, inverted)
photo-absorption spectrum. The scaled cut-off time for the semiclassical spec-
trum is T̃max = 40.
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Figure 7.16: High-resolution semiclassical (sc) and quantum (qm, inverted)
photo-absorption spectrum. The scaled cut-off time for the semiclassical spec-
trum is T̃max = 30.
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n-manifolds at low energies. This decrease in quality should be expected when
the semiclassical approximation is applied to low-lying states. This is a funda-
mental limitation of semiclassical methods. In this case, however, a technical
problem may also be the source of the decreasing quality. As described in detail
in section 7.3, at low energies the generation and destruction of a non-axial orbit
occur in ever smaller energy intervals and with ever smaller action differences.

To overcome the difficulties introduced by the proximity of bifurcations, a
uniform approximation describing both bifurcations of a non-axial orbit was con-
structed in section 7.4.2. I can now use this uniform approximation in the calcu-
lation of semiclassical spectra. It will be applied if the action differences between
a non-axial orbit and both the downhill and uphill orbits it bifurcates out of are
smaller than 2π. In the other cases, I revert to the simple uniform approximation
or the isolated-orbits approximation, as appropriate. Results calculated with the
same signal length T̃max = 30 as above are shown in figure 7.17. They differ
only slightly from the results obtained with the simple uniform approximation in
figure 7.16. In particular, the spurious lines at the centres of the low n-manifolds
are still there. It is obvious from these results that the decrease in quality of the
semiclassical spectrum observed at low energies cannot be overcome by means of
the novel uniform approximation.

A difference between the two semiclassical spectra can be seen in the low-
resolution spectra in figure 7.18: It has already been noted above for low-resolution
spectra using the simple uniform approximation only that the spectral lines close
to the centres of the n-manifolds tend to have considerable strengths. If the uni-
form approximation for non-isolated bifurcations is used, on the one hand the line
strengths develop a second maximum at the centre of a manifold. On the other
hand, however, the absolute intensity of the central lines is considerably reduced,
so that the overall intensity distribution within an n-manifold is reproduced much
better than with the isolated-bifurcations approximation.

Figure 7.19 compares the low-resolution spectra of the manifold n = 23, which
is the lowest n-manifold included in the calculation, computed with both kinds of
uniformization. The spectrum shown in figure 7.19(a), which uses the isolated-
bifurcations approximation only, exhibits the asymmetric line shape already dis-
cussed above, although the asymmetry is weaker here than at higher energies. In
the spectrum using the uniform approximation for non-isolated bifurcations, the
strong outer lines of the manifold are virtually identical to those in the previous
spectrum, but the central lines are completely distorted, some to the point of be-
ing hard to identify. On the other hand, again, as the central lines are weaker in
the spectrum of figure 7.19(b) than in figure 7.19(a), the distribution of intensities
within the manifold is described more accurately if the uniform approximation
for non-isolated bifurcations is used. However, this increase in quality seems to
be restricted to the low-resolution spectrum because, as noted above, the inclu-
sion of the second uniform approximation does not help to remove the spurious
spectral lines from the centres of the manifolds.

It is thus difficult to assess the merits of the uniform approximation for non-
isolated bifurcations derived here. It should be added, however, that the spectral
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Figure 7.17: High-resolution semiclassical photo-absorption spectrum using the
uniform approximation for non-isolated bifurcations. The scaled cut-off time for
the semiclassical spectrum is T̃max = 30.
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Figure 7.18: Low-resolution semiclassical photo-absorption spectrum using the
uniform approximation for non-isolated bifurcations. The scaled cut-off time is
T̃max = 30.
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Figure 7.19: The manifold n = 23 in the low-resolution semiclassical spectrum
with scaled cut-off time T̃max = 30, (a) not using and (b) using the uniform
approximation for non-isolated bifurcations.
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region considered here is at the very edge of where the isolated-bifurcations ap-
proximation can be expected to fail. The possibility remains, therefore, that at
even lower energies or for stronger fields there may be a spectral region where
the uniform approximation for non-isolated orbits, although not ideally suited
for the bifurcation scenario it was intended for, still gives better results than
the isolated-bifurcations approximation. These spectral regions must, however,
lie well within the realm of perturbation theory, so that it does not seem worth
while pursuing this possibility further.

It remains to conclude that the general semiclassical quantization scheme in-
troduced in section 3.4 has been applied to the Stark system with great success.
It has been shown to yield excellent results in spectral regions where the semi-
classical signal is dominated by the contributions of bifurcating orbits. At low
energies, a gradual decrease of the quality of the semiclassical spectra is observed.
It probably indicates the spectral region where the semiclassical approximation
is beginning to fail.

For the low energy region, a uniform approximation simultaneously describing
both bifurcations of a non-axial orbit was constructed. This uniform approxima-
tion is of interest for reasons of principle, because it is the first uniform ap-
proximation introduced in the literature that relies on a topologically non-trivial
configuration space. It could be demonstrated that uniform approximations with
a non-Cartesian configuration space can indeed be constructed. At the same
time, it has become clear that the basic requirements for uniform approxima-
tions, that they smooth the divergences of the simple semiclassical formulae and
exhibit the correct asymptotic behaviour, are insufficient to guarantee quantita-
tively good results if non-local aspects of a bifurcation scenario, which necessitate
the non-trivial topology of the configuration space, must be taken into account.

The description of the spectral region close to the Stark saddle energy remains
an fundamental open problem. At this energy, the downhill orbits undergo an
infinite cascade of bifurcations in a finite energy interval. The uniformization of
this kind of cascade is far beyond present-day techniques for the construction of
uniform approximations. It presents a worthwhile challenge for future research,
both in itself and in view of its potential applications: The bifurcation cascade
occurs at the continuum threshold, where the transition from bound states to
a continuum with embedded resonances takes place [115]. The semiclassical de-
scription of this transition region is a task of special interest and importance.
Presumably, it will require the uniformization of the bifurcation cascades.



Chapter 8

Conclusion

In this chapter I summarize the main results obtained in this thesis.

Closed-orbit theory provides a powerful framework both for the interpretation
of atomic photo-absorption spectra and for their semiclassical calculation. In the
latter case, it requires all closed orbits up to a certain maximal length to be given.
For this reason, a complete classification of closed orbits present for given values
of the energy and the field strengths is requisite.

As a decisive step in that direction, in this thesis a local bifurcation theory
for closed orbits was developed. The study of closed-orbit bifurcations thus gains
the firm theoretical underpinning which has been available in the case of periodic
orbit bifurcations for a long time. Catastrophe theory was shown to provide a
suitable framework for the discussion of closed orbit bifurcations. In codimension
one, the tangent bifurcation and, due to the presence of discrete symmetries, the
pitchfork bifurcation were found to be generic.

Apart from a bifurcation theory, the systematic classification of closed or-
bits requires the identification of fundamental closed orbits at low external field
strengths, which serve as the roots of family trees from which further orbits bifur-
cate. Although fundamental orbits have not yet been identified, a coordinate-free
reformulation of the KS transformation was described which can be expected to
offer a convenient basis for analytic calculations in classical perturbation theory.
Further work in this direction is in progress.

A systematic study of the closed orbits in the hydrogen atom in crossed electric
and magnetic fields at low scaled energies was carried out. It revealed a surpris-
ingly rich variety of bifurcation scenarios composed of the two elementary types
of bifurcations. A classification scheme for the orbits based on the fundamental
distinction between vibrator and rotator orbits in the diamagnetic Kepler prob-
lem was proposed, and algorithms for the automatic classification of orbits were
described. The classification was shown to be applicable at least up to electric
field strengths half as high, in atomic units, as the magnetic field strength.

For the first time, a high-resolution semiclassical quantization of the hydro-
gen atom in crossed electric and magnetic fields was presented. It achieved the
identification of the strong spectral lines in different n-manifolds. By means of a
detailed semiclassical analysis of the pertinent quantum spectrum, it was shown
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that bifurcations of closed orbits play a crucial role in the semiclassical spectrum.
They pose a particular challenge to the semiclassical quantization because they
require a special treatment by uniform approximations.

A simple heuristic scheme for the construction of uniform approximations has
been proposed. Its simplicity and efficacy was demonstrated by a derivation of
the uniform approximations for the codimension-one generic bifurcations and the
bifurcations occurring in the hydrogen atom in an electric field. It was also applied
to a more complicated bifurcation scenario in the Stark system which required
the introduction of a spherical configuration space. Although a quantitatively
accurate result was not achieved, it could be shown that the general framework for
the construction of uniform approximations is capable of handling topologically
non-trivial configuration spaces. The notion of a uniform approximation with
non-Cartesian configuration space presents a major extension of the previous
uniform approximations on Cartesian spaces.

