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Abstract
With increasing energy the diamagnetic hydrogen atom undergoes a transition
from regular to chaotic classical dynamics, and the closed orbits pass
through various cascades of bifurcations. Closed orbit theory allows for
the semiclassical calculation of photoabsorption spectra of the diamagnetic
hydrogen atom. However, at the bifurcations the closed orbit contributions
diverge. The singularities can be removed with the help of uniform
semiclassical approximations which are constructed over a wide energy range
for different types of codimension one and two catastrophes. Using the
uniform approximations and applying the high-resolution harmonic inversion
method we calculate fully resolved semiclassical photoabsorption spectra,
i.e., individual eigenenergies and transition matrix elements at laboratory
magnetic field strengths, and compare them with the results of exact quantum
calculations.

1. Introduction

Rydberg atoms in a magnetic field have become prototype examples of a quantum system with
an underlying classical dynamics changing from regular to chaotic motion with increasing
excitation energy [1–3]. The Garton–Tomkins resonances originally found in barium atoms [4]
and similar types of experimentally observed long-range modulations [5–8] can be associated
with classical closed orbits starting at and returning to the nucleus. A deeper quantitative
analysis and interpretation of these features is possible within semiclassical theories, such as
periodic orbit theory [9, 10] and, as a variant for the photoabsorption of atomic systems, closed
orbit theory [11, 12]. In these theories, either the density of states or atomic photoabsorption
spectra, as functions of energy, are given as superpositions of a smoothly varying part and
sinusoidal modulations, whose frequencies, amplitudes, and phases are given in terms of the
classical parameters of the orbits.
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While closed orbit theory has been successfully applied to the interpretation of quantum
spectra in terms of the closed orbits of the underlying classical system [13–16], the inverse
procedure, i.e., the semiclassical calculation of the energies and transition strengths of
individual eigenstates, is much more challenging for the following reasons: firstly, closed
orbit theory formally requires the knowledge of the infinite set of all closed orbits, which is
impossible to obtain for nonintegrable systems where the orbits must be searched numerically.
Secondly, in both periodic orbit and closed orbit theory the infinite sum over all orbit
contributions suffers from fundamental convergence problems, and, thirdly, in generic systems
the orbits undergo bifurcations when the energy is varied, and the contributions of isolated
orbits exhibit unphysical singularities at these bifurcation points.

Substantial progress has already been achieved to overcome these problems separately:
on the one hand, the bifurcations of closed and periodic orbits of the diamagnetic hydrogen
atom have been investigated in [17–19] and the divergences of isolated orbit contributions
at bifurcations have been removed with the help of uniform semiclassical approximations
[20–23] for various types of bifurcations of codimension one and two [24–27]. On the other
hand, the harmonic inversion technique based on high-resolution signal processing has been
introduced as a method for semiclassical quantization of generic systems [28–30]. This
method allows one to extract discrete eigenenergies and matrix elements from a finite set
of classical orbits, and thereby circumvents the convergence problems of the infinite sums
in closed orbit or periodic orbit theory. In its original form it was applied to spectra of the
diamagnetic hydrogen atom at constant scaled energy [31, 32] where the need to account
for the effects of bifurcations does not arise. A semiclassical quantization with bifurcating
orbits that merges these independent strands of research has only recently been achieved for
an integrable atomic system, namely the hydrogen atom in an electric field [33, 34]. Energy
dependent photoabsorption Stark spectra have been obtained by considering the bifurcations
of the ‘uphill’ and ‘downhill’ orbit parallel and antiparallel to the direction of the external
electric field.

In this paper we demonstrate that the semiclassical quantization with bifurcating orbits can
be successfully applied to a more challenging system, namely the hydrogen atom in a magnetic
field, where the classical equations of motion are nonseparable and the dynamics undergoes a
transition from regular to chaotic dynamics with increasing energy. The bifurcation scenarios
encountered there are much more complicated than those in the hydrogen atom in an electric
field, and different types of catastrophes with codimension one and two must be used to remove
the divergences at the bifurcations.

Although the numerical effort for the calculation of the semiclassical photoabsorption
spectrum of the diamagnetic hydrogen atom is much higher than that for the corresponding
exact quantum computations, the results of this paper are of fundamental interest for the
development, understanding and practical applications of semiclassical theories. As Einstein
[35] pointed out as early as 1917, the ‘old’ quantum theory based on the Bohr–Sommerfeld
quantization rules is doomed to failure when applied to nonintegrable systems. About ninety
years later we have now succeeded in obtaining the high-resolution photoabsorption spectra
of a nontrivial atomic system with mixed regular-chaotic dynamics semiclassically from
first principles. The necessary ingredients are closed orbit theory, uniform semiclassical
approximations at bifurcations and the harmonic inversion method.

The paper is organized as follows. In section 2 the classical dynamics of the hydrogen atom
in a magnetic field and various types of closed orbit bifurcations are discussed. In section 3
closed orbit theory is introduced and the uniform approximations at bifurcations of closed
orbits are constructed. Semiclassical high-resolution photoabsorption spectra with individual
eigenenergies and transition matrix elements are obtained by application of the harmonic
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inversion method in section 4 and are compared with exact quantum spectra. Concluding
remarks are given in section 5.

2. Classical dynamics and closed orbit bifurcations

The classical dynamics of the diamagnetic Kepler problem has already been discussed
extensively in the literature (for reviews see, e.g., [1–3]). Here we briefly recapitulate the
essentials which are necessary to what follows. The Hamiltonian in atomic units (with the
magnetic field B = Bez along the z-axis, γ ≡ B/(2.35 × 105 T), and angular momentum
component Lz = 0) reads

H = 1

2
p2 − 1

r
+

1

8
γ 2(x2 + y2) = E, (1)

where E is the energy. Using semiparabolic coordinates µ = √
r + z, ν = √

r − z the
Hamiltonian (1) can be transformed to

h = 1
2

(
p2

µ + p2
ν

) − E(µ2 + ν2) + 1
8γ 2µ2ν2(µ2 + ν2) = 2. (2)

Note that Hamilton’s equations of motion derived from (2) are free of singularities at
the Coulomb centre. The Hamiltonian (1) is invariant under a reflection in the xy-plane
perpendicular to the magnetic field. As a consequence, all orbits that are not in that plane
occur in symmetric pairs. The closed orbits leave the nucleus (r = 0) with an initial angle
ϑi to the z-axis and return to the origin with final angle ϑf after time period T. The stability
properties of the closed orbits are given in terms of the 2 × 2 monodromy matrix M, which
linearly maps local deviations (δq, δp) of the starting point in the directions perpendicular to
the orbit in coordinate and momentum space onto local deviations of the final point:(

δq(T )

δp(T )

)
= M

(
δq(0)

δp(0)

)
=

(
m11 m12

m21 m22

) (
δq(0)

δp(0)

)
. (3)

Closed orbits bifurcate when the element m12 of the monodromy matrix vanishes. (Note that
a different condition det(M − 1) = 0 is valid for periodic orbit bifurcations.)

