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Closed orbits and their bifurcations in the crossed-field hydrogen atom
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A systematic study of closed classical orbits of the hydrogen atom in crossed electric and magnetic fields is
presented. We develop a local bifurcation theory for closed orbits, which is analogous to the well-known
bifurcation theory for periodic orbits and allows identifying the generic closed-orbit bifurcations of codimen-
sion 1. Several bifurcation scenarios are described in detail. They are shown to have as their constituents the
generic codimension-1 bifurcations, which combine into a rich variety of complicated scenarios. We propose
heuristic criteria for a classification of closed orbits that can serve to systematize the complex set of orbits.
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I. INTRODUCTION

Closed-orbit theory@1,2# has proven to be the key tool t
analyze the photoabsorption spectra of atoms in exte
fields. It interprets spectral oscillations semiclassically
terms of closed orbits of the underlying classical system,
of classical orbits starting at and returning to the nucleus
complete semiclassical description of an atomic spect
therefore requires a sufficiently detailed understanding of
classical closed orbits. In particular, the possible types
closed-orbit bifurcations must be described, so that the g
eration of new closed orbits upon varying the external fi
strengths can be accounted for.

For the hydrogen atom in a magnetic field, the systema
of closed orbits and their bifurcations has been known fo
long time @3–8#. For the hydrogen atom in crossed elect
and magnetic fields, the classical mechanics is much m
complicated because three nonseparable degrees of fre
have to be dealt with. Although a number of closed orb
have been identified in experimental or theoretical quan
spectra@3,9–12#, a systematic study of these orbits and th
bifurcations is still lacking.

Considerable effort has been spent during the last dec
on the study of the classical mechanics of the crossed-
hydrogen atom in the limit of weak external fields@13–17#.
The most important result in the present context is the fi
ing first described in Ref.@14# that among the continuou
infinity of periodic orbits of the unperturbed Kepler proble
there are four orbits that remain periodic even in the prese
of external fields. These fundamental periodic orbits can
regarded as the roots of ‘‘family trees’’ of periodic orbit
More complicated orbits are created out of the fundame
orbits by bifurcations as the field strengths increase.

However, none of the fundamental periodic orbits
closed at the nucleus. Their knowledge therefore does no
in the classification of closed orbits. A first systematic stu
of closed orbits in the crossed-field system and their bifur
tions was performed by Wang and Delos@18#. These authors
presented orderly sequences of bifurcations of planar clo
orbits ~i.e., orbits in the plane perpendicular to the magne
field!, which they interpreted in terms of an integrable mod
Hamiltonian.

In the present paper we undertake a systematic inves
tion of closed orbits and their bifurcations in the crosse
1050-2947/2003/67~6!/063410~15!/$20.00 67 0634
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field hydrogen atom. In Sec. II, the symmetries of the Ham
tonian are briefly reviewed. Section III A presents the gene
framework of a local bifurcation theory of closed orbits, a
Sec. III B describes the generic codimension-1 bifurcatio
A discussion of complex ghost orbits is included in each c
because they are known to play an important role in se
classics@19,20#. In Sec. IV, the closed orbits in the hydroge
atom in a magnetic field are surveyed. Section V then det
the bifurcation scenarios actually observed in the cross
field system. It is shown that the elementary codimensio
bifurcations actually form the building blocks of the bifurc
tion scenarios, but that in many cases complicated scena
consisting of several elementary bifurcations occur. In S
VI, a heuristic classification scheme for the closed orbits
crossed fields is proposed, which is based on the well-kno
classification for the closed orbits in a magnetic field. T
actual semiclassical quantization of the crossed-field hyd
gen atom in the framework of closed-orbit theory, which
based on the results presented here, is described in an ac
panying paper@21#.

II. THE CLASSICAL HAMILTONIAN

Throughout this work, we will assume the magnetic fie
to be directed along thez axis and the electric field to be
directed along thex axis. In atomic units, the Hamiltonian
describing the motion of the atomic electron then reads

H5
1

2
p22

1

r
1

1

2
BLz1

1

8
B2r21Fx, ~1!

wherer 25x21y21z2, r25x21y2, andLz is thez compo-
nent of the angular momentum vector. By virtue of the sc
ing properties of Hamiltonian~1!, the dynamics does no
depend on the energyE and the field strengthsB and F

separately, but only on the scaled energyẼ5B22/3E and the
scaled electric-field strengthF̃5B24/3F. Upon scaling, all
classical quantities are multiplied by suitable powers of
magnetic-field strengthB. In particular, classical action
scale according toS̃5B21/3S. These scaling prescription
will be used throughout this work.

The hydrogen atom in crossed fields does not possess
continuous symmetries, so that, apart from the energy,
constant of the motion exists, and three nonseparable deg
©2003 The American Physical Society10-1
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of freedom have to be dealt with. There are, however, th
discrete symmetry transformations of the crossed-field s
tem, namely,~i! the reflectionZ at the x-y plane, ~ii ! the
combinationT of time reversal and a reflection at thex-z
plane, and~iii ! the combinationC5ZT of the above. We use
the standard polar and azimuthal anglesq andw to describe
the starting and returning directions of a closed orbit. T
effects of the symmetry transformations on these are sum
rized in Table I.

The application of these transformations to a given clo
orbit yields a group of four orbits of equal length, so th
closed orbits occur in quartets. In particular cases, a clo
orbit can be invariant under one of the symmetry transform
tions. In this case, there are only two distinct orbits rela
by symmetry transformations. We will refer to them as aZ,
T, or C doublet, giving the transformation under which th
orbits are invariant. The conditions for the initial and fin
angles that an orbit invariant under any of the transform
tions must satisfy are also given in Table I. In special cas
a closed orbit can be invariant under all three symme
transformations. It then occurs as a singlet.