The derivation of a uniform approximation depends on the availability of a
suitable normal form. Several complicated bifurcation scenarios were found where
a normal form could not be given. They involve a rotational symmetry-breaking
bifurcation as well as one or several codimension-one generic bifurcations. As
the construction of normal forms for these two cases relies on completely differ-
ent principles, they are not easy to combine. Thus, even the apparently well-
understood subject of uniform approximations contains open problems as soon
as a complicated system such as the crossed-fields hydrogen atom is studied.

The method of semiclassical quantization by harmonic inversion was general-
ized to permit the inclusion of uniform approximations in high-resolution semi-
classical spectra. It is the first quantization scheme presented in the literature
which is capable of dealing with uniform approximations. By way of example of
the hydrogenic Stark effect, it was demonstrated that the novel method yields ex-
cellent semiclassical spectra even in a spectral region where bifurcations of closed
orbits abound, so that a semiclassical spectrum without uniform approximations
would be useless.

The technique of semiclassical quantization by harmonic inversion can be used
in connection with semiclassical trace formulae as well as with closed-orbit the-
ory. With the modifications developed in this work, it is no longer restricted to
systems possessing a classical scaling property. Therefore, it is the only semiclas-
sical quantization scheme available which has reached a stage where it does not
impose any conditions on the classical dynamics of the system under study ex-
cept that a semiclassical approximation to the quantum recurrence function can
be given. Besides uniform approximations, any other non-standard semiclassical
contribution such as diffractive corrections can be included in an obvious way.
Thus, the harmonic inversion can now be regarded as a truly universal tool for
the semiclassical quantization of arbitrary systems. It can therefore be expected
to find widespread applications in all areas of semiclassical physics.



Appendix A

Atomic units

Throughout this work, atomic units are used. The values of the physical con-
stants given here are 1998 CODATA recommendations. They were taken from
http://physics.nist.gov/cuu/Constants.

• The unit of mass is the electron mass me = 9.109 381 88(72)× 10−31 kg.

• The unit of charge is the elementary charge e = 1.602 176 462(63)×10−19C.
Its sign is chosen so that the electron charge in atomic units is −1.

• The unit of action is Planck’s constant ~ = 1.054 571 596(82)× 10−34 Js.

• The unit of length is the Bohr radius a0 = 4πε0~
2/(mee

2) = 0.529 177 2083
(19)× 10−10m.

• The unit of energy is the Hartree unit E0 = mec
2α2 = e2/(4πε0a0) =

4.359 743 81(34)× 10−18 J = 27.211 3834(11) eV. This is twice the ground
state ionization energy of the hydrogen atom.

• The unit of time is t0 = ~/E0 = 2.418 884 326 500(18)× 10−17 s.

• The unit of magnetic field strength is B0 = ~/(ea20) = 2.350 517 349(94)×
105T. In a magnetic field of strength B0 a classical electron on the first
Bohr orbit experiences a Lorentz force equal to the Coulomb force.

• The unit of electric field strength is F0 = e/(4πε0a
2
0) = 5.142 206 24(20)×

1011V/m. This is the field strength caused by a proton in a distance of a
Bohr radius.

169



170 APPENDIX A. ATOMIC UNITS



Appendix B

The angular functions Y(ϑ, ϕ)

In the semiclassical closed-orbit theory formulae derived in chapter 2, the proper-
ties of the initial state and the exciting laser field are summarized in the angular
functions Ylm(ϑ, ϕ). For hydrogen atoms, these functions can easily be calcu-
lated because the hydrogenic core wave functions are known. The calculation
first requires the determination of the coefficients (2.14)

dk(E) = 〈Ψcore
k (E)|D|i〉 . (B.1)

Let the initial state be a state with fixed principal and angular momentum
quantum numbers n, l,m:

|i〉 = |nlm〉 = Rnl(r)Ylm(ϑ, ϕ) (B.2)

with a known radial function Rnl. The application of the dipole operator D then
yields

D |i〉 = rRnl(r)
∑

l′m′

bl′m′Yl′m′(ϑ, ϕ) , (B.3)

where the expansion coefficients bl′m′ can be calculated once the polarization of
the laser field is fixed. They can only be non-zero if l′ = l ± 1 and m′ = m or
m′ = m± 1 depending on the polarization.

As the hydrogenic core scattering matrix is the identity matrix, the core radial
wave functions (2.4) read

F core
l′m′,lm(r) =

√
2fl(r) δl′lδm′m (B.4)

with the regular Coulomb function fl(r) = −i(f+
l (r)−f−

l (r))/
√
2. In accordance

with the discussion of chapter 2, I pick the zero-energy wave function

fl(r) =
√
2rJ2l+1(

√
8r) , (B.5)

so that the complete core wave functions (2.3) are

Ψcore
l′m′ =

√
2

r
J2l′+1(

√
8r)Yl′m′(ϑ, ϕ) . (B.6)
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The coefficients dk are given by

dl′m′ = bl′m′Rl′

nl (B.7)

with the radial matrix elements

Rl′

nl =
√
2

∫ ∞

0

dr r5/2Rnl(r) J2l′+1(
√
8r) . (B.8)

Since the radial functions are of the form

Rnl(r) =

n−l′∑

k=l−l′+1

ckr
l′+k−1e−r/n , (B.9)

the matrix elements can be evaluated [44, 11.4.28] in terms of Kummer’s confluent
hypergeometric function:

Rl′

nl =
∑

k

ck2
l′+1n2l′+k+3 Γ(2l

′ + k + 3)

Γ(2l′ + 2)
M(2l′ + k + 3, 2l′ + 2;−2n)

=
∑

k

ck2
l′+1n2l′+k+3 Γ(2l

′ + k + 3)

Γ(2l′ + 2)
e−2nM(−k − 1, 2l′ + 2; 2n)

= 2l
′+1e−2n

n−l′∑

k=l−l′+1

ckn
2l′+k+3 (2l′ + 2)k+1

k+1∑

p=0

(−k − 1)p (2n)
p

(2l′ + 2)p p!

(B.10)

with Pochhammer’s symbol

(a)n = Γ(a+ n)/Γ(a) = a · (a + 1) · . . . · (a+ n− 1) . (B.11)

Explicitly, the lowest radial matrix elements read

R1
10 = 24e−2 , R1

20 = 217/2e−4 ,

R2
21 =

219/2√
3

e−4 , R0
21 =

215/2√
3

e−4 .
(B.12)

Throughout this work, I assume π-polarized light, so that D = r cos ϑ. For
the initial state |i〉 = |1s0〉, then

D |1s0〉 = rR10(r) ·
1√
3
Y10(ϑ, ϕ) , (B.13)

so that b10 = 1/
√
3, d10 = 16e−2/

√
3 and

Y(ϑ, ϕ) = −d10Y10(ϑ, ϕ) = − 8√
π
e−2 cosϑ . (B.14)

Similarly, for the initial state |i〉 = |2p0〉,

D |2p0〉 = rR21(r)

(
2√
15
Y20(ϑ, ϕ) +

1√
3
Y00(ϑ, ϕ)

)
(B.15)
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so that

d20 =
221/2

3
√
5
e−4 , d00 =

215/2

3
e−4 , (B.16)

and

Y(ϑ, ϕ) = 213/2e−4

√
π

(
4 cos2 ϑ− 1

)
. (B.17)
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Appendix C

Introduction to geometric algebra

Geometric algebra is an algebraic system designed to represent the geometric
properties of Euclidean space in the most comprehensive and systematic way
possible. It was pioneered by Hermann Grassmann and William Kingdon Clifford
during the nineteenth century. From the 1960’s on, David Hestenes, with the aim
of providing a universal mathematical framework for theoretical physics, extended
the algebraic techniques of Grassmann and Clifford by a differential and integral
calculus within the geometric algebra, which he called geometric calculus [121].

There are many algebraic systems used to describe geometric properties, most
notably vector and tensor calculus. Hence, the reader will recognize many of the
formulae presented in this chapter because they have close analogues in other
formalisms. The power of geometric algebra lies largely in the fact that it unites
the strengths of different formalisms into a single coherent framework.

The present chapter gives only a sketch of geometric algebra in so far as it is
needed in the present work. A more extensive introduction, with an extension
to Minkowski spacetime, is contained in [74, 122]. A thorough introduction to
the geometric algebra of Euclidean 3-space, with a detailed discussion of applica-
tions to classical mechanics, can be found in [29]. A detailed presentation of the
mathematical properties of the geometric algebra is given in [121].