The classical dynamics does not depend on the energy E and magnetic field strength γ

separately. Instead, the scaled Hamiltonian H̃ = Hγ −2/3 is independent of γ if it is expressed
in terms of the scaled semiparabolic coordinates µ̃ = γ 1/3µ and ν̃ = γ 1/3ν, so that the scaled
energy Ẽ = Eγ −2/3 is the only control parameter. The time and classical action scale as
t̃ = tγ and s̃ = sγ 1/3, respectively, and the matrix element m12 of the monodromy matrix M
in equation (3), which is important in closed orbit theory, scales as m̃12 = m12γ

1/3.
In the limit of infinitely negative energy (E → −∞) only two closed orbits parallel

and perpendicular to the magnetic field axis exist. Their multiple repetitions are called basic
vibrators Vµ and rotators Rµ, respectively [6, 7], where the index µ gives the number of
repetitions. When the energy is increased, the basic vibrators and rotators undergo cascades
of bifurcations where new closed orbits V ν

µ and Rν
µ are created in a systematic way (see

sections 2.1 and 2.2 below). These orbits can run through further bifurcations as discussed in
section 2.3. Furthermore, new closed orbits which are not directly related to the bifurcation
tree of the basic vibrators and rotators are created ‘out of nowhere’ by tangent bifurcations.
With increasing energy a transition from nearly regular to chaotic phase space takes place,
along with a rapid proliferation of closed orbits and thus the semiclassical quantization with
bifurcating orbits becomes more and more challenging with growing energy.
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Figure 1. Periods of (a) the basic vibrators Vµ and (b) the basic rotators Rµ. The bifurcations are
marked by crosses, some of them are labelled by the symbols V ν

µ or Rν
µ of the bifurcating closed

orbits. The periods of the bifurcating orbits are not shown to keep the figure concise.

2.1. Bifurcations of the parallel orbit

With increasing energy each repetition Vµ of the parallel orbit undergoes an infinite sequence
of bifurcations with an accumulation point at the field free ionization threshold E = 0.
Individual bifurcations are counted by integer numbers ν. The bifurcations of the parallel
orbit are illustrated in figure 1(a), where the periods of the basic vibrators Vµ are plotted as
functions of the scaled energy Ẽ. At the bifurcation points new orbits called V ν

µ [6, 7] are
created. The bifurcation points are marked by crosses in figure 1(a), and some of them are
labelled by the symbols V ν

µ of the bifurcating closed orbits. The periods of the bifurcating
orbits V ν

µ as functions of the scaled energy are not shown to keep the figure concise. From
figure 1 it becomes evident that bifurcations occur rather frequently in energy, and the correct
handling of bifurcations is of crucial importance for the semiclassical quantization of this
system.
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Figure 2. Closed orbit parameters for the pitchfork bifurcation of the orbits V4 and V 1
4 . Solid and

dashed lines mark the real and ghost orbits, respectively.

The bifurcations of the parallel orbit of the diamagnetic hydrogen atom resemble those
of the ‘uphill’ and ‘downhill’ orbit of the hydrogen atom in an electric field [33, 34, 36].
The system is rotationally symmetric around the parallel (axial) orbit, and a bundle of three-
dimensional non-axial orbits collide with the axial orbit in a pitchfork bifurcation. The
non-axial orbits are real orbits or complex ‘ghost’ orbits in the complex continuation of the
phase space when the value of E is above or below the bifurcation energy, respectively. As
an example, the bifurcation scenario of the orbits V4 and V 1

4 is illustrated in figure 2. The
difference �S̃/2π = (S̃ax − S̃non)/2π between the scaled actions of the axial (ax) and the
non-axial (non) orbit and the element m̃12 of the scaled monodromy matrix are shown as
functions of the scaled energy. The solid and dashed lines refer to the real and ghost orbits,
respectively. The approximately linear dependence of m̃12 on the energy and the quadratic
behaviour of �S̃ around the bifurcation point is typical of pitchfork bifurcations. For the ghost
orbits the initial angle ϑi (not shown in figure 2) is purely imaginary. The classical action
and monodromy matrix, however, are real valued. Note that the closed orbit parameters of
both the real and ghost orbits are required for the construction of the uniform semiclassical
approximations in section 3.
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Figure 3. Closed orbit parameters for the bifurcation scenario where the orbit R1
3 is created from

R3. A sequence of a tangent bifurcation where only ghost orbits participate and a nearby pitchfork
bifurcation is the typical scenario for all bifurcations of the perpendicular orbit at scaled energies
Ẽ < −0.418. Real and ghost orbits are marked by solid and dashed lines, respectively.