Among the symmetry transformations, the reflectionZ
plays a special role in that it is a purely geometric transf
mation. There is, therefore, an invariant subspace of
phase space, viz. thex-y plane perpendicular to the magnet
field. This plane is invariant under the dynamics and the
fore forms a subsystem with two degrees of freedom.

In connection with bifurcations of orbits, it is essential f
semiclassical applications to study complex ‘‘ghost’’ orb
along with the real orbits, i.e., to allow coordinates and m
menta to assume complex values. For ghost orbits, ano
reflection symmetry arises, viz. the symmetry with respec
complex conjugation. Since Hamiltonian~1! is real, it is in-
variant under complex conjugation. Therefore, ghost or
always occur in pairs of conjugate orbits.

III. CLOSED-ORBIT BIFURCATION THEORY

A. General theory

The dynamics of the hydrogen atom in a pure magn
field possesses time-reversal invariance if it is restricted
the subspace of vanishing angular momentumLz . An elec-
tron returning to the nucleus will rebound into its direction
incidence and, due to that symmetry, retrace its previous
jectory back to its starting direction. Therefore, any clos
orbit is either periodic itself or it is one-half of a period

TABLE I. The symmetry transformations of the crossed-fie
system: Transformation of initial and final angles and symme
conditions for doublets. Singlets satisfyq i5q f5p/2 and w i

52w f .

Transformation Symmetry conditions
q i w i q f w f

Z p2q i w i p2q f w f q i5q f5
p

2
T q f 2w f q i 2w i q i5q f andw i52w f

C p2q f 2w f p2q i 2w i q i5p2q f andw i52w f
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orbit. Due to the close link between closed orbits and pe
odic orbits, closed-orbit bifurcations can be described in
framework of periodic-orbit bifurcation theory developed b
Mayer @22,8#. In particular, in a magnetic field closed orbi
possess repetitions, so that arbitrarym-tupling bifurcations
are possible.

In the presence of crossed electric and magnetic fields
time-reversal invariance is broken, and no general conn
tion between closed orbits and periodic orbits remains. A
consequence, the techniques of periodic-orbit bifurcat
theory are no longer applicable, and a novel approach to
classification of closed-orbit bifurcations must be found.
this section, a general framework for the discussion
closed-orbit bifurcations will be introduced.

The crucial step in the development of the bifurcati
theory of periodic orbits is the introduction of a Poinca´
surface of section map in the neighborhood of the orbit. T
Poincare´ map describes the dynamics of the degrees of fr
dom transverse to the orbit, and the orbit bifurcates when
transverse dynamics becomes resonant with the motion a
the orbit.

For periodic orbits, a Poincare´ map is specified by fixing
a surface of section in phase space which is transverse to
orbit. For a pointP on the surface of section, the trajecto
starting atP is followed until it intersects the surface o
section again. This intersection point is defined to be
image ofP under the Poincare´ map. The periodic orbit itself
returns to its starting point, so that it appears as a fixed p
of the Poincare´ map.

This prescription is not directly applicable to closed orb
because they do not return to their starting point in ph
space. Therefore, a trajectory starting on the surface of
tion might not intersect the surface again. To arrive a
meaningful definition of a Poincare´ map, one must use two
surfaces of section: the first transverse to the initial direct
of the orbit, and the second transverse to its final direction
trajectory starting in the neighborhood of the closed orbit
the initial surface of sectionS i will then have an intersection
with the final sectionS f , so that a Poincare´ map is well
defined. As in the case of a periodic orbit, the Poincare´ map
is symplectic.

Unlike periodic orbits, the notion of a closed orbit is n
invariant under canonical transformations. The distinct
between position space and momentum space must ther
be kept. Let (qi ,pi) and (qf ,pf) be canonical coordinates o
the surfacesS i andS f chosen so thatqi andqf are position
space coordinates in the directions perpendicular to the
tial or final directions of the orbit. The origins of the coord
nate systems are fixed so that the position of the nucleu
qi50 or qf50, respectively. Closed orbits are then chara
terized byqi5qf50. In crossed fields three spatial dime
sions must be dealt with, so that each ofqi ,pi ,qf ,pf is a
two-dimensional vector. The reader may conveniently p
tureqi andqf as Cartesian coordinates, although in this ca
the conjugate momentapi and pf diverge as the Coulomb
singularity is approached. This difficulty can be overcome
means of a Kustaanheimo-Stiefel regularization@23#. Coor-
dinates having the properties described above can the

y
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CLOSED ORBITS AND THEIR BIFURCATIONS IN THE . . . PHYSICAL REVIEW A 67, 063410 ~2003!
shown to exist, as discussed in detail in@24#.
A closed orbit can start inS i with arbitrary initial momen-

tum pi , but it must start in the planeqi50. The Poincare´
map maps this plane into a Lagrangian manifold inS f .
Closed orbits are given by the intersections of this manif
with the planeqf50. In a less geometrical way of speakin
closed orbits can be described as solutions of the equa
qf(pi ,qi50)50. A particular solution of this equation, co
responding to the orbit the construction started with, is giv
by qf(pi50)50. If the matrixB5]qf /]pi is nonsingular at
pi50, this solution is locally unique and, by the implic
function theorem, will persist upon the variation of para
eters. Thus, the closed orbit cannot undergo a bifurca
unlessM5detB50.