C.1 The geometric algebra of Euclidean 3-space

The orientation of two vectors a and b in space can be characterized by the
projection of one vector onto the other, which is described by the scalar product
a · b, and the plane spanned by a and b, which is characterized by the vector
product a× b. In the geometric algebra these complementary products a · b and
a× b are unified into a single “geometric” product1 ab. I start the construction
of the geometric product by picking a right-handed frame of orthonormal unit
vectors σ1, σ2 and σ3. For them, I postulate the existence of an associative, but

1Note that the geometric product is indicated by juxtaposition of the vector symbols, whereas
the scalar product is written with a dot.
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non-commutative geometric product satisfying

σiσj + σjσi = 2δij . (C.1)

In addition, the geometric product is required to obey the distributive law with
respect to the usual addition of vectors. It follows from (C.1) that σ2

i = 1 is
a scalar. The reader may notice that the defining relation (C.1) is the same
as obeyed by the Pauli spin matrices. Indeed, these matrices generate a matrix
representation of the Clifford algebra of Euclidean 3-space. In the present context,
however, it is important to retain the interpretation of the σi as ordinary vectors
instead of regarding them as matrices. The elements of the Clifford algebra are
thus given a geometric interpretation, as is indicated by the name “geometric
algebra” introduced by Clifford himself. It turns out that all calculations within
geometric algebra can be done without recourse to a matrix representation.

By virtue of the defining relation (C.1), the geometric product of two arbitrary
vectors a =

∑3
i=1 aiσi and b =

∑3
i=1 biσi is

ab =a1b1 + a2b2 + a3b3

(a2b3 − a3b2)σ2σ3 + (a3b1 − a1b3)σ3σ1 + (a1b2 − a2b1)σ1σ2 .
(C.2)

The scalar terms of this equation comprise the scalar product a · b. In addition,
there are terms containing the product of two orthogonal vectors. These terms
are neither scalars nor vectors. They are referred to as bivectors. As their coeffi-
cients are the components of the vector cross product a× b, bivectors should be
interpreted as describing an oriented area in the same way as a vector describes
an oriented line segment. Accordingly, a product of three orthonormal vectors
is called a trivector and interpreted as representing an oriented volume element.
The unit trivector

I = σ1σ2σ3 , (C.3)

satisfies
Iσ1 = σ1σ2σ3σ1 = −σ1σ2σ1σ3 = σ1σ1σ2σ3 = σ2σ3 .

Similarly, Iσ2 = σ3σ1 and Iσ3 = σ1σ2. Equation (C.2) can thus be rewritten
as

ab = a · b+ Ia× b , (C.4)

which achieves the desired unification of the scalar and vector products. Notice
that (C.4) contains a sum of quantities of different types, a scalar and a bivector.
This should be regarded as a formal sum combining quantities of different types
into a single object with a scalar and a bivector part, in analogy to how a real
and an imaginary number are added to yield a complex number.

As the scalar product is symmetric in its factors whereas the vector product
is anti-symmetric, these products can be recovered from the geometric product
via

a · b =
1

2
(ab+ ba) , (C.5)

a× b =
1

2I
(ab− ba) . (C.6)
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In particular, parallel vectors commute under the geometric product, whereas
perpendicular vectors anti-commute, and any vector a satisfies aa = a · a.

It is a crucial feature of the geometric algebra that it contains elements of
different grades, viz. scalars, vectors, bivectors, and trivectors. A general ele-
ment can be written as a sum of these pure-grade components and is called a
multivector. The pure-grade parts of any multivector can be extracted by means
of a grade projector. Let 〈A〉k be the grade-k part of the multivector A. For
example, by (C.4) two vectors a and b satisfy

〈ab〉0 = a · b ,
〈ab〉2 = Ia× b ,

〈ab〉1 = 〈ab〉3 = 0 .

Due to its particular importance, the scalar projector can be abbreviated as
〈A〉 = 〈A〉0, and the scalar product of two multivectors A and B is defined by

A ∗B = 〈AB〉 . (C.7)

For vectors, this agrees with the scalar dot product. Any two multivectors com-
mute under the scalar product:

A ∗B = B ∗ A . (C.8)

In a term containing different kinds of products, the scalar product as well as
the vector cross product are understood to take precedence over the geometric
product. This has already been used in (C.4).

A multivector which contains only parts of even grades, i.e., scalars and bivec-
tors, is referred to as an even multivector. The even multivectors form a sub-
algebra of the full geometric algebra. This subalgebra is spanned by 1, I1, I2, I3,
where Ik = Iσk. It is isomorphic to the algebra of quaternions.

The basis σ1,σ2,σ3 introduced above defines a basis for all pure-grade sub-
spaces of the geometric algebra. This is summarized in table C.1. Notice that
there are elements that square to −1. When the geometric algebra is used, it is
usually unnecessary, even in quantum mechanics [123, 124], to introduce scalar
complex numbers. It is also worth noting that the unit trivector I commutes with
all basis vectors, and hence with all elements of the algebra.

In three dimensions, the trivector subspace is one-dimensional. It therefore
suffices to characterize a trivector αI by a single scalar α. Trivectors are therefore
also referred to as pseudoscalars. Similarly, a bivector Ia can be characterized
by its normal vector a, so that it can also be called a pseudovector. This termi-
nology agrees with the more usual definitions of scalars, vectors, pseudovectors
and pseudoscalars by means of their transformation properties under rotations
and reflections.

Finally, the reversion A† of a multivector A is obtained by interchanging the
order of vectors in any geometric product. Thus, bivectors and trivectors change
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grade name basis reversion properties
0 scalar 1 1† = 1

1 vector σ1,σ2,σ3 σ
†
k = σk σ2

k = 1

2
bivector
pseudovector

I1, I2, I3 I†k = −Ik I2k = −1

3
trivector
pseudoscalar

I = σ1σ2σ3 I† = −I I2 = −1
Iσk = σkI

Table C.1: Basis elements of the geometric algebra of Euclidean 3-space. On the
whole, the algebra is 8-dimensional.

sign under reversion, whereas scalars and vectors remain unchanged. Formally,
the reversion can be defined by the properties a† = a for any vector a and

(AB)† = B†A† ,

(A+B)† = A† +B† (C.9)

for multivectors A and B.

C.2 The exponential function

With the help of the associative geometric product of multivectors, polynomials
and even power series of multivectors can be constructed. The most important
example is the exponential function of a multivector, defined by the usual power
series

eA =
∞∑

n=0

An

n!
, (C.10)

which is convergent for any multivector A. The multivector exponential satisfies
the “power law” relation

eA+B = eAeB (C.11)

if AB = BA. Furthermore, from the power series (C.10) it follows that

(
eA
)†

= eA
†

(C.12)

for any A and

eAB = BeA if AB = BA , (C.13)

eAB = Be−A if AB = −BA . (C.14)

If the multivector i satisfies i2 = −1 and ϕ is a scalar, Euler’s formula

eiϕ = cosϕ+ i sinϕ (C.15)

holds. Similarly, if j2 = +1,

ejϕ = coshϕ+ j sinhϕ . (C.16)
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C.3 Rotations in the geometric algebra

The geometric algebra allows for a convenient representation of rotations, which
is similar to that used in the formalism of Hamilton’s quaternions. It plays a
crucial role in the reformulation of the KS transformation presented in chapter 4.

A rotation of Euclidean 3-space is characterized by its rotation axis, given
by a unit vector n, and a rotation angle ϕ. In the geometric algebra, it can be
represented by the linear map

a 7→ R(a) = e−I � ϕ/2aeI � ϕ/2 . (C.17)

To verify (C.17), assume n = σ3. By (C.13)-(C.15), the basis vectors σk then
transform under (C.17) according to

R(σ3) = e−I � 3ϕ/2eI � 3ϕ/2σ3 = σ3 ,

R(σ1) = e−I � 3ϕσ1 = (cosϕ+ Iσ3 sinϕ)σ1 = σ1 cosϕ+ σ2 sinϕ ,

R(σ2) = e−I � 3ϕσ2 = (cosϕ+ Iσ3 sinϕ)σ2 = σ2 cosϕ− σ1 sinϕ ,

which is precisely the desired result. Notice that (C.17) contains the bivector
In rather than the vector n, thus specifying a plane of rotation rather than
an axis. The concept of representing rotations by exponentials of bivectors can
be generalized to arbitrary dimensions, whereas the notion of a rotation axis is
restricted to the three-dimensional space.