2.2. Bifurcations of the perpendicular orbit

The multiple repetitions of the orbit perpendicular to the magnetic field, i.e., the basic rotators
Rµ also undergo a sequence of bifurcations, where new closed orbits Rν

µ are created [6, 7].
Contrary to the bifurcations of the basic vibrators, the number of bifurcations of a rotator is
finite. The integer ν that identifies the bifurcations is limited by ν < µ. An overview of the
bifurcations of the perpendicular orbit is given in figure 1(b), where the bifurcation points are
marked by crosses, with some of them labelled by the symbols Rν

µ.
The bifurcations of the basic rotators have been investigated in [17–19, 24] and turn out

to be much more subtle than those of the basic vibrators. The scenario is always a sequence
of a tangent and a pitchfork bifurcation which occur at two nearby bifurcation energies. As
an example we discuss the creation of the closed orbit R1

3 in a bifurcation out of the third
repetition of the basic rotator R3. The closed orbit parameters are presented in figure 3, which
shows the energy dependence of the action difference �S̃/2π with the scaled action of the
orbit R3 taken as the reference action, and the element m̃12 of the scaled monodromy matrix.
Real and complex ‘ghost’ orbits are marked by solid and dashed lines, respectively. The real
closed orbits R3 and R1

3 collide in a pitchfork bifurcation at scaled energy Ẽ = −0.48284.
Below that bifurcation energy a ghost orbit in the complex phase space, albeit with real action
and monodromy matrix, does exist. This orbit participates in a tangent bifurcation at scaled
energy Ẽ = −0.48477. Unlike a conventional tangent bifurcation, where two real orbits are
created out of ghost orbit predecessors [37], the tangent bifurcation shown in figure 3 possesses
the peculiar property that all participating orbits are complex ghosts. One ghost orbit with
complex action and monodromy matrix and its complex conjugate companion bifurcate at
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Ẽ = −0.48477 into two genuinely different ghost orbits with real actions and monodromy
matrices. The significance of ghost orbit bifurcations in semiclassical spectra has already been
demonstrated in [26, 27]. The closed orbit parameters, including those of the complex ghosts,
are required for the construction of uniform semiclassical approximations in section 3.

A systematic survey of the bifurcations of the basic rotators reveals that the bifurcation
scenario with the ghost orbit tangent bifurcation as shown in figure 3 is restricted to bifurcations
of the basic rotators at scaled energies Ẽ < −0.418 [38]. At higher energies conventional
tangent bifurcations are found instead of ghost orbit bifurcations. Examples are the creation
of orbits R1

2 at Ẽ ≈ −0.317 [24] or R2
3 at Ẽ ≈ −0.209.

2.3. Bifurcations of orbits V ν
µ and Rν

µ

After being created, the vibrators V ν
µ and rotators Rν

µ can themselves undergo further
bifurcations with increasing energy. These are pitchfork bifurcations, where a pair of
asymmetric orbits (with different initial and final angles, ϑi �= ϑf ) separate from a central
symmetric orbit with ϑi = ϑf or ϑi = π − ϑf , which is real below and above the bifurcation.
On the two asymmetric orbits the electron follows the same trajectory in different directions,
i.e., the final angle of one orbit is the initial angle of the other orbit and vice versa. Below
the bifurcation point the asymmetric orbits become a pair of complex conjugate ghost orbits.
Again the electron follows the same trajectory in different directions and therefore must have
real actions and monodromy matrices. For illustration the closed orbit parameters of the first
pitchfork bifurcation of the orbit V 2

14 at Ẽ = −0.514 are presented in figure 4. A typical feature
of the pitchfork bifurcations is the nearly linear dependence of the monodromy matrix element
m̃12 and the nearly quadratic behaviour of the action difference �S̃ around the bifurcation
energy. For pitchfork bifurcations of vibrators V ν

µ the action of the asymmetric orbits exceeds
the action of the symmetric orbit. Pitchfork bifurcations of the rotators Rν

µ show the opposite
behaviour, i.e., the action of the symmetric orbit Rν

µ exceeds the action of the newly created
asymmetric orbits.

The bifurcations discussed so far are sufficient to describe the complete bifurcation tree
of all closed orbits at scaled energies Ẽ < −0.5 and with recurrence times T̃ /2π < 12.
However, at higher energies more types of bifurcations exist, e.g., new closed orbits can be
created in tangent bifurcations (without an accompanying pitchfork bifurcation as for the
bifurcations of the perpendicular orbit discussed in section 2.2). The simplest of these orbits,
called X1 in [6, 7, 24], is created at the scaled energy Ẽ = −0.115 442 16. As the calculations
of the semiclassical photoabsorption spectra in section 4 are restricted to energies Ẽ < −0.5
we need not discuss the tangent bifurcations and the corresponding uniform semiclassical
approximations of such orbits in more detail.

3. Closed orbit theory and uniform approximations

Closed orbit theory [11, 12] provides a semiclassical approximation to photoabsorption spectra
of atoms in external fields, where the electron is excited from a low-lying initial state |�i〉
to a final Rydberg state |�n〉. It is convenient to introduce the quantum mechanical response
function

gqm(E) = − 1

π
〈�i |DG+

ED|�i〉 = − 1

π

∑
n

|〈�i |D|�n〉|2
E − En + iε

(4)
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Figure 4. Closed orbit parameters for the pitchfork bifurcation of the vibrator V 2
14 at Ẽ = −0.514.

The real asymmetric orbit is labelled V 2∗
14 . The predecessor ghost orbit is marked by dashed lines.

with D the dipole operator, En the eigenenergy of the eigenstate |�n〉, and G+
E the retarded

Green’s function. From the response function (4) relevant physical data such as the oscillator
strength

f (E) = 2(E − Ei) Im gqm(E) (5)

are readily obtained. The semiclassical approximation to the exact quantum response function
(4) is given by closed orbit theory as a sum of a smooth background term and an oscillatory
part

gosc(E) =
∑

co

Aco(E) ei(Sco(E)− π
2 µco), (6)

where the sum is to be taken over all closed orbits (co) starting at and returning to the nucleus.
Sco and µco are the classical action and Maslov index of the closed orbit, respectively. The
amplitudes Aco depend on the symmetry of the orbits and read

Anon
co = 2(2π)3/2

√
sin ϑi sin ϑf

|m12| Y(ϑi)Y(ϑf ) ei π
4 (7)

for non-axial closed orbits, which in the three-dimensional coordinate space form a rotationally
invariant family of orbits around the field axis, and