An overview of the bifurcation scenarios to be expec
when detB50 can be obtained from a description of th
possible modes of behavior of the Poincare´ map. This can
most conveniently be achieved if the Poincare´ map is repre-
sented by a generating function@25#. The generating function
can be chosen to depend on any combination of initial
final positions and momenta, as long as they form a comp
set of independent coordinates. We adopt the well-kno
conventions of Goldstein@25# for denoting different types o
generating functions, which are summarized in Table II.

For a generic symplectic map, all possible sets of coo
nates and momenta are independent, so that generating
tions of any type exist. At a closed-orbit bifurcation, how
ever, a degeneracy indicated by the condition thatB
5]qf /]pi be singular arises, so that care must be taken
choosing a generating function. Loosely speaking, ifB is
singular,pi cannot be determined fromqi andqf , so that it
may be conjectured that no generating function of typeF1
exists. To confirm this conjecture, we study a linear sympl
tic map,

qf5Aqi1Bpi , pf5Cqi1Dpi , ~2!

with four matricesA,B,C,D satisfying the symplecticity
conditions@26#

AÁC5CÁA, BÁD5DÁB, AÁD2CÁB51,

ABÁ5BAÁ, CDÁ5DCÁ, ADÁ2BCÁ51, ~3!

whereÁ denotes the transpose. A generating function for
linear map~2! must be quadratic in its variables. From th
ansatz,

TABLE II. Overview of generating functions of different type
~cf. @26#!.

Type Transformation Regular matrix

F1(qi ,qf) pi51]F1 /]qi , pf52]F1 /]qf B
F2(qi ,pf) pi51]F2 /]qi , qf51]F2 /]pf D
F3(pi ,qf) qi52]F3 /]pi , pf52]F3 /]qf A
F4(pi ,pf) qi52]F4 /]pi , qf51]F4 /]pf C
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F1~qi ,qf !5
1

2
qf

ÁRqf1qf
ÁSqi1

1

2
qi

ÁTqi ~4!

with matricesR,S,T, the map~2! is obtained if

R52DB21, T52B21ÁA,

S5B21Á5DB21A2C. ~5!

The two expressions given forS are equal by virtue of Eq.
~3!. As expected, a generating function of typeF1 does not
exist if B is singular. A similar calculation can be carried o
for the other types of generating functions. For each ty
one of the matricesA,B,C,D must be nonsingular. Thes
results are given in Table II. Locally, they can be extended
nonlinear maps by means of the implicit function theorem

Thus, at a bifurcation of closed orbits, the Poincare´ map
generically possesses generating functions of all types ex
F1. The most convenient choice is a function of typ
F4(pi ,pf). The transformation equations associated w
this type of generating function read

qi52
]F4

]pi
, qf51

]F4

]pf
. ~6!

Closed orbits are characterized byqi5qf50. They therefore
agree with the stationary points of theF4 function. The clas-
sification problem of closed-orbit bifurcation theory can th
be rephrased as the problem to determine how station
points of a real function change upon the variation of para
eters. This question is the subject of catastrophe theory@27–
29#.

Catastrophe theory studies smooth real-valued functi
f (x) and f̃ (x) defined in a neighborhood of the origin in a
n-dimensional configuration space. They are said to
equivalent if there is a diffeomorphismc(x) of the configu-
ration space, so that

f̃ ~x!5 f „c~x!…. ~7!

The coordinate transformationc maps the stationary point
of f̃ to those off. In this sense, the distributions of stationa
points of f and f̃ agree qualitatively. Without loss of gene
ality, it can be assumed thatf and f̃ have stationary points a
the origin, because any stationary point can be moved th
by a coordinate transformation. After adding a constant,
has f (0)50.

f is said to be structurally stable if any small perturbati
f̃ of f @i.e., f̃ (x)5 f (x)1eg(x) with a smooth functiong(x)
and sufficiently smalle] is equivalent tof. Notice that catas-
trophe theory is a purely local theory. It is concerned with t
structural stability or instability of a single stationary poi
and the pattern of stationary points that can be gener
from a structurally unstable stationary point by a small p
turbation.

In the present context, nonbifurcating closed orbits cor
spond to structurally stable stationary points ofF4, because a
small variation of parameters will bring about a variation
0-3
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BARTSCH, MAIN, AND WUNNER PHYSICAL REVIEW A67, 063410 ~2003!
F4, which is small in the above sense and preserves
stationary point. The most elementary result of catastro
theory states that a stationary point of a functionf is struc-
turally stable if its Hessian matrix, i.e., the matrix of seco
derivatives of f, is nonsingular. For the linear symplect
transformation~2!, theF4 generating function is

F45
1

2
pf

ÁAC21pf2pf
ÁC21Ápi1

1

2
pi

ÁC21Dpi , ~8!

so that its Hessian determinant atpi5pf50 can be found to
be

detS ]2F4

]p2

]2F4

]pi]pf

]2F4

]pf]pi

]2F4

]pf
2

D detB detD

detC
. ~9!

The Hessian matrix ofF4 is thus singular if eitherB
5]qf /]pi or D5]pf /]pi is. It has been shown above th
bifurcations of closed orbits can only occur if detB50, i.e.,
a bifurcating orbit corresponds to a degenerate station
point of F4. The case detD50 also leads to a degeneracy
F4, but it cannot be associated with a closed-orbit bifur
tion. This can also be understood geometrically. As illu
trated in Fig. 1, if detB50, the Lagrangian manifold given
by qi50 is tangent to the planeqf50, so that it can develop
further intersections with that plane upon a small variation
parameters. If detD50, the manifold is tangent to the plan
pf50, whence, upon a variation of parameters, it can
quire additional intersections with that plane, but not w
the planeqf50, so that no bifurcation of closed orbits ca
arise.