Equation (C.17) is of the form

a 7→ R(a) = RaR† (C.18)

with an even multivector R satisfying the normalization condition

RR† = 1 . (C.19)

Conversely, any even multivector can be represented as R = r0+ Ir with a scalar
r0 and a vector r = rr̂. If RR† = r20 + r2 = 1, there is an angle ϕ such that

r0 = cosϕ and r = r̂ sinϕ

with |r̂| = 1. Thus, R can be written as

R = cosϕ+ I r̂ sinϕ = eIˆ
� ϕ . (C.20)

By virtue of (C.20), any normalized even multivector represents a rotation. It is
therefore called a rotor.

An arbitrary even multivector satisfies α = UU† ≥ 0, so that U =
√
αR is a

multiple of a rotor R. Therefore,

UaU † = αRaR† , (C.21)

and U describes a rotation-dilatation of 3-space. In particular,

UaU † =
〈
UaU †〉

1
(C.22)
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is a vector for any even multivector U and any vector a.
Instead of giving an axis and an angle, a rotation can be characterized by

specifying two vectors a and b so that a is mapped to b by a rotation in the
plane 〈ab〉2 spanned by a and b. The rotor R describing this rotation is

R =
1 + ba

|a+ b| =
1 + ba√
2(1 + a · b)

. (C.23)

C.4 The multivector derivative

The formalism of the multivector derivative provides a differential calculus for
arbitrary multivector functions. Let F (X) be a smooth multivector-valued func-
tion of the multivector argument X. Neither the grades contained in X nor in F
are specified. The directional derivative in the direction of a fixed multivector A
by

A ∗ ∂XF (X) =
dF (X + τPX(A))

dτ

∣∣∣∣
τ=0

, (C.24)

where PX(A) projects A onto the grades contained in X. It is needed because
in many cases F (X) is defined for X containing certain grades only. E.g., a field
Φ(x) defined in space is a function of a vectorial argument x. The directional
derivative A∗∂ � Φ(x) then depends on the vector part of A only. Apart from this
subtlety, (C.24) agrees with the familiar definition of a directional derivative.

Let eJ , J = 1, . . . , 8 be a basis of the geometric algebra and eJ its dual basis,
i.e., eJ ∗ eK = δKJ . For example, if eJ = 1,σk, Ik, I is the basis given in table C.1,
its dual basis is eJ = 1,σk,−Ik,−I. The multivector derivative is then defined
to be

∂X =
∑

J

eJ eJ ∗ ∂X . (C.25)

It inherits the algebraic properties of its argument X. In particular, ∂X con-
tains the same grades as X. Notice that the scalar product A ∗ ∂X is indeed
the directional derivative in the direction A, justifying the notation introduced
in (C.24).

For a vector argument x, the multivector derivative ∂ � reduces to the vector
derivative, which is analogous to the familiar nabla operator. In particular, the
vector derivative of a scalar function Φ(x) yields the gradient ∂� Φ(x), whereas
for a vector field a(x) the vector derivative

∂ � a(x) = ∂ � · a(x) + I∂ � × a(x) (C.26)

decomposes into the divergence and curl of a(x) in a manner analogous to (C.4).
Both the directional derivative and the multivector derivative are linear op-

erators and satisfy Leibniz’ rule

A ∗ ∂X
(
F (X)G(X)

)
=
(
A ∗ ∂XF (X)

)
G(X) + F (X)

(
A ∗ ∂XG(X)

)
, (C.27)

∂X(F (X)G(X)) =
∗
∂X

∗
F (X)G(X) +

∗
∂XF (X)

∗
G(X) . (C.28)
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In (C.28), the overstars indicate the functions to be differentiated. Notice that the
second term in (C.28) is in general different from F (X)

(
∂XG(X)

)
, because due

to its multivector properties the multivector derivative does not commute with F
even if F (X) is not differentiated. The directional derivative, on the contrary, is
a scalar differential operator that commutes with any multivector that is not to
be differentiated. For this reason it is often convenient to write the multivector
derivative as

∂X = ∂AA ∗ ∂X . (C.29)

This form decomposes ∂X into a multivector ∂A and a scalar differential operator
A ∗ ∂X , which can be moved freely among multivectors.

In addition, the directional derivative satisfies the chain rule

A ∗ ∂XF (G(X)) =
(
A ∗ ∂XG(X)

)
∗ ∂GF (G) , (C.30)

which is useful in many calculations.
A fundamental result concerning the multivector derivative is

∂X 〈XA〉 = ∂X 〈AX〉 = PX(A) (C.31)

for any multivector A. As a consequence,

∂X
〈
X†A

〉
= ∂X

〈
AX†〉 = PX(A

†) . (C.32)

With Leibniz’ rule (C.28), equation (C.31) yields

∂XXX
† = ∂X

〈
XX†〉 = 2X† . (C.33)
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Zusammenfassung

Die Frage nach dem Zusammenhang zwischen klassischen Trajektorien und ato-
maren Spektren beschäftigt Physiker seit der Entdeckung der atomaren Linien-
spektren im 19. Jahrhundert. Die von Bohr und Sommerfeld angegebenen Quan-
tisierungsvorschriften der

”
älteren“ Quantentheorie wählen aus dem Kontinuum

klassisch möglicher Trajektorien diskrete Bahnen aus, die mit Quantenzuständen
identifiziert werden. Diese Quantisierungsbedingungen wurden von Einstein [1]
in größtmöglicher Allgemeinheit angegeben. Einstein erkannte auch bereits, dass
sie eine Blätterung des klassischen Phasenraums in invariante Tori voraussetzen
und dass diese Voraussetzung nur in Ausnahmefällen erfüllt ist. Damit war das
Problem, eine Quantisierungsvorschrift für klassisch nichtintegrable Systeme an-
zugeben, bereits 1917 in aller Schärfe gestellt. Es trat in den Hintergrund, als
die

”
exakte“ Quantenmechanik die Durchführung von Berechnungen ohne Bezug

auf klassische Bahnen gestattete, obwohl das Korrespondenzprinzip, das für hoch
angeregte Zustände ein Übergehen von der Quantenmechanik zur klassischen Me-
chanik fordert, ein entscheidender Wegweiser in der Entwicklung der Quanten-
mechanik gewesen war. Konzepte und Verfahren, die diesen Übergang näher zu
untersuchen gestatteten, standen erst nach der Entwicklung der periodic-orbit-
Theorie durch Gutzwiller [2] und der closed-orbit-Theorie durch Du und Delos [3]
und Bogomolny [4] zur Verfügung. In der Folge dieser Entwicklungen rückte das
schon von Einstein formulierte und noch immer ungel̈oste Problem, eine semiklas-
sische, d.h. auf Grundlage der klassischen Mechanik arbeitende Quantisierungs-
vorschrift für nichtintegrable Systeme anzugeben, wieder in den Mittelpunkt des
Interesses.

Als besonders dankbares Objekt semiklassischer Untersuchungen erweist sich
das Wasserstoffatom in elektrischen und magnetischen Feldern. Während das
Wasserstoffatom in einem elektrischen Feld ein klassisch integrables System ist,
zeigt es in einem Magnetfeld einen Übergang von regulärer zu chaotischer Dy-
namik. Es kann daher als Musterbeispiel dienen, an dem sich der Einfluss von
Integrabilität oder Chaos auf Quantenspektren experimentell und theoretisch stu-
dieren lässt.

Die closed-orbit-Theorie ermöglicht die semiklassische Berechnung atomarer
Photoabsorptionsspektren. Sie stellt die Dichte der Oszillatorstärken als Summe
zweier Ausdrücke dar: Der erste ist eine glatte Funktion der Energie und der
zweite eine Überlagerung oszillierender Beiträge. Jede dieser Oszillationen wird
auf den Einfluss einer

”
geschlossenen“ klassischen Bahn, die am Ort des Kerns be-

ginnt und dorthin zurückkehrt, zurückgeführt [3,4]. Für das Wasserstoffatom im
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Magnetfeld liegt eine vollständige Klassifikation der geschlossenen Bahnen vor [7],
und auf dieser Grundlage konnten die großräumigen Strukturen des Spektrums
semiklassisch interpretiert werden. Umgekehrt ist es ebenfalls gelungen, atoma-
re Energieniveaus und die zugehörigen Oszillatorstärken aus der Kenntnis der
geschlossenen Bahnen zu bestimmen [5].

Da das Wasserstoffatom im Magnetfeld Rotationssymmetrie um die Feldach-
se aufweist, ist der Drehimpuls um diese Achse eine Konstante der Bewegung.
Er erlaubt, die Zahl der Freiheitsgrade auf zwei zu reduzieren. Im Gegensatz
dazu besitzt das Wasserstoffatom in gekreuzten elektrischen und magnetischen
Feldern keine kontinuierliche Symmetrie mehr, so dass drei nicht separierbare
Freiheitsgrade betrachtet werden müssen. Hinzu kommt, dass die Dynamik von
zwei statt von einer einzigen äußeren Feldstärke abhängt. Daher sind sowohl die
klassische als auch die quantenmechanische Dynamik des Wasserstoffatoms in ge-
kreuzten Feldern wesentlich komplizierter als im reinen Magnetfeld. Auch nach
zehn Jahren intensiver Forschung ist sie bei weitem nicht vollsẗandig verstanden.