Aax
co = 4π

|m12|Y(ϑi)Y(ϑf ) (8)
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for axial orbits [39, 13], i.e., the basic vibrators parallel to the magnetic field.
In equations (7) and (8), ϑi and ϑf are the initial and final angle and m12 is an element
of the monodromy matrix of the closed orbit. Note that these parameters depend on the
energy E. The functions Y(ϑ) characterize the initial state |�i〉 and the polarization of the
dipole transition and are linear combinations of spherical harmonics Ylm(ϑ, 0). The closed
orbit amplitudes (7) and (8) are valid in integrable as well as chaotic regimes. By contrast,
the trace formulae of periodic orbit theory are different for integrable [40] and chaotic [9]
systems. However, the closed orbits must be isolated, i.e., equations (7) and (8) fail near
bifurcations where different orbits approach each other and eventually collide. The element
m12 of the monodromy matrix vanishes at bifurcations and the semiclassical amplitudes Aco

of the isolated closed orbit contributions suffer from unphysical singularities.
To obtain a smooth contribution to the semiclassical response function gosc(E) where

closed orbits bifurcate, uniform approximations are needed. Their construction requires a
detailed description of the bifurcation scenario. In the language of catastrophe theory [41,
42], this can be achieved in terms of normal forms whose stationary points correspond to
the classical closed orbits [24, 43]. The codimension of the bifurcation scenario coincides
with the codimension of its normal form. For a generic bifurcation, it is at most the
number of external parameters, which is one in the case of the diamagnetic Kepler problem.
In this system two types of generic bifurcations exist: tangent bifurcations and pitchfork
bifurcations. They can be described by the fold and the symmetric cusp, respectively. More
complicated bifurcation scenarios are composed of several generic bifurcations and modelled
by catastrophes of higher codimension. If the individual bifurcations are closely spaced, it
is important to construct a uniform approximation that describes them collectively. Various
uniform semiclassical approximations have already been constructed for the hydrogen atom
in an electric [33, 34, 44, 45] and a magnetic [24, 25] field.

As a starting point for catastrophes of corank one we consider the ansatz

gosc
uni (E) =

∫
p(t) ei	a(t) dt ei(S0− π

2 ν0), (9)

where 	a(t) is the normal form of the catastrophe depending on the parameters a =
(a1, a2, . . . , ak) with k being the codimension. The uniform approximation (9) is supposed
to reproduce the closed orbit sum of all orbits participating in the bifurcation scenario if the
distance from the bifurcation is large. S0 is an energy-dependent reference action, e.g., the
action of a central closed orbit. The integer ν0 and the function p(t) must be chosen to
asymptotically provide the correct phase and amplitude of the uniform approximation. The
classical actions of the closed orbits contributing to the bifurcation scenario are related to
the stationary values of the normal form 	a(t). To determine the parameters of the normal
form 	a(t) and the amplitude function p(t) we use the asymptotic expressions of the uniform
approximation (9) far away from the bifurcations, where the integral can be evaluated in
stationary phase approximation. The stationary phase (sp) method applied to equation (9)
yields

gosc
uni (E)

sp≈
∑

n

√
2π ip(tn)√|	′′(tn)|

e−i π
2 (ν0+νn) ei(S0+	(tn)), (10)

where the tn are the stationary points of 	a(t). The constant integer ν0 is given by the Maslov
indices of the closed orbits, which change at the bifurcations, i.e., µn = ν0 + νn, with

νn =
{

1, 	′′
a(tn) < 0,

0, otherwise.
(11)
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The sum over the stationary points in equation (10) is identified with the sum (6) over the
closed orbits colliding in the bifurcation scenario described by the normal form 	a(t). From
the comparison of the two equations (6) and (10) we obtain the conditions

S0 + 	(tn) = Sn (12)

and √
2π ip(tn)√|	′′(tn)|

= An. (13)

Equations (12) and (13) are valid not only for real orbits but hold also for complex ghost orbits
with the slight modifications [46] that |m12| and |	′′(tn)| are replaced with sign(Re m12)m12

and sign(Re 	′′(tn))	′′(tn), respectively. These equations are now used to determine, from
the numerically calculated closed orbit parameters Sn and An, the parameters of the normal
form 	a(t) and the amplitude functions p(t) for various types of catastrophes. The functions
	a(t) and p(t) are then inserted in equation (9) to obtain the uniform approximations. In
the following we discuss the butterfly catastrophe related to bifurcations of the perpendicular
orbit, the symmetric cusp catastrophe related to bifurcations of the rotators and vibrators and
the uniform approximations for bifurcations of the parallel orbit.

3.1. Uniform approximations for bifurcations of the perpendicular orbit

The bifurcation scenarios of the perpendicular orbit discussed in section 2.2 are described
by the codimension-2 symmetric butterfly catastrophe [24]. A local approximation, which
removes the singularities at the bifurcation energies but is not valid at energies far away from
the bifurcation points has been presented in [24]. Here a uniform approximation is derived
that removes the unphysical divergences at the bifurcations and agrees asymptotically with
the closed orbit sum of the isolated orbits.

The normal form of the symmetric butterfly catastrophe reads

	(t) = −(t6 + xt4 + yt2), (14)

where the two real unfolding parameters x and y depend on the energy and magnetic field
strength and must be determined from equation (12). To that end, the stationary points
of 	(t) at

t0 = 0, t1,2 = ±
√

(−x + δ)/3, t3,4 = ±
√

(−x − δ)/3, (15)

with δ ≡
√

x2 − 3y are identified with the (real or complex) closed orbits contributing to the
bifurcation scenario: real stationary points are real orbits, purely imaginary stationary points
are ghost orbits with real action, and complex points are ghost orbits with complex action. The
trivial stationary point t0 is the perpendicular orbit that is real on both sides of the bifurcation.
The nontrivial stationary points are real, imaginary or general complex numbers in various
regions of the parameters x and y as illustrated in figure 5. The lines y = 0 and y = x2/3
divide the (x, y)-plane into different domains and characterize the parameter values where
pitchfork or tangent bifurcations, respectively, of the closed orbits occur. The stationary points
t1···4 are imaginary in region A, complex in region B and real in region C. In region D, t1,2 are
real whereas t3,4 are imaginary.