The discussion of stationary points with degenerate H
sian matrices, also called ‘‘catastrophes,’’ is simplified co
siderably by the splitting lemma of catastrophe theory@29#.
It states that if the dimension of the configuration spacen
and a functionf on the configuration space has a station
point at the origin whose Hessian matrix has rankn2m, a
coordinate systemx1 , . . . ,xn can be introduced in a neigh
borhood of the stationary point, so that

f ~x1 , . . . ,xn!5g~x1 , . . . ,xm!1q~xm11 , . . . ,xn!,
~10!

whereq is a nondegenerate quadratic form ofn2m variables
and the functiong has a stationary point with zero Hessia

FIG. 1. Schematic plot of the Lagrangian manifoldqi50 in S f

for the cases~a! B5]qf /]pi50 and ~b! D5]pf /]pi50. The
dashed lines indicate the position of the manifold at slightly var
parameter values. Only in case~a! additional intersections with the
planeqf50 can arise.
06341
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matrix at the origin. As the nondegenerate stationary poin
q is structurally stable, the behavior of the stationary poi
of f under a small perturbation is determined byg only. The
number of relevant variables is thus onlym, which is called
the corank of the catastrophe. It will be assumed hencef
that a splitting according to Eq.~10! has been carried out an
the nondegenerate partq is ignored, so that the Hessian m
trix of f vanishes at the origin.

Under a small perturbation of the functionf, a degenerate
stationary point will in general split into several distinct st
tionary points. This process will be used to model bifurc
tions of closed orbits. The degenerate stationary points
evant to bifurcation theory are those of finite codimensio
i.e., those for which there are smooth functio
g1(x), . . . ,gk(x), so that any small perturbation off is
equivalent to

F~x!5 f ~x!1a1g1~x!1 . . . 1akgk~x!, ~11!

with suitably chosen constantsa i . The function F(x) is
called an unfolding off (x), because the degenerate statio
ary point of f can be regarded as a set of several station
points that accidentally coincide and are ‘‘unfolded’’ by th
parametersa i . The smallest value ofk which can be chosen
in Eq. ~11! is called the codimension off. An unfolding of f
with k equal to the codimension off is referred to as univer-
sal.

In the bifurcation problem, the generating functionF4 de-
pends on external control parametersr1 , . . . ,r l , such as,
e.g., the energyE or the external field strengths. If, for
critical value of the parameters,F4 has a degenerate station
ary point equivalent to that off, in a neighborhood of the
critical valueF4 is equivalent to the unfolding~11!, where
the unfolding parametersa i are smooth functions of the con
trol parametersr j . The critical parameter values themselv
are characterized by the condition that all unfolding para
eters vanish, i.e. by the set of equations

a1~r1 , . . . ,r l !50,

. . . ~12!

ak~r1 , . . . ,r l !50.

These arek equations inl unknowns. They can ‘‘generically’
only be expected to possess a solution ifk< l , that is, the
codimension of the degenerate stationary point must no
larger than the number of external parameters. This const
tion introduces a notion of codimension for bifurcations
closed orbits, which is entirely analogous to the codimens
of bifurcations of periodic orbits. Bifurcations of a codime
sion higher than the number of external parameters canno
expected to occur because they are structurally unstable.
der a small perturbation of the system they would split int
sequence of ‘‘generic’’ bifurcations of lower codimensions

B. Codimension-1 generic bifurcations

The considerations of the preceding section reduce
bifurcation theory for closed orbits to the problem of dete

d
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mining all catastrophes having a codimension smaller t
the number of external parameters. In particular, it expla
why only catastrophes of finite codimension are relevant
the crossed-field system, the number of parameters is tw
the scaling properties are taken into account. However,
will only describe bifurcations of codimension 1 in the fo
lowing. They suffice to describe the bifurcations encounte
if a single parameter is varied while the second is kept fix
They also give a good impression of the codimension-2 s
narios because a bifurcation of codimension 2 must split
a sequence of codimension-1 bifurcations as soon as an
the parameters is changed.

For generic functions without special symmetries, a list
catastrophes of codimensions up to 6 with their univer
unfoldings is readily available in the literature@27–29#. The
classification of closed-orbit bifurcations presented here
lies on these results.

1. The tangent bifurcation

There is a single catastrophe of codimension 1, which
corank of 1 and is known as the fold catastrophe. Its univ
sal unfolding is given by

Fa~ t !5
1

3
t32at, ~13!

with a denoting the unfolding parameter. The fold has tw
stationary points at

t56Aa, ~14!

where it assumes the stationary values

Fa~6Aa!57
2

3
a3/2. ~15!

The second derivative in the stationary points is

Fa9~6Aa!562Aa. ~16!

The stationary points are real ifa.0. If a,0, there are no
stationary points on the real axis, because solutions~14! are
imaginary. These complex stationary points correspond
closed ghost orbits in the complexified phase space. Asa is
varied, a tangent bifurcation occurs ata50, where two com-
plex conjugate ghost orbits turn into two real orbits or vi
versa.

All qualitative features of the bifurcation are described
the normal form~13!. The stationary points, i.e., the close
orbits, initially move apart asAa. A more detailed connec
tion between the properties of the normal form and
closed orbits can be made in the context of uniform se
classical approximations. The difference between the stat
ary values gives the action difference between the clo
orbits, whereas the second derivatives—or, if the norm
form has a corank greater than 1, the Hess
determinants—at the stationary points are proportional t
parameterM describing the stability of the closed orbit~see
Refs. @24,21# for details!. All these quantities are shown i
Fig. 2. When they are compared to the corresponding qu
06341
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tities calculated for an actual bifurcation in Sec. V, the qua
tative agreement will become clear.