Für Atome in gekreuzten Feldern existiert eine closed-orbit-Theorie [6, 7],
die derjenigen für ein reines Magnetfeld analog ist. In ihrem Rahmen konn-
ten großräumige Strukturen in Photoabsorptionsspektren durch den Einfluss ge-
schlossener Bahnen erklärt werden [7–11]. Bisher sind jedoch nur vergleichswei-
se kurze Bahnen identifiziert worden, und eine vollsẗandige Übersicht über die
geschlossenen Bahnen in gekreuzten Feldern steht nicht zur Verfügung. Es ist
bekannt, dass die geschlossenen Bahnen mit wachsenden äußeren Feldstärken ei-
ne Reihe von Bifurkationen durchlaufen und dass so immer mehr geschlossene
Bahnen erzeugt werden. Eine wichtige Vorbedingung für eine Klassifikation der
geschlossenen Bahnen wäre deshalb einerseits die Beschreibung fundamentaler
geschlossener Bahnen, die bei kleinen äußeren Feldstärken vorliegen, und ande-
rerseits eine Klassifikation der generischen Bifurkationen. Beides liegt für das
Wasserstoffatom in gekreuzten Feldern bislang nicht vor.

Seit der Entwicklung der modernen semiklassischen Theorien haben verschie-
dene Autoren intensiv an allgemeinen semiklassischen Quantisierungsvorschriften
für nichtintegrable Systeme gearbeitet, Beispiele sind [13–19]. Die closed-orbit-
Theorie stellt ein mächtiges Hilfsmittel zur Verfügung, um über kleine Energiein-
tervalle gemittelte Spektren zu berechnen, sie ist jedoch nicht ohne weiteres zur
Berechnung einzelner Spektrallinien geeignet, da die Summe über alle geschlos-
senen Bahnen divergiert. Die periodic-orbit-Theorie stellt eine semiklassische
Näherung für die Zustandsdichte eines Quantensystems zur Verfügung. Sie ist
der closed-orbit-Theorie in formaler Hinsicht analog und führt daher auf die-
selben Schwierigkeiten. Verschiedene Verfahren sind vorgeschlagen worden, um
die Konvergenzprobleme der semiklassischen Theorien zu umgehen. Alle sind
dadurch eingeschränkt, dass sie gewisse Voraussetzungen über die zu Grunde lie-
gende klassische Dynamik machen. Insbesondere ist keine der bisher entwickel-
ten Techniken anwendbar, wenn Bifurkationen klassischer Bahnen berücksichtigt
werden müssen.

Die meisten Arbeiten zur semiklassischen Quantisierung betreffen Systeme
mit zwei Freiheitsgraden. Wegen der zusätzlichen Schwierigkeiten, die die Be-
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handlung eines dritten Freiheitsgrades mit sich bringt, mussten sich Arbeiten
an Systemen mit drei Freiheitsgraden bisher auf dreidimensionale Billardsysteme
beschränken [20–25], obwohl es von grundlegender Bedeutung wäre zu klären,
in wie weit semiklassische Verfahren auf höherdimensionale Systeme anwendbar
sind. Eine semiklassische Quantisierung, d.h. die Bestimmung von Energieei-
genwerten, ist bislang nur für das dreidimensionale Sinai-Billard [20] und für N -
Kugel-Streusysteme [23] gelungen. Das Wasserstoffatom in gekreuzten Feldern ist
wegen des Übergangs von regulärer zu chaotischer Dynamik wesentlich kompli-
zierter als die genannten Billardsysteme. Zu seiner semiklassischen Quantisierung
gibt es nicht einmal Ansätze. Damit sie gelingen kann, müssen unterschiedli-
che Probleme gelöst werden. Zum ersten müssen die geschlossenen Bahnen des
Systems gefunden und ihre Systematik verstanden werden. Zum zweiten stellt
sich dabei heraus, dass Bifurkationen geschlossener Bahnen in gekreuzten Feldern
häufig auftreten und daher eine wichtige Rolle bei der Quantisierung spielen. Sie
verursachen Divergenzen des semiklassischen Spektrums, zu deren Regularisie-
rung geeignete uniforme Nährungen konstruiert werden müssen. Drittens muss
ein semiklassisches Quantisierungsverfahren entwickelt werden, das die uniformen
Näherungen verarbeiten kann. All diesen Problemen werde ich mich im Verlauf
der Arbeit zuwenden.

Das 2. Kapitel beginnt mit einer Diskussion der Hamiltonfunktion für das
Wasserstoffatom in äußeren Feldern und beschreibt ihre Skalierungseigenschaften
und ihre Symmetrien. Danach wendet es sich der closed-orbit-Theorie zu. Gran-
ger und Greene [26] haben eine neue Formulierung der Theorie vorgestellt, die auf
der Verwendung semiklassischer S-Matrizen an Stelle semiklassischer Wellenfunk-
tionen basiert. In dieser Formulierung werden die Eigenschaften des Atomrump-
fes und der äußeren Felder durch separate S-Matrizen beschrieben, so dass die
Trennung der physikalisch verschiedenen Raumbereiche, die die Grundlage der
closed-orbit-Theorie ist, im Formalismus klar zum Ausdruck kommt. Dadurch
verspricht der Ansatz von Granger und Greene eine größere Flexibilität als frühe-
re Darstellungen. Ich stelle ihn in Abschnitt 2.2 kurz vor und verallgemeinere
ihn in Abschnitt 2.3 auf Atome in gekreuzten Feldern.

Für den Fall eines Atoms im reinen Magnetfeld leiten Granger und Greene [26]
eine semiklassische S-Matrix her und stellen bei niedrigen Energien eine Diskre-
panz zwischen ihren Resultaten und der von Du und Delos [3] eingeführten Form
der closed-orbit-Theorie fest. Sie führen diese Diskrepanz darauf zurück, dass Du
und Delos an entscheidender Stelle Wellenfunktionen für die Energie E = 0 benut-
zen, während sich diese Näherung in der S-Matrix-Formulierung vermeiden läßt.
Diese Behauptung diskutiere ich in Abschnitt 2.4. Ich zeige dort, dass die von
Du und Delos angegebene Form der semiklassischen Amplitude empfindlich davon
abhängt, in welchem Abstand r vom Kern Innenraum- und Außenraumlösungen
aneinander angepasst werden, während die von Granger und Greene verwendete
Amplitude von r unabhängig ist. Obwohl daher die Amplitude von Granger und
Greene als geeigneter erscheint, ist sie nicht an die S-Matrix-Formulierung der
Theorie gebunden, sondern wurde schon früher von Bogomolny gefunden [4]. Im
Grenzfall r → 0 stimmt sie mit dem Ergebnis von Du und Delos überein. Die
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beobachtete Diskrepanz geht daher auf die Verwendung eines endlichen r zurück
und nicht auf die E = 0-Näherung. Da letztere sich bisher immer gut bewährt
hat, besteht nach wie vor kein Anlass, an ihrer Gültigkeit zu zweifeln.

Für die semiklassischen Untersuchungen in dieser Arbeit verwende ich die Me-
thode der harmonischen Inversion. Sie wurde in [19,27] als allgemeines Verfahren
zur semiklassischen Quantisierung und zur semiklassischen Analyse von Quanten-
spektren, d.h. zur Bestimmung der Beiträge klassischer Bahnen zum Spektrum,
eingeführt. Diese Methode wird in Kapitel 3 dargestellt. In Abschnitt 3.1 be-
schreibe ich den Ansatz, der die harmonische Inversion in der Semiklassik flexibel
einsetzbar macht. Ich stelle dann in Abschnitt 3.2 vier verschiedene Algorith-
men zur harmonischen Inversion vor, die in der Literatur vorgeschlagen worden
sind.

In der Semiklassik ist das zu analysierende Signal gegeben durch ein Quanten-
spektrum oder durch eine Liste geschlossener Bahnen. Oft ist es gar nicht oder
nur mit großem Aufwand möglich, ein gegebenes Signal zu verlängern, um mehr
Information für die Analyse zur Verfügung zu haben. Es ist dann wichtig, dasje-
nige Verfahren zur Analyse zu verwenden, das bei gegebenem Signal die besten
Ergebnisse liefert. Um die Stärken und Schwächen der verschiedenen Algorith-
men beurteilen zu können, vergleiche ich Ergebnisse, die sie für zwei einfache
Modellsysteme liefern. Diese Resultate werden in Abschnitt 3.3 dargestellt.