These observations translate into the following bifurcation scenarios: in region D the
stationary points t1,2 represent the real orbits Rν

µ. If x > 0, as y is increased these orbits
collide with the perpendicular orbit (t0) at y = 0 and become imaginary, corresponding to
ghost orbits with real action, in region A. At y = x2/3 they collide with t3,4, and finally in
region B the stationary points t1···4 represent a quadruple of ghost orbits with complex action.
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This scenario with unfolding parameter x > 0 is observed for bifurcations at scaled energies
Ẽ < −0.418. The scenario for x < 0 is similar, the difference being that all stationary points
and corresponding closed orbits are real in region C. This scenario has been observed at scaled
energies Ẽ > −0.418 [38]. The stationary values of the normal form 	(t) in equation (14)
and the second derivative 	′′(t) as functions of the unfolding parameter y are presented in
figure 6. Evidently, figure 6 qualitatively agrees with the closed orbit parameters �S̃ and m̃12

shown in figure 3.
The unfolding parameters x and y can now be determined from the actions of the colliding

orbits using equation (12). When S0 is identified with the action of the perpendicular orbit,
we obtain



S230 T Fabčič et al

	(t1) ≡ 	1 = − 2
27 (x − δ)δ2 + 1

9xy = S1 − S0 = �S1, (16)

	(t3) ≡ 	3 = − 2
27 (x + δ)δ2 + 1

9xy = S3 − S0 = �S3, (17)

where S1 and S3 denote the actions of the corresponding orbits described above. The sum and
the difference of equations (16) and (17) yields

�S1 − �S3 = 	1 − 	3 = 4
27δ3, (18)

�S1 + �S3 = 	1 + 	3 = 2
27 (x3 − 3δ2x). (19)

Now

δ ≡
√

x2 − 3y = 3 3
√

(	1 − 	3)/4 (20)

follows from equation (18), and the unfolding parameter x is obtained from the solution of the
cubic equation (19) using Cardano’s formula as [47]

x = λ
3

√
27
4 [(	1 + 	3) + 2

√
	1	3] + λ∗ 3

√
27
4 [(	1 + 	3) − 2

√
	1	3], (21)

with λ ∈ {1, (−1 ± i
√

3)/2}. The parameter x becomes a smooth function of the energy with
the choice

λ =
{

1, Ẽ < Ẽc,

−(1 + i
√

3)/2, Ẽ > Ẽc,
(22)

where Ẽc is the bifurcation energy of the pitchfork bifurcation, i.e. 	1 = 0. Finally the
unfolding parameter y is given as y = (x2 − δ2)/3.

The next step is to construct the function p(t) in the uniform approximation (9) in such a
way that equation (13) is valid at the stationary points tn of the normal form 	(t). There is
considerable freedom in doing so, and one will strive for an ansatz for p(t) that is as simple as
possible. In all cases discussed in the literature so far (e.g., [43, 45, 46, 48]), it has been found
sufficiently accurate to choose p(t) to be a low-order polynomial with as many undetermined
coefficients as there are conditions imposed by (13). For the bifurcation scenario described by
(14), however, we find that a polynomial ansatz for p(t) yields a uniform approximation that
in the bifurcation region differs from the expected results and assumes the correct asymptotic
behaviour only at huge distances from the bifurcation. This scenario thus calls for a more
thorough analysis of the amplitude function.

Because contributions to the integral in the uniform approximation (9) arise chiefly in a
neighbourhood of the origin, where the stationary points of the normal form 	(t) are located,
the amplitude function p(t) need only be accurate in that region. A polynomial ansatz is
justified if p(t) is nearly constant in the region of interest, so that the t-dependent terms are a
small correction to the constant term and high-order terms that are not included in the ansatz
are negligible. A comparison of figures 3 and 6 reveals that the energy-dependence of the
monodromy matrix element m12 is well described by the second derivative of the normal form.
To satisfy (13), it remains for p(t) to describe the energy dependence of the amplitude through
the angles ϑi and ϑf . These considerations suggest the ansatz

p(t) = (at4 + bt2 + c) sin ϑ(t)Y2(ϑ(t)), (23)

with the same angular function Y(ϑ) as in equation (7). The mapping ϑ(t) from the normal
form coordinate t to the angle ϑ is in turn modelled by the polynomial ansatz

ϑ(t) = π

2
+ vt + ut3, (24)
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with the coefficients u and v chosen such that ϑ(t) maps the stationary points of the normal form
(14) onto the numerically determined angles ϑi and ϑf . (Note that ϑi = ϑf or ϑi = π − ϑf

for all orbits involved.)
Inserting equation (23) into (13), we obtain the three coefficients a, b, c in (23) as

a =
(

3A∗
0

y

√
|y|
2π

− 3x

2yδ

√
2

3π
[A∗

1

√
η1δ(x − δ) − A∗

3

√
η3δ(x + δ)]

− 3

2y

√
2

3π
[A∗

1

√
η1δ(x − δ) + A∗

3

√
η1δ(x + δ)]

)
(1 − i), (25)

b =
(

xA∗
0

y

√
2
|y|
π

− x

y

√
2

3π
[A∗

1

√
η1δ(x − δ) + A∗

3

√
η3δ(x + δ)]

−
(

3

2δ
+

δ

y

) √
2

3π
[A∗

1

√
η1δ(x − δ) − A∗

3

√
η3δ(x + δ)]

)
(1 − i), (26)

c = A∗
0

√
|y|
2π

(1 − i), (27)

where A∗
n = An/(

√
sin ϑi sin ϑfY(ϑi)Y(ϑf )) denotes the semiclassical amplitudes in

equation (7) without the angular functions, x, y and δ are the parameters as introduced
above and ηn = sign(Re 	′′(tn)). Note that all coefficients in the normal form 	(t) and the
amplitude function p(t) are now given as explicit functions of the closed orbit parameters of
the real and complex (ghost) orbits involved in the bifurcation scenario.

With the normal form 	(t) and the amplitude function p(t) at hand, it is possible to
evaluate the uniform approximation (9). The integral must be solved numerically. For
t → ±∞ the integrand is highly oscillating and must therefore be regularized by multiplication
with a factor of the form exp(−εtm) with the small ε > 0 and the power m > 0 chosen
appropriately. As an example figure 7 presents the absolute value of the semiclassical response
function for the orbits R6, R

1
6 , and the ghost orbits associated in the bifurcation scenario at

magnetic field strength γ = 2×10−5. The isolated closed orbit sum (dashed line) suffers from
the unphysical divergence around Ẽ = −0.78. By contrast, the uniform approximation (solid
line) is a smooth function at all energies. The modulations of the amplitude at Ẽ � −0.7
are caused by the interference of the real closed orbits R6 and R1

6. Note that the uniform
approximation at large distances from the bifurcation energies asymptotically agrees with the
isolated closed orbit sum.