The fold catastrophe~13! describes the generation of tw
closed orbits in a tangent bifurcation. As this is the on
generic catastrophe of codimension 1, it follows that the t
gent bifurcation is the only possible type of closed-orbit
furcations. In particular, once it has been generated, a clo
orbit cannot split into several orbits, as periodic orbits ty
cally do. However, this statement needs some modifica
due to the presence of reflection symmetries in the cros
field system.

2. The pitchfork bifurcation

If the orbit under study is symmetric under one of t
reflections, i.e., it is a singlet or a doublet orbit, the gener
ing functionF4 in the neighborhood of this orbit must als
possess this reflection symmetry. By this constraint, sev
of the elementary catastrophes are excluded altogether.
others, the codimension is reduced because the unfolding
only contain symmetric terms.

One additional catastrophe of codimension 1 arises,
the symmetrized version of the cusp catastrophe,

Fa~ t !5
1

4
t42

1

2
at2. ~17!

This normal form possesses the reflection symmetryt°
2t, so that the origin is mapped onto itself under the sy
metry transformation. There is a stationary point at the ori
for all values of the parametera, corresponding to a close
orbit which is invariant under the reflection. Additional st
tionary points are located at

t56Aa. ~18!

They are real ifa.0, and are mapped onto each other und
a reflection. Thus, the symmetric cusp~17! describes a pitch-
fork bifurcation ata50, where two asymmetric orbits bifur

FIG. 2. The positions of stationary points, stationary values,
second derivatives in the fold catastrophe. Solid lines indicate
stationary points, and dashed lines the complex stationary po
Dotted lines are coordinate axes.
0-5



ou

in

d
s
in

ili
o

: A

int
a
b

e

ta

its
a

-
tr
th

ib
a

tio
m

he
or-

s a

the
at-
e-
hen
ed
Its
ou-

its
ses,

ence

se
r

-
led

that

sed
bits
are
ion
n,

an
re
in
a

BARTSCH, MAIN, AND WUNNER PHYSICAL REVIEW A67, 063410 ~2003!
cate off a symmetric orbit, generating a quartet from a d
blet or a doublet from a singlet.

The stationary values at the asymmetric stationary po
are given by

Fa~6Aa!52
1

4
a2, ~19!

and the second derivative is

Fa9~6Aa!52a. ~20!

Both the stationary values and the values of the second
rivative are real even fora,0, when the stationary point
themselves are complex. Therefore, these stationary po
correspond to ghost orbits having real actions and stab
determinants. The existence of this remarkable type of gh
orbits is again a consequence of the reflection symmetry
the stationary points~18! are imaginary, the reflectiont°
2t changes a stationary point and its stationary value
their complex conjugates. On the other hand, the station
values are invariant under the reflection, so they must
real. A ghost orbit having this symmetry property will b
referred to as a symmetric ghost orbit.

The characteristic quantities of the symmetric cusp ca
trophe are shown in Fig. 3 as a function ofa. Again, they
describe the qualitative behavior of the bifurcating orb
close to the bifurcation. It should be noted that the station
values ~19! are negative for all values ofa, so that for a
bifurcation described by Eq.~17!, the actions of the asym
metric orbits must be smaller than those of the symme
orbit. An alternative bifurcation scenario is described by
dual cusp, viz. the negative of Eq.~17!. The dual cusp is
inequivalent to the regular cusp, but the scenario it descr
agrees with the above, except that the stationary values
the second derivatives change their signs, so that the ac
of the asymmetric orbits are now larger than that of the sy
metric orbit.

FIG. 3. The positions of stationary points, stationary values,
second derivatives in the cusp catastrophe. Solid lines indicate
stationary points, and the dashed lines complex stationary po
Dotted lines are coordinate axes. Note that the stationary values
second derivatives are real even for complex stationary points.
06341
-

ts

e-

ts
ty
st
s

o
ry
e

s-

ry

ic
e

es
nd
ns
-

IV. CLOSED ORBITS IN THE DIAMAGNETIC KEPLER
PROBLEM

As a basis for the description of closed orbits in t
crossed-field hydrogen atom, we will choose the closed
bits in the diamagnetic Kepler problem~DKP!, i.e., in the
hydrogen atom in a pure magnetic field. For these orbit
complete classification is available@3–8#. It will now be re-
capitulated briefly.

For low scaled energiesẼ→2`, there are two funda-
mental closed orbits. In one case, the electron leaves
nucleus parallel to the magnetic field until the Coulomb
traction forces it back. This orbit is purely Coulombic b
cause the electron does not experience a Lorentz force w
moving parallel to the magnetic field. The second clos
orbit lies in the plane perpendicular to the magnetic field.
shape is determined by the combined influences of the C
lomb and magnetic fields.

Due to time-reversal invariance, both elementary orb
possess arbitrary repetitions. As the scaled energy increa
each repetition of an elementary orbit undergoes a sequ
of bifurcations labeled by an integern51,2,3, . . . in order
of increasing bifurcation energy. The orbits born in the
bifurcations can be characterized by the repetition numbem
of the bifurcating orbit and the bifurcation numbern. They
are referred@3# to as vibratorsVm

n if they bifurcate out of the
orbit parallel to the magnetic field, and as rotatorsRm

n if they
bifurcate out of the orbit perpendicular toB.