Bisherige Anwendungen der harmonischen Inversion in der Semiklassik waren
eingeschränkt auf Systeme mit einer klassischen Skalierungseigenschaft. Obwohl
dies eine schwache Voraussetzung ist, die viele physikalisch interessante Systeme,
darunter auch Atome in äußeren Feldern, zulässt, ist die Berechnung skalierter
Spektren oft nicht die natürliche Herangehensweise an ein System. So liegt es
z.B. im Fall von Atomen in äußeren Feldern näher, nach Spektren bei konstanten
Feldstärken zu fragen als nach Spektren bei konstanter skalierter Energie. Daher
ist es wünschenswert, die Einschränkung auf skalierende Systeme zu überwin-
den. In Abschnitt 3.4 führe ich ein semiklassisches Quantisierungsverfahren
auf Grundlage der harmonischen Inversion ein, das keine klassischen Skalierungs-
eigenschaften mehr voraussetzt. Es basiert auf der Beobachtung, dass ein für die
harmonische Inversion geeignetes Signal, das die spektrale Information über Ener-
gieniveaus in einem endlichen Energieintervall enthält, konstruiert werden kann,
wenn die klassischen Bahnen in diesem Intervall bekannt sind. Über den Gel-
tungsbereich der closed-orbit-Theorie hinaus ist das Verfahren auch zusammen
mit semiklassischen Spurformeln anwendbar. Da schon früher [19, 120] gezeigt
worden ist, dass die semiklassische Quantisierung durch harmonische Inversion
für Systeme mit regulärer oder chaotischer Dynamik gleichermaßen gute Ergeb-
nisse liefert, ist ihre Verallgemeinerung auf nichtskalierende Systeme das erste
wirklich allgemein anwendbare Quantisierungsverfahren, das keinerlei Bedingun-
gen an die zu Grunde liegende klassische Dynamik stellt.

Da die klassische Dynamik des Wasserstoffatoms in äußeren Feldern im all-
gemeinen nichtintegrabel ist, müssen die Bewegungsgleichungen numerisch gel̈ost
werden. Dies wird erschwert durch die Singularität des Coulomb-Potenzials bei
r = 0. Die Kustaanheimo-Stiefel-Transformation [28] bietet eine Möglichkeit,
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diese Singularität zu regularisieren. Sie wird in Kapitel 4 beschrieben. Die KS-
Transformation bildet den dreidimensionalen Ortsraum in einen vierdimensiona-
len Raum regularisierender Koordinaten ab. Das reine Keplerproblem wird dabei
abgebildet auf einen isotropen vierdimensionalen harmonischen Oszillator. He-
stenes [29] hat eine neue Formulierung der KS-Transformation in der Sprache der
geometrischen Algebra vorgeschlagen. Dabei erscheinen die vier KS-Koordinaten
als die Komponenten eines Spinors, d.h. sie beschreiben eine Drehstreckung des
Ortsraumes, die einen festen Referenzvektor auf den augenblicklichen Ortsvektor
abbildet. Diese geometrische Interpretation der KS-Koordinaten ist in der be-
kannteren matrizenbasierten Formulierung der KS-Transformation nicht erkenn-
bar. Damit verhilft der neue Formalismus zu einer klareren Darstellung, bei
der etwa der Ursprung des zusätzlichen vierten Freiheitsgrades anschaulich wird.
Gleichzeitig vereinfacht er analytische Berechnungen, wie sie etwa zur klassischen
Störungstheorie notwendig sind.

Ich stelle die Herleitung der Spinor-Bewegungsgleichung in Abschnitt 4.1
dar. In Abschnitt 4.2 zeige ich mit Hilfe des Spinor-Formalismus, wie die KS-
Transformation in den Rahmen der Lagrange- und Hamilton-Formulierungen der
Mechanik eingefügt werden kann. Dabei verallgemeinere ich vorherige Herleitun-
gen, die sich auf den Fall homogener äußerer Felder beschränken, auf beliebige
zeitunabhängige elektromagnetische Felder. Abschnitt 4.3 beschreibt das reine
Kepler-Problem. Dessen Erhaltungsgrößen, der Drehimpuls und der Lenz-Vektor,
werden durch den KS-Spinor ausgedrückt. Abschnitt 4.4 geht auf die speziellen
Probleme ein, die bei der Beschreibung von Bahnen, die am Ort des Atomkerns
beginnen, auch nach der Regularisierung noch auftreten. Die Sprache der geo-
metrischen Algebra erlaubt eine einfache Beschreibung dieser Bahnen und ihrer
Stabilität.

Das 5. Kapitel ist der Beschreibung der klassischen geschlossenen Bahnen
beim Wasserstoffatom in gekreuzten Feldern gewidmet und wendet sich zunächst
den Bifurkationen geschlossener Bahnen zu. Für periodische Bahnen in beliebigen
Hamiltonschen Systemen existiert eine Klassifikation generischer Bifurkationen
der Kodimension eins, die von Mayer [12] entwickelt wurde. Das Wasserstoff-
atom im reinen Magnetfeld weist für Bahnen mit verschwindendem Drehimpuls
Zeitumkehrinvarianz auf, so dass geschlossene Bahnen nach ihrer Rückkehr zum
Kern in umgekehrter Richtung durchlaufen werden und nach der zweiten Rück-
kehr periodisch werden. Daher ist Mayers Bifurkationstheorie auf Bifurkationen
geschlossener Bahnen in diesem System anwendbar. In gekreuzten Feldern ist
die Zeitumkehrinvarianz gebrochen, so dass keine allgemeine Beziehung zwischen
geschlossenen und periodischen Bahnen besteht. Daher muss für geschlossene
Bahnen eine eigene Bifurkationstheorie entwickelt werden.

Ich zeige in Abschnitt 5.1, wie eine Poincaré-Abbildung für geschlossene
Bahnen sinnvoll definiert werden kann. Wenn eine erzeugende Funktion der Poin-
caré-Abbildung geeignet gewählt wird, entsprechen ihre stationären Punkte den
geschlossenen Bahnen. Die Bifurkationstheorie für geschlossene Bahnen ist da-
mit zurückgeführt auf die Katastrophentheorie. Mit Hilfe dieser Beobachtung
identifiziere ich in Abschnitt 5.2 die beiden Typen generischer Bifurkationen
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der Kodimension eins. Die erste Form ist die Tangentenbifurkation, in der zwei
geschlossene Bahnen erzeugt oder zerstört werden und die im Rahmen der Ka-
tastrophentheorie durch die Falte beschrieben wird. Ein zweiter Bifurkationstyp
existiert in Kodimension eins nur, weil das Wasserstoffatom in gekreuzten Feldern
Reflexionssymmetrien aufweist. Diese Symmetrien ermöglichen Heugabelbifurka-
tionen, in denen ein Paar von asymmetrischen Bahnen von einer reflexionssym-
metrischen Bahn abspaltet. Sie werden beschrieben durch die symmetrische Form
der Spitze.

Ausgehend von der Bifurkationstheorie und von den geschlossenen Bahnen
beim Wasserstoffatom im Magnetfeld, deren Klassifikation ich in Abschnitt 5.3
kurz darstelle, beschreibe ich in Abschnitt 5.4 eine Reihe von Bifurkations-
szenarien, die in gekreuzten Feldern tatsächlich stattfinden. Dabei zeigt sich,
dass sich aus den beiden elementaren Bifurkationstypen eine große Vielfalt un-
terschiedlicher komplizierter Szenarien bildet und dass bereits bei kleinen elek-
trischen Feldstärken viele eng benachbarte Bifurkationen stattfinden. In Ab-
schnitt 5.5 schlage ich eine heuristische Klassifikation der geschlossenen Bahnen
in gekreuzten Feldern vor, die auf der Klassifikation der Bahnen im reinen Ma-
gnetfeld basiert. Ich zeige, dass die Klassifikation auch bei vergleichsweise starken
elektrischen Feldern noch anwendbar ist und beschreibe Algorithmen, mit deren
Hilfe sich Bahnen automatisch klassifizieren lassen.