3.2. Uniform approximations for bifurcations of the rotators and vibrators

The pitchfork bifurcations of the rotators Rν
µ and vibrators V ν

µ discussed in section 2.3 are
described by the normal form of the symmetrized cusp catastrophe

	a(t) = 1
4 t4 − 1

2at2, (28)

which has one unfolding parameter a. The stationary points at t = 0 and t = ±√
a

correspond to the symmetric (sym) and asymmetric (asym) orbits, respectively. The normal
form parameter

a = ±2
√

Ssym − Sasym (29)



S232 T Fabčič et al
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Figure 7. Absolute value of the semiclassical response function for the bifurcation scenario of
orbits R6 and R1

6 at magnetic field strength γ = 2 × 10−5. Dashed line: isolated closed orbit sum;
solid line: uniform approximation.

is a function of the actions of the closed orbits involved. It has to be chosen positive if the
asymmetric orbits are real, and negative otherwise.

Due to symmetry properties of the orbits the amplitude function p(t) in equation (9) must
be an even function of t. It is sufficient to use a simple polynomial ansatz p(t) = p0 + p2t

2.
The coefficients are obtained as [43]

p0 =
√

|a|
2π

Asym e−i π
4 , (30)

p2 = 1

2a

√
|a|
π

(Aasym −
√

2Asym) e−i π
4 , (31)

with Asym and Aasym the amplitudes of the (isolated) symmetric and asymmetric closed orbits
as defined in equation (7). (Equations (30) and (31) slightly differ from formulae given in
[43] due to a different handling of the Maslov phase in equations (6) and (7).) The uniform
approximation can now be written as

gosc
uni =

∫
p(t) ei	a(t) dt ei(Ssym− π

2 ν0) = (p0I0 + p2I2) ei(Ssym− π
2 ν0) (32)

with the integrals I0 ≡ ∫
exp(i	a(t)) dt and I2 ≡ ∫

t2 exp(i	a(t)) dt . The integrals can be
evaluated analytically in terms of Bessel functions Jν(z) [47] and read [43]

I0 = π

2

√
|a| e−ia2/8

[
eiπ/8J−1/4

(
a2

8

)
+ sign a e−iπ/8J1/4

(
a2

8

)]
, (33)

I2 = iπ
√

|a| e−ia2/8

{(
1

2a
− i

a

4

) [
eiπ/8J−1/4

(
a2

8

)
+ sign a e−iπ/8J1/4

(
a2

8

)]

+
a

8
eiπ/8

[
J−5/4

(
a2

8

)
+ J3/4

(
a2

8

)]
+ sign a e−iπ/8

[
J−3/4

(
a2

8

)
− J5/4

(
a2

8

)]}
. (34)

The normal form (28) and thus the uniform approximation (32) describe the pitchfork
bifurcation when the action of the symmetric orbit is larger than the action of the asymmetric
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orbits in the vicinity of the bifurcation. This is true for the rotators Rν
µ. For the vibrators V ν

µ

the converse is true, i.e., close to the bifurcation the action of the asymmetric orbits exceeds
the action of the symmetric orbit V ν

µ . In this case, called a dual cusp [41], the normal form
	a(t) must be replaced with −	a(t), which changes the sign of the stationary values. The
uniform approximation for the dual cusp is obtained by replacing the integrals I0 and I2 in
equation (32) with its complex conjugate, i.e., gosc

uni = (p0I
∗
0 + p2I

∗
2 ) exp

(
i
(
Ssym − π

2 ν0
))

.

3.3. Uniform approximations for bifurcations of the parallel orbit

In bifurcations of orbits parallel to the external field a rotationally symmetric bundle of
non-axial orbits splits from the axial orbit. This is true for both an external magnetic and
an electric field. The bifurcations of the axial orbits are described by the normal form
	a(t) = 1

4 t4 − 1
2at2 which is formally the symmetric cusp, equation (28), but with the

difference that t is interpreted as a radial coordinate, t =
√

x2 + y2. For the amplitude
function in (9) the ansatz p(t) = p0 +p1(t

2 −a) is used [34]. The stationary points at t = √
a

describing the bundle of non-axial orbits lie on a circle with centre at t = 0, which is the
stationary point describing the isolated axial orbit. The parameter a = ±2

√
Sax − Snon is

related to the classical action of the orbits, with positive and negative values of a referring to
real and ghost orbits, respectively.

The bifurcations of the ‘uphill’ and ‘downhill’ orbits parallel and antiparallel to the electric
field axis in the Stark system have already been investigated and a uniform approximation for
the creation or destruction of the non-axial orbits from the axial orbits has been constructed
[44, 45]. The uniform approximation is valid also to describe the bifurcations of the basic
vibrators in a magnetic field and can be written in the concise form [33, 34]

gosc
uni =

[
Anon

1 + i
I (a) +

i

a

(
−|a|Aax +

1 − i√
2π

Anon

)]
ei(Sax− π

2 ν0) (35)

with

I (a) = e−ia2/4

[
1 + i

2
− C

( −a√
2π

)
− iS

( −a√
2π

)]
(36)

given in terms of the Fresnel integrals C(z) and S(z) [47]. (Similar as above equation (35)
slightly differs from the result given in [33, 34] due to a different handling of the Maslov phase
in equations (6)–(8).)

4. High resolution photoabsorption spectra

With the closed orbit theory and the uniform approximations at hand we can now obtain
the semiclassical response function gsc(E) via summation of the closed orbit contributions.
In the vicinity of bifurcations the contributions of isolated orbits must be replaced with the
uniform approximations. The semiclassical photoabsorption spectrum is then readily given
by equation (5) with gqm(E) replaced with its semiclassical analogue. However, the closed
orbit sum diverges when it is extended over all closed orbits. When it is truncated, e.g., by
neglecting orbits with recurrence time T > Tmax, it yields only low resolution spectra. To
obtain high resolution spectra, i.e., discrete eigenenergies En and individual transition matrix
elements dn = |〈�i |D|�n〉|2, we adopt the harmonic inversion method [30] which has been
successfully applied in semiclassical mechanics, either to extract the actions and amplitudes
of classical orbits from quantum spectra [49] or to calculate quantum mechanical quantities
from classical orbits [28, 29, 31, 32]. It has also been demonstrated that harmonic inversion
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is a powerful tool for semiclassical quantization using bifurcating orbits [33, 34]. To keep our
presentation self-contained, we briefly outline the basic ideas.