Further bifurcations create additional orbits from theVm
n

andRm
n or ‘‘exotic’’ orbits not related to one of the two fun

damental orbits. These orbits are of importance at sca
energies higher than those considered in this work, so
they will not be discussed further. For the scaled energyẼ
521.4, the scaled actions and starting angles of the clo
orbits are presented in Fig. 4. It can be seen that only or
fitting into the classification scheme described above
present. Furthermore, orbits having a common bifurcat
numbern lie on a smooth curve in the plot. For this reaso
we will refer to orbits characterized by a fixedn as a series
of rotators or vibrators, respectively, and calln the series
number.

d
al

ts.
nd

FIG. 4. Scaled actionsS̃ as functions of the starting anglesq i of

closed orbits in the DKP forẼ521.4.
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CLOSED ORBITS AND THEIR BIFURCATIONS IN THE . . . PHYSICAL REVIEW A 67, 063410 ~2003!
V. CLOSED-ORBIT BIFURCATION SCENARIOS

In the presence of a pure magnetic field, the atomic s
tem possesses a rotational symmetry around the field axis
a consequence, all closed orbits except for the orbit para
to the magnetic field occur in continuous one-parame
families obtained by rotating a single orbit around the sy
metry axis. When a perpendicular electric field is added,
rotational symmetry is broken. Out of each family, only tw
orbits survive@30#, or, in other words, each family of orbit
splits into two independent orbits.

A. Planar orbits

The splitting of a family of orbits upon the introduction o
an electric field can most clearly be seen for planar orb
i.e., for orbits lying in the plane perpendicular to the ma
netic field. Due to theZ symmetry, this plane is invarian
under the dynamics. Thus, the initial direction of an orbit c
be specified by means of the azimuthal anglew i only.

Figure 5 shows the actions and initial directions of t
planar orbits for a scaled energy ofẼ521.4 and scaled
electric-field strengthsF̃50.03 andF̃50.05. At F̃50, the
orbits bifurcate off a certain repetition of the planar clos
orbit of the diamagnetic Kepler problem. For lowF̃ they can
therefore be assigned a repetition number that can clearl
discerned in Fig. 5.

As expected, there are two orbits for each repetition nu
ber, and they start in opposite directions from the nucle
Moreover, the starting angle varies linearly with the repe
tion number. These findings are illustrated in Fig. 6, wh
for a few low repetition numbers one of the two orbits
shown. It can be seen that the orbits consist of more
more ‘‘loops,’’ and that the starting angle increases regula
The shapes are symmetric with respect to thex axis because
the orbits are invariant under theT transformation, i.e., thes
orbits are singlets.

A few orbits in Fig. 5 do not fit into this simple scheme.
closer inspection reveals that these orbits are not singlets
Z doublets, and indeed they obviously occur in pairs. Th
are generated by pitchfork bifurcations from singlets. Fig

FIG. 5. Scaled actionsS̃ and azimuthal starting anglesw i for

planar orbits atẼ521.4 andF̃50.03 (1 symbols! and F̃50.05
(3 symbols!.
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7 presents the orbital parameters for orbits involved in
bifurcation of this kind. The panels show the real and ima
nary parts of the starting anglesw i of the orbits, the scaled

actions S̃, and the stability determinantM5det(]qf /]pi)
~see Sec. III A!, whose zeros indicate the occurrence of
bifurcation. These plots should be compared to Fig. 3, wh
displays the scenario described by the symmetric cusp ca
trophe. The qualitative agreement between the catastro
theory predictions and the numerical findings is evident.

A closer look at the asymmetric orbits reveals that th
have equal initial and final azimuthal anglesw i5w f , i.e.,
they are not only closed, but also periodic orbits. The init
and final angles of these orbits satisfyw i

(1)52w f
(2) because

they are symmetry partners, andw i
(2)5w f

(2) because they are
periodic. Thus, they must fulfillw i

(1)52w i
(2) . At the bifur-

cation, the initial angles of the two orbits must coincide,
that a bifurcation can only take place whenw i50 or w i
5p, and it actually does take place every time one of th
conditions is fulfilled. This process can be seen in Fig.
e.g., atS̃/2p'25. At F̃50.03, the symmetric orbit has no
yet crossed the linew i5p, so that no bifurcation has oc
curred. AtF̃50.05, this line has been crossed and two asy
metric orbits have been created.

As the electric-field strength is increased, the depende
of the starting angle on the repetition number ceases to
linear. Instead, the curves interpolating the functionsS̃(w i)
start to develop humps, so that at certain values ofS̃, i.e., at
certain repetition numbers, more than two possible value
w i exist. This development is illustrated in Fig. 8. The hum
indicate the occurrence of tangent bifurcations generating
ditional pairs of singlet orbits. This is the type of bifurcatio
described by the fold catastrophe~13!. Orbital parameters for
orbits involved in a bifurcation of this kind are shown in Fi
9. As for the pitchfork bifurcation, a comparison of that fi
ure to the catastrophe theory predictions in Fig. 2 reveals
the bifurcation is well described qualitatively by the fo
catastrophe.