In Kapitel 6 wird die semiklassische Beschreibung des Wasserstoffatoms in
gekreuzten Feldern behandelt. Abschnitt 6.1 beschreibt ein Quantenspektrum,
das als Ausgangspunkt für weitere Untersuchungen dient. Ich verwende hier
ein skaliertes Spektrum bei der skalierten Energie Ẽ = −1.4 und elektrischen
Feldstärke F̃ = 0.1, das eine genauere semiklassische Analyse erlaubt als ein Spek-
trum bei festen Feldstärken. In Abschnitt 6.2 stelle ich semiklassische Spektren
in niedriger Auflösung vor, die durch glattes Abschneiden der closed-orbit-Summe
gewonnen wurden, und vergleiche sie mit entsprechend gegl̈atteten Quantenspek-
tren. Es zeigt sich, dass die großräumige Struktur des Spektrums, die durch
näherungsweise erhaltene Hauptquantenzahlen bestimmt ist, semiklassisch gut
wiedergegeben wird. Teilweise l̈asst sich auch eine Unterstruktur der einzelnen
n-Mannigfaltigkeiten semiklassisch auflösen, bei geringer Glättung treten aller-
dings im semiklassischen Spektrum Strukturen auf, die das Quantenspektrum
nicht aufweist.

In Abschnitt 6.3 führe ich eine hochauflösende Quantisierung des Wasser-
stoffatoms in gekreuzten Feldern mit Hilfe der harmonischen Inversion durch. Da-
bei gelingt es, in den Mannigfaltigkeiten n = 6 bis 11 die jeweils stärksten Linien
zu identifizieren. Die Konvergenz des Verfahrens ist mit dem gegebenen semi-
klassischen Signal allerdings schlecht, so dass es weder gelingt, schwächere Linien
aufzulösen noch den gefundenen Linien semiklassisch Übergangsstärken zuzuord-
nen. Eine Verlängerung des semiklassischen Signals führt wider Erwarten zu ei-
ner Verschlechterung statt einer Verbesserung der Ergebnisse. Dies spricht dafür,
dass ein fundamentales Problem beim Signalaufbau vorliegt. Eine offensichtliche
Schwierigkeit liegt darin, dass die Liste der geschlossenen Bahnen unvollsẗandig
ist. Die Bahnen häufen sich in der Nähe einer Separatrix im Phasenraum, und es
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gelingt in dieserm Bereich nicht, alle geschlossenen Bahnen numerisch zu bestim-
men. Obwohl der Bereich um die Separatrix instabil ist, ist zu vermuten, dass
die Beiträge der fehlenden Bahnen nicht vernachlässigbar klein sind.

Um das vorliegende Problem klar diagnostizieren zu können, führe ich ei-
ne semiklassische Analyse des vorliegenden Quantenspektrums sowohl mit hoch-
auflösenden Verfahren als auch mit Hilfe der Fourier-Transformation des Quan-
tenspektrums durch. Die so bestimmten Wiederkehrspektren werden in Ab-
schnitt 6.4 mit semiklassischen Ergebnissen verglichen. Sie besẗatigen zum
einen, dass die fehlenden geschlossenen Bahnen das semiklassische Spektrum be-
einträchtigen. Zum anderen zeigt sich aber auch, dass viele Linien im semiklassi-
schen Wiederkehrspektrum stärker sind als im Quantenspektrum. Dies ist auf Bi-
furkationen geschlossener Bahnen zurückzuführen. Wenn eine geschlossene Bahn
eine Bifurkation durchläuft, divergiert ihr Beitrag zum semiklassischen Spektrum.
Dieses Problem ist in der closed-orbit-Theorie wie in der periodic-orbit-Theorie
gleichermaßen bekannt. Es wird dadurch verursacht, dass die Bahnen sich in
der Nähe der Bifurkation sehr nahe kommen und die in der Semiklassik zentrale
Näherung der stationären Phase für diese Bahnen versagt. Es lässt sich lösen, in-
dem man die Beiträge der bifurkierenden Bahnen zur closed-orbit-Summe durch
einen kollektiven Beitrag, der uniforme Näherung genannt wird, ersetzt.

In Abschnitt 6.5 beschreibe ich ein allgemeines Verfahren zur Konstruktion
uniformer Näherungen. Das Verfahren setzt voraus, dass eine Normalform be-
kannt ist, die das Bifurkationsszenario beschreibt. Im Falle der beiden generischen
Bifurkationstypen kann hier die in Abschnitt 5.2 eingeführte katastrophentheore-
tische Normalform verwendet werden. Die uniforme Nährung wird ausgedrückt
durch die klassischen Wirkungen und semiklassischen Amplituden der beteiligten
Bahnen, sie verlangt also keine weiteren Daten als die, die zur Anwendung der
semiklassischen Theorie ohnehin bestimmt werden müssen. Ich leite uniforme
Näherungen für die beiden generischen Typen von Bifurkationen geschlossener
Bahnen her. Ich zeige dann, dass die uniformen Näherungen nicht nur verwendet
werden können, um semiklassische Photoabsorptionsspektren zu regularisieren,
sondern dass sie sich ebenso einsetzen lassen, um die zu großen Beitr̈age der
bifurkierenden Bahnen zum Wiederkehrspektrum zu reduzieren.

Das Verfahren der semiklassischen Quantisierung durch harmonische Inver-
sion beruht auf der harmonischen Analyse von Wiederkehrspektren. Mit dem
Nachweis, dass uniforme Näherungen in Wiederkehrspektren verwendet werden
können, ist deshalb der Weg geebnet, sie auch in der hochauflösenden Quantisie-
rung einzusetzen. Dabei ist es die in Abschnitt 3.4 eingeführte Verallgemeinerung
der harmonischen Inversion auf nichtskalierende Systeme, die das Verfahren von
der funktionalen Form des semiklassischen Spektrums unabhängig macht und
damit auch die Einbeziehung uniformer Näherungen gestattet. Im Fall des Was-
serstoffatoms in gekreuzten Feldern treten jedoch technische Probleme auf. Zum
einen müssen Bahnen, die durch Bifurkationen auseinander hervorgehen, in der
Liste der geschlossenen Bahnen identifiziert werden, damit sie in einer uniformen
Näherung zusammengefasst werden können. Wegen der großen Zahl geschlossener
Bahnen ist das nur möglich, wenn diese Zuordnung durch einen geeigneten Algo-
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rithmus automatisiert werden kann. Zum anderen treten Folgen eng benachbarter
Bifurkationen auf. Für diese Fälle müssten uniforme Lösungen konstruiert wer-
den, die mehrere Bifurkationen gleichzeitig beschreiben. Dies ist zwar im Prinzip
möglich, verlangt aber die gesonderte Behandlung jedes einzelnen Bifurkations-
szenarios. Eine besondere Herausforderung stellen hierbei Szenarien dar, die die
mit der Brechung der Rotationssymmetrie bei infinitesimal kleiner elektrische
Feldstärke verbundene Bifurkation mit weiteren Bifurkationen verknüpfen. Da
die Normalform für die Symmetriebrechung sich nicht leicht mit den Normalfor-
men für die generischen Bifurkationen verbinden lässt, bleibt die Uniformisierung
dieser Szenarien ein ungelöstes Problem.

Da die klassische Dynamik des Wasserstoffatoms in gekreuzten Feldern sich als
zu kompliziert erweist, um die beschriebene Uniformisierung des Wiederkehrspek-
trums konsequent durchführen zu können, wende ich mich in Kapitel 7 einem
einfacheren System zu: dem Wasserstoffatom in einem elektrischen Feld. Dieses
System ist klassisch integrabel, so dass es nach den Regeln der Torusquantisierung
semiklassisch quantisiert werden kann. Andererseits beansprucht die closed-orbit-
Theorie, auf integrable wie chaotische Systeme gleichermaßen anwendbar zu sein,
so dass eine Quantisierung dieses einfach erscheinenden Systems ein fundamenta-
les Problem der closed-orbit-Theorie darstellt. Dass sie bisher nicht gelungen ist,
ist darauf zurückzuführen, dass das System trotz seiner Integrabilität eine große
Zahl von Bifurkationen geschlossener Bahnen aufweist. Erst mit dem in dieser
Arbeit entwickelten Quantisierungsverfahren für nichtskalierende Systeme steht
ein Hilfsmittel zur Verfügung, mit dem sich die Bifurkationen im Rahmen einer
semiklassischen Quantisierung erfolgreich behandeln lassen.

In Abschnitt 7.1 stelle ich die Bewegungsgleichung auf, die das Elektron
im Wasserstoffatom im elektrischen Feld beschreibt, und l̈ose sie für im Ursprung
startende Bahnen explizit. Die KS-Transformation ermöglicht es, die Bewegungs-
gleichung ohne Rückgriff auf die Hamilton-Jacobi-Theorie elementar zu separie-
ren, und die Formulierung der Theorie im Rahmen der geometrischen Algebra
erlaubt es, einen einfachen Ausdruck für den Positionsspinor als Funktion der
Zeit anzugeben, der die Bewegung vollständig beschreibt.