4.1. The harmonic inversion method

In a first step, both the quantum (4) and the semiclassical response function (6)—the smooth
part can be neglected—are Fourier transformed into time domain. The Fourier integrals are
restricted to the energy window [Emin, Emax] where the closed orbit parameters have been
calculated. The windowed Fourier transforms result in the band-limited time signals

Cqm(t) = − 1

2π2

∫ Emax

Emin

∑
n

dn

E − En + iε
e−iEt dE = i

π

∑
n

dn e−iEnt , (37)

Csc(t) = 1

2π

∫ Emax

Emin

∑
co

Aco(E) eiSco(E) e−iEt dE. (38)

In the quantum signal (37) the sum is restricted to the eigenenergies En in the range
Emin < En < Emax, i.e., only a relatively small number of parameters {En, dn} must be
determined if the energy window is chosen appropriately. In the semiclassical signal (38)
only those closed orbits contribute within a stationary phase approximation whose recurrence
times T are less than the total length Tmax of the time signal. This means that the semiclassical
signal (38) can be constructed if the set of the closed orbits with recurrence times T < Tmax

is known in the energy interval Emin < E < Emax. The semiclassical eigenenergies and
transition matrix elements are now obtained, in the second step, by adjusting the semiclassical
signal (38) to its quantum analogue (37) with the {En, dn} being free adjustable parameters.
The technical details to solve this nonlinear fit problem are given in [50].

The required signal length Tmax to achieve convergence of the harmonic inversion
procedure depends on the mean level spacing �̄(E) in the energy range [Emin, Emax] and
reads Tmax > 4π�̄(E) [30]. The efficiency of the quantization method can be improved by
using a cross-correlated semiclassical recurrence signal [30, 31, 51]. The idea is to use a set
of L independent initial states |�i〉 and to construct the cross-correlated response function

g
qm
ij (E) = − 1

π
〈�i |DG+

ED|�j 〉; i, j = 1, 2, . . . , L. (39)

Application of the windowed Fourier transform as in equations (37) and (38) yields the
quantum L × L cross-correlated time signal

C
qm
ij = i

π

∑
n

binbjn e−iEnt , (40)

with bin = 〈�i |D|�n〉, and its semiclassical analogue

Csc
ij (t) = 1

2π

∫ Emax

Emin

∑
co

Aco,ij (E) eiSco(E) e−iEt dE. (41)

For the various initial states |�i〉 the amplitudes Aco,ij (E) in equation (41) differ by the use of
various angular functionsY(ϑ) in the closed orbit amplitudes (7) [31]. The semiclassical cross-
correlated time signal (41) can be adjusted to its quantum form (40) with the {En, bin} being the
adjustable parameters by an extension of the harmonic inversion method to cross-correlated
time signals [30, 52, 53]. The idea is to identify the cross-correlated recurrence function Csc

ij (t),
which is known on an equidistant time grid t = nτ , with the cross-correlated time signal
Cij (nτ) = (	i | exp(−inτĤeff)|	j) of an effective Hamiltonian Ĥeff with the (not explicitly
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known) states |	i) and |	j). The operator Ĥeff with eigenvalues En is complex symmetric,
and (x|y) denotes a complex symmetric (not Hermitian) inner product. In an appropriate basis
set the problem of extracting the {En, bin} can be reformulated as a generalized eigenvalue
problem where all matrix elements can be expressed in terms of the time signal Cij (nτ).

The advantage of using the cross-correlation approach can be understood based on the
argument that the total amount of independent information contained in the L × L signal is
L(L + 1) multiplied by the length of the signal, while the total number of unknowns {En, bin}
is (L + 1) times the total number of poles En. Therefore the informational content of the
L×L signal per unknown parameter is increased, compared to the case of equation (38), by a
factor of L. This means that the required signal length Tmax = 4π�̄(E) for a one-dimensional
recurrence signal is reduced by about a factor of L for an L × L cross-correlated recurrence
signal.

In section 4.2 we investigate dipole transitions from the initial state |�1〉 = |2p0〉 with
light polarized parallel to the magnetic field axis to final states with magnetic quantum number
m = 0. For this transition the angular function in equation (7) reads [30]

Y1(ϑ) = 1√
2π

27 e−4(4 cos2 ϑ − 1). (42)

Results are obtained by harmonic inversion of a one-dimensional and a 2 × 2 cross-correlated
recurrence signal. For the construction of the 2 × 2 cross-correlated signal we use for
simplicity as a second transition formally an outgoing s-wave, namely D|�2〉 ∝ Y00, and,
thus, Y2(ϑ) = 1.

4.2. Results and discussion

For the semiclassical photoabsorption spectra we calculated all closed orbits with recurrence
times T̃ < T̃ max = 73.5 in the scaled energy range Ẽ ∈ [−1,−0.5] on an equidistant energy
grid with step width �Ẽ = 10−4. The closed orbits have been used to construct low-resolution
photoabsorption spectra by superimposing the semiclassical contributions of the isolated orbits
or, close to bifurcations, the uniform approximations. High-resolution photoabsorption spectra
with individual semiclassical eigenenergies and transition matrix elements are obtained by the
harmonic inversion method as explained in section 4.1.

Figure 8 presents the spectra for the photo excitation of the initial state |2p0〉 of the
hydrogen atom in a magnetic field at field strength B = 11.75 T (γ = 5 × 10−5 au) with
light polarized parallel to the magnetic field axis. The semiclassical spectra in figure 8(a)
and (b) have been obtained by harmonic inversion of a one-dimensional recurrence signal
and a 2 × 2 cross-correlated signal, respectively. In general, both semiclassical spectra are in
good agreement with the quantum mechanical result. A detailed comparison shows that the
cross-correlation technique improves the quality of the semiclassical spectra. Some nearly
degenerate states are not resolved with the one-dimensional signal but are well-reproduced
with the cross-correlation technique. Furthermore, the semiclassical and quantum transition
matrix elements show better agreement in figure 8(b) than in figure 8(a). The eigenenergies
and transition matrix elements of selected states are given in table 1. The transition to the state
at energy E = −1.22796 × 10−3 could not be resolved by harmonic inversion of the single
recurrence signal (indicated by index s) but is well-resolved when using the cross-correlated
signal (see values with index c in table 1).