Once additional singlet orbits have been generated i
tangent bifurcation, doublet orbits can be generated by pi
fork bifurcations in the same way as from the original sing
orbits, i.e., a bifurcation will occur whenever a singlet orb
crosses one of the linesw i50 or w i5p. This is illustrated in
Fig. 10, which presents the tangent bifurcation alrea
shown in Fig. 9 atF̃'0.11. At F̃50.135, one of the orbits
thus generated crosses the linew i50, and two doublet orbits
are created from it. Together, the two bifurcations form wh
Wang and Delos@18# call the ‘‘normal sequence’’ of bifurca-
tions, whereas a pitchfork bifurcation of a singlet orbit ge
erated atF̃50, which is not preceded by a tangent bifurc
tion, is called a ‘‘truncated series.’’ These authors introdu
an integrable model Hamiltonian to explain why these ki
of sequences can often be observed for planar orbits.
bifurcation theory of Secs. III A and III B sheds an altern
tive light on this question, suggesting that normal sequen
can actually be expected to occur even more generally t
in that context. Although the crossed-field system is close
integrable at the field strengths considered here, the s
0-7
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FIG. 6. Elementary planar closed orbits atẼ

521.4 andF̃50.05. m is the repetition number.
The orbits are symmetric with respect to thex
axis, in particular,w i52w f .
dy-
try

its
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FIG. 7. Orbital parameters close to a pitchfork bifurcation c

ating aZ doublet of closed orbits from a singlet atẼ521.4, and
having a repetition number ofm510. w i is the azimuthal starting

angle,S̃ the scaled action, andM̃ the scaled stability determinan

DS̃5S̃22p35.898 159 was introduced for graphical purpos
Thick solid lines indicate singlet orbits, thin solid lines indica
doublet orbits, and dashed line indicates ghost orbits symme
with respect to complex conjugation. Dotted lines indicate coo
nate axes.
06341
phenomenon also occurs at higher energies, where the
namics is chaotic. It is the presence of a reflection symme
that makes pitchfork bifurcations not only of periodic orb
@8,18#, but also of closed orbits generic in codimension
The sequence of a tangent and a pitchfork bifurcation, r
resented as a sequence of a fold and a symmetric cusp c
trophe, can be regarded as an unfolding of the symmetr
version of the butterfly catastrophe@20,28#,

Fa,b~ t !5
1

6
t62

1

4
at42

1

2
bt2, ~21!

which is of codimension 2, so that its unfolding can be e
pected to occur frequently in codimension 1. In this wa
catastrophes of higher codimensions provide a means to
scribe sequences of closed-orbit bifurcations, which is an
gous to how sequences of periodic-orbit bifurcations can
described by normal form expansions of higher ord
@31,32#.

A third bifurcation can be discerned in Fig. 10. AtF̃

'0.225, a singlet orbit generated atF̃50 and a singlet orbit

-

.
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i-
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CLOSED ORBITS AND THEIR BIFURCATIONS IN THE . . . PHYSICAL REVIEW A 67, 063410 ~2003!
generated in the tangent bifurcation discussed above co
and are destroyed. This is an instant of an inverse tan
bifurcation, which can be described by the fold catastrop
in the same way as the ‘‘regular’’ tangent bifurcation.
forms the third building block for the bifurcation scenar

FIG. 8. Scaled actions and azimuthal starting angles for pla

orbits at Ẽ521.4 and ~a! F̃50.2 and ~b! F̃50.5. Singlets are
indicated by1 symbols, andZ doublets by3 symbols.

FIG. 9. Orbital parameters close to a tangent bifurcation of p

nar orbits at aẼ521.4 and a winding number ofm545. (DS̃

5S̃22p326.512 735.) Solid lines represent real orbits, and
dashed-dotted lines represent ghost orbits.
06341
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changing the pattern of planar orbits as the electric-fi
strength is increased.

Besides the three bifurcations described above, in Fig
three further zeros of the stability determinantM̃ occur for
certain real orbits, indicating the presence of even more
furcations. These bifurcations involve nonplanar orbits, i
they are pitchfork bifurcations breaking theZ symmetry all
planar orbits possess. They will be discussed further in s
sequent sections. At the moment it suffices to note that in
scenario six individual bifurcations take place in a compa
tively small interval of the electric-field strength. This is th
first example of a phenomenon to be encountered repeat
In the crossed-field hydrogen atom bifurcations of clos
orbits abound. They exacerbate both the classical and
semiclassical treatment of the dynamics.

B. Nonplanar orbits

The transition from the rotationally symmetric case of
pure magnetic field to crossed fields occurs for nonpla
orbits in much the same way as for planar orbits. As soon
a small perpendicular electric field is present, a on
parameter family of DKP orbits is destroyed and splits in
two isolated closed orbits. These orbits start in opposite
rections with respect to the electric field, so that their a
muthal starting anglesw i differ by p, in complete analogy
with what was shown in Fig. 5. An additional complicatio
arises because the polar starting angleq i is no longer bound
to the fixed valuep/2, so that the two orbits will in genera
have differentq i . Figure 11 presents the polar startin
angles and the scaled actions of the closed orbits for
scaled energyẼ521.4 in a pure magnetic field and for tw
different perpendicular electric-field strengths. Only ang
q i<p/2 need to be shown because orbits withq i.p/2 can
be obtained by aZ reflection. It is obvious from the figure
how a family of orbits splits in two isolated orbits, and ho

ar

-

e

FIG. 10. The bifurcation scenario taking place in the neighb

hood of the tangent bifurcation shown in Fig. 9 (DS̃5S̃22p
326.2735). Thick solid lines indicate real singlet orbits, thin so
lines indicate realZ doublet orbits, dashed lines indicate symmet
ghost orbits, and dashed-dotted lines indicate asymmetric ghos
bits. Dotted lines are coordinate axes.
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the two orbits move apart as the electric-field strength
increased. This process is the same for both rotator and
brator orbits.

An exceptional role is played by the DKP orbit parallel
the magnetic field. This orbit is isolated even in a pure m
netic field. In the presence of a perpendicular electric fiel
is distorted and torn away from the magnetic field axis, bu
remains isolated rather than splitting into two orbits. Th
process is also apparent from Fig. 11. Notice again
closed orbits in crossed fields do not possess repetitions.
repetition of the parallel DKP orbit gives rise to a clos
orbit in crossed fields~for sufficiently smallF̃), but these
orbits are not repetitions of each other. They have, in part
lar, different starting angles.

The symmetries of the closed orbits are worth noting.
nonplanar orbits described so far are doublets. More p
cisely, the vibrator orbits areT doublets, i.e., they are invari
ant under theT operation. Their initial and final polar angle
are small, as the orbits are mainly directed along
magnetic-field axis.

For the rotator orbits the situation is more complex. Th
have initial and final polar angles close top/2, so that it is
conceivable that they can start at an angleq i,p/2 ‘‘above’’
thex-y plane and return atq f.p/2 ‘‘below’’ that plane. This
is, in fact, the case for the rotators of the first series. Th
turn out to beC doublets.

The second series of rotators contains orbits which, in
case of a pure magnetic field, are composed of a first-se
orbit and its Z-reflected counterpart. They therefore ha
q i5q f and areT doublets. By the same token, orbits of th
third series return below thex-y plane and areC doublets
again, and higher series of rotators alternatingly contaiT
doublets andC doublets. The distribution of symmetries
illustrated in Fig. 12~a!. It extends the data given in Fig. 11 t
longer orbits and classifies the orbits according to their sy
metries.

So far, only orbits present at arbitrarily low electric-fie
strengths have been described. As the electric-field stre
increases, further bifurcations occur. Their general pat

FIG. 11. Scaled actions and polar starting angles of closed o

at Ẽ521.4 andF̃50 ~pure magnetic field,1 symbols!, F̃50.05

(3 symbols!, andF̃50.1 ~) symbols!. Due to theZ symmetry, the
figure should be extended to be symmetric with respect to the
q i5p/2.
06341
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can be identified in Figs. 11 and 12~a!. The most obvious
consequence of the bifurcations is the appearance of qu
orbits in each series of both rotator and vibrator orbits. Th
are generated by pitchfork bifurcations from the adjac
doublet orbits. As Fig. 13 reveals if it is compared to Fig.

its

e

FIG. 12. Scaled actions and polar starting angles of closed o

at Ẽ521.4 and~a! F̃50.1, ~b! F̃50.6. Orbits are classified ac
cording to their symmetries.T doublets are indicated by1 sym-
bols,C doublets by3 symbols, and quartets by) symbols. Planar
orbits~Z doublets and singlets! are omitted. Notice that the range o
actions shown is smaller in~b!.

FIG. 13. Orbital parameters close to a pitchfork bifurcation o
first-series rotator and a repetition number ofm538. The bifurca-

tion creates a quartet of orbits from aC doublet (DS̃5S̃22p
318.297 822).
0-10
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this bifurcation is very similar to a pitchfork bifurcation o
planar orbits. A difference arises because the angleq i is not
restricted to a fixed value. As theC symmetry concerns the
azimuth angles, it still is predominantly the anglew i that
shows a square root behavior at the bifurcation and obt
an imaginary part when ghost orbits exist. Nevertheless,
polar angleq i also acquires a small imaginary part. The re
part of q i apparently behaves linear close to the bifurcati
although for electric-field strengths above the critical value
square root behavior must be present. It is too small to
seen in the figure. Even though in quantitative terms theq
direction is only marginally involved in the bifurcation, it
presence has the important consequence that the quart
bits are no longer constrained to be periodic. As the dista
from the bifurcation is increased, the periodicity conditi
w i5w f is increasingly, albeit slowly, violated.

The second important type of bifurcations is a tang
bifurcation introducing new doublet orbits into the serie
The occurrence of this phenomenon can be noticed in
11, if the numbers of orbits of a given repetition number a
compared for different electric-field strengths. An example
this bifurcation is given in Fig. 14. The tangent bifurcatio
involves both angles to roughly equal extent. The two d
blet orbits thus generated are implanted into the regular
tern of their series, so that one of them subsequently un
goes a pitchfork bifurcation which creates a quartet. T
phenomenon is entirely analogous to the ‘‘normal sequen
of bifurcations, which was found for planar orbits, exce
that the quartet orbits thus generated are not periodic.

As the electric-field strength increases, the rotator or
of a given series are torn apart and span an ever wider in
val of q i . Those orbits moving towards higher values ofq i
eventually hit the planeq i5p/2, where they collide with
their Z-reflected partners and are destroyed. One might
pect the destruction of the two orbits to occur in a tang
bifurcation, but from the discussion of Sec. III B, it is cle

FIG. 14. ‘‘Normal sequence’’ of bifurcations for nonplanar r
tator orbits of the second series and a repetition number ofm554

(DS̃5S̃22p331.840 35).
06341
ns
e
l
,
a
e

or-
ce

t
.
g.
e
f

-
t-
r-

s
’’

t

ts
r-

s-
t

that a tangent bifurcation can only create or destroy or
having different actions, so that it can never involve tw
orbits related by a symmetry transformation. Thus, the bif
cation must be of pitchfork type, and it must involve
Z-symmetric planar orbit. Depending on whether the nonp
nar orbits colliding with the plane are doublets or quarte
the planar orbit must be a singlet or aZ doublet, respectively.
If the destruction scenario is regarded in the direction
decreasing field strengths, it appears as the creation of o
with brokenZ symmetry from an orbit possessing this sym
metry. It is therefore theZ-breaking analog of theT- and
C-symmetry breaking bifurcations described above. As t