In Abschnitt 7.2 beschreibe ich die geschlossenen Bahnen. Sie erfüllen die
Resonanzbedingung, dass sie nach k Perioden der

”
downhill“Bewegung (ent-

gegen dem elektrischen Feld) und l Perioden der
”
uphill“Bewegung (mit dem

elektrischen Feld) zum Kern zurückkehren. Außerdem existieren die uphill- und
downhill-Bahnen, bei denen sich das Elektron entlang der elektrischen Feldachse
bewegt, und ihre Wiederholungen. Aus der expliziten Form der Resonanzbe-
dingung lässt sich das Bifurkationsszenario qualitativ ablesen: Eine geschlossene
Bahn ist charakterisiert durch die Umlaufszahlen k und l > k. Sie existiert als re-
elle Bahn in einem Energieintervall Egen ≤ E ≤ Edest, außerhalb dieses Intervalls
als Geisterbahn. Bei der ersten Bifurkationsenergie Egen < −2

√
F spaltet die

Bahn von der downhill-Bahn ab, bei Edest kollidiert sie mit der uphill-Bahn und
wird zerstört. Dieses Bifurkationsszenario ist bereits von Gao und Delos [116] auf-
grund numerischer Befunde beschrieben worden. Es wird hier erstmals analytisch
abgeleitet.
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Die Resonanzbedingung legt bei gegebener Energie die Startrichtung einer
geschlossenen Bahn oder, äquivalent, einen Separationsparameter fest. Im allge-
meinen muss er numerisch bestimmt werden. Ist dies geschehen, sind alle weiteren
Kenngrößen der Bahn analytisch gegeben. Die hierzu nötigen Formeln sind in der
Literatur noch nicht angegeben worden. Ich leite sie ebenfalls in Abschnitt 7.2
her.

Das beschriebene Bifurkationsszenario wirft bei niedrigen Energien ein be-
sonderes Problem für die semiklassische Quantisierung auf. Hier wird der Ener-
gieabstand zwischen der Erzeugung und der Zerstörung einer nichtaxialen Bahn
ebenso wie die Wirkungsdifferenzen zur uphill- und downhill-Bahn sehr klein, so
dass beide Bifurkationen in einer gemeinsamen uniformen Lösung behandelt wer-
den müssen. In Abschnitt 7.3 leite ich Näherungen für diese Differenzen her,
um die Notwendigkeit einer solchen uniformen Näherung quantitativ zu fassen.

In Abschnitt 7.4 werden uniforme Näherungen für das Wasserstoffatom im
elektrischen Feld hergeleitet. Die Erzeugung einer nichtaxialen Bahn aus der
downhill-Bahn und ihre Zerstörung an der uphill-Bahn lassen sich mit der glei-
chen Normalform und daher auch mit der gleichen uniformen Näherung beschrei-
ben. Geeignete uniforme Näherungen sind bereits in der Literatur angegeben
worden [30, 31]. Ich leite sie im Rahmen des allgemeinen Verfahrens von Ab-
schnitt 6.5 neu her und gewinne sie dadurch in einer Form, die allein aus den
klassischen Wirkungen und semiklassischen Amplituden der beteiligten Bahnen
berechnet werden kann und deshalb einfacher anzuwenden ist als frühere Dar-
stellungen. Danach konstruiere ich eine uniforme Näherung für die Abfolge von
Erzeugung und Vernichtung einer nichtaxialen Bahn. Sie ist von besonderem
Interesse, da sie als erste bekannte uniforme Näherung als Konfigurationsraum
keinen euklidischen Raum, sondern einen Raum mit nichttrivialer Topologie ver-
wendet, in diesem Fall eine Kugeloberfläche. Es ist damit bewiesen, dass solche
Konstruktionen auf topologisch nichttrivialen Räumen möglich sind. Es zeigt
sich jedoch, dass die uniforme Näherung auf der Kugel die einfache closed-orbit-
Theorie erst in wesentlich größerem Abstand von den Bifurkationen reproduziert
als eine uniforme Näherung, die nur eine der beiden Bifurkationen berücksich-
tigt. Diese Beobachtung macht es fraglich, ob die kompliziertere uniforme Nähe-
rung ein semiklassisches Spektrum tatsächlich verbessern kann. Gründe für diese
Schwierigkeit werden diskutiert.

Abschnitt 7.5 wendet sich schließlich der eigentlichen semiklassischen Quan-
tisierung des Wasserstoffatoms im elektrischen Feld zu. Eine sẗorungstheoretische
Abschätzung der Heisenbergzeit und damit der benötigten semiklassischen Si-
gnallänge zeigt, dass es aussichtslos ist, eine Quantisierung ohne Verwendung
uniformer Näherungen zu versuchen. Die Berechnung niedrig aufgelöster semi-
klassischer Spektren bestätigt dies: Durch Bifurkationen verursachte Divergenzen
zerstören die Spektren vollständig lange bevor die Auflösung hoch genug ist, um
einzelne Linien erkennen zu können. Unter Verwendung von uniformen Nähe-
rungen lassen sich längere Bahnen in die Spektren einbeziehen, so dass einzelne
Spektrallinien erkennbar werden. Damit sind die Voraussetzungen für eine An-
wendung der harmonischen Inversion zur hochauflösenden Quantisierung geschaf-
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fen. Tatsächlich lassen sich mit dem Verfahren Spektrallinien mit hoher Genau-
igkeit bestimmen, auch in Bereichen, wo drei oder vier n-Mannigfaltigkeiten sich
überlagern. Damit ist einerseits gezeigt, dass das in Abschnitt 3.4 eingeführte
Verfahren zur Quantisierung nichtskalierender Systeme geeignet ist. Andererseits
ist es erstmals gelungen, uniforme Näherungen zur semiklassischen Bestimmung
einzelner Energieeigenwerte heranzuziehen.

Insgesamt konnten in dieser Arbeit sowohl bei der Beschreibung der klassi-
schen geschlossenen Bahnen des Wasserstoffatoms in gekreuzten elektrischen und
magnetischen Feldern als auch bei seiner semiklassischen Behandlung wesentliche
Fortschritte erzielt werden. Auf der Seite der klassischen Mechanik wurde eine
Bifurkationstheorie für geschlossene Bahnen entwickelt, und es wurden die gene-
rischen Bifurkationen der Kodimension eins identifiziert. Es wurden dann eine
Reihe unterschiedlicher Bifurkationsszenarien beschrieben, die sich aus den ele-
mentaren Bifurkationen zusammensetzen, und es wurde ein Klassifikationsschema
für geschlossene Bahnen vorgeschlagen, das für nicht zu starke elektrische Felder
anwendbar ist.

Erstmals gelang, wenn auch mit geringer Genauigkeit, eine semiklassische
Quantisierung des Wasserstoffatoms in gekreuzten Feldern. Als Gründe, die ei-
ne Steigerung der Genauigkeit verhinderten, wurden einerseits die Schwierigkeit
identifiziert, eine vollständige Liste geschlossener Bahnen zu erhalten, anderer-
seits, und wichtiger, die Allgegenwart von Bifurkationen, die das semiklassische
Spektrum entstellen. Sie erzwingen die Einbeziehung uniformer Näherungen in
das Quantisierungsverfahren.

Das Verfahren der semiklassischen Quantisierung durch harmonische Inver-
sion wurde so verallgemeinert, dass es sowohl die Quantisierung nichtskalierender
Systeme als auch die Berücksichtigung uniformer Näherungen gestattet. Das
Verfahren wurde am Beispiel des Wasserstoffatoms im elektrischen Feld demon-
striert. Hier gelang die Berechnung eines semiklassischen Spektrums bei konstan-
ter äußerer Feldstärke in einem Spektralbereich, in dem die closed-orbit-Theorie
ohne uniforme Näherungen wegen der Vielzahl von Bifurkationen keine brauch-
baren Ergebnisse mehr liefern könnte. Damit ist gezeigt, dass die Technik der
harmonischen Inversion nunmehr ein wirklich universelles Quantisierungsverfah-
ren darstellt, das im Rahmen der closed-orbit- oder der periodic-orbit-Theorie zur
semiklassischen Quantisierung beliebiger Systeme eingesetzt werden kann, da es
keine speziellen Voraussetzungen an die zu Grunde liegende klassische Dynamik
mehr enthält.

Wegen der hohen Aktualität des Themas wurde ein Teil der Ergebnisse dieser
Arbeit vorveröffentlicht [32].
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• PD Dr. Jörg Main für die hervorragende Betreuung und dafür, dass er im-
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