In figure 9 the magnetic field strength is reduced to B = 4.7 T (γ = 2 × 10−5 au) which
can be achieved easily in experiments. The same closed orbit data as in figure 8 have been
used for the semiclassical calculations. Similar as in figure 8 the semiclassical and quantum
spectra in general are in good agreement, with the cross-correlation technique being even
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Figure 8. Semiclassical (SC) and quantum (QM) photoabsorption spectra of the hydrogen atom in
a magnetic field at field strength B = 11.75 T (γ = 5×10−5 au). Transitions from the initial state
|2p0〉 with light polarized parallel to the magnetic field axis. (a) Semiclassical spectrum obtained
by harmonic inversion of a one-dimensional recurrence signal. (b) Semiclassical spectrum obtained
by harmonic inversion of a 2 × 2 cross-correlated recurrence signal.

Table 1. Selected quantum and semiclassical eigenenergies and transition matrix elements of the
spectra shown in figure 8. The indices s and c refer to semiclassical data obtained by harmonic
inversion of a single (one-dimensional) and a 2×2 cross-correlated recurrence signal, respectively.

103E
qm
n 103Ec

n 103Es
n 104d

qm
n 104dc

n 104ds
n

−1.244 76 −1.244 98 −1.245 13 5.4140 4.6455 4.6925
−1.235 51 −1.235 73 −1.236 46 3.6826 3.2088 2.0851
−1.227 96 −1.228 11 – 2.4321 2.2720 –
−1.221 26 −1.221 30 −1.222 22 2.1269 2.0184 1.1014
−1.212 98 −1.213 04 −1.213 79 2.1333 2.0866 1.5407
−1.202 37 −1.202 28 −1.202 63 1.7233 1.5549 1.4640
−1.189 52 −1.189 37 −1.189 28 0.9899 0.9813 1.0025
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Figure 9. Same as figure 8 but for spectra at laboratory magnetic field strength B = 4.7 T
(γ = 2 × 10−5 au).

more reliable than the harmonic inversion of the one-dimensional recurrence signal. However,
the convergence of the semiclassical spectra at B = 4.7 T is less perfect than at the higher
magnetic field strength B = 11.75 T. The reason becomes evident from the scaling properties
of the condition Tmax > 4π�̄(E) on the required signal length. If the scaled energy Ẽ is
kept constant and the magnetic field strength γ is varied, the mean density of states scales
as �̄γ (E = Ẽγ 2/3) = ˜̄�γ=1(E = Ẽ)γ −4/3 whereas the recurrence time scales as T = T̃ /γ .
Thus, in scaled units the required signal length reads T̃ max > 4π ˜̄�γ −1/3, and becomes larger
as the field strength is decreased. To improve the convergence properties of the harmonic
inversion procedure closed orbits with longer periods are required, i.e, the cut-off limit T̃ max

for the scaled recurrence time must be increased.

5. Conclusion

Almost a century after the postulation of Bohr’s quantization rules for the hydrogen atom and
a decade and a half after the emergence of closed orbit theory [11, 12], we have succeeded



S238 T Fabčič et al

in calculating semiclassically from first principles high-resolution photoabsorption spectra of
the diamagnetic hydrogen atom in the transition regime to chaos. The necessary tools, namely
closed orbit theory, uniform approximations at bifurcations and the harmonic inversion method,
although being known separately, have been combined for the first time to obtain individual
semiclassical eigenenergies and transition matrix elements in that regime.

The various steps can be summarized as follows: we have calculated all closed orbits
in the energy range −1 � Ẽ � −0.5 with recurrence times T̃ /2π � 12. The rotator
orbits Rν

µ are created in a sequence of two bifurcations, namely a pitchfork and a tangent
bifurcation from the orbit perpendicular to the magnetic field axis. This rather complicated
scenario is described by the normal form of the codimension-2 symmetric butterfly catastrophe.
The vibrator orbits V ν

µ are created in pitchfork bifurcations of the parallel orbit. Some of
the symmetric vibrators and rotators undergo further pitchfork bifurcations, where pairs of
asymmetric orbits are created. The pitchfork bifurcations are described by the normal form
of the symmetric cusp catastrophe. For all bifurcations of closed orbits in the selected range
of energies and recurrence times the uniform approximations have been constructed, which
remove the divergences of the isolated orbit contributions. The contributions of the isolated
closed orbits and the uniform approximations around bifurcations have been superimposed
to obtain semiclassical low-resolution photoabsorption spectra, and, via a windowed Fourier
transform, the semiclassical time signal Csc(t). The harmonic inversion method applied to that
signal finally yields the high-resolution spectra with individual semiclassical eigenenergies
and transition matrix elements. The method has been augmented by the cross-correlation
technique to optimize its convergence properties and thus to further improve the quality of the
results. Spectra have been obtained at magnetic field strengths B = 11.75 T and B = 4.7 T
in the energy region −γ 2/3 � E � −0.5γ 2/3. The semiclassical spectra, especially those
obtained with a 2 × 2 cross-correlated recurrence signal, show excellent agreement with the
exact quantum spectra.

The semiclassical calculations can, in principle, be extended to higher energies deep into
the classically chaotic region of the diamagnetic hydrogen atom. However, this means that
additional types of bifurcations and catastrophes must be considered for the construction of
the uniform approximations, and, even worse, the numerical effort increases drastically due
to the exponential proliferation of closed orbits in the chaotic regime. Clearly the objective
of this paper was not to present a semiclassical method which is computationally more efficient
than exact quantum computations (in fact, the opposite is true). Rather, the results are of
fundamental importance as regards the development, understanding and practical applications
of semiclassical theories. These theories have already been successful in the limiting cases of
integrable and purely hyperbolic chaotic systems. We have now closed the gap for systems
with mixed regular-chaotic dynamics.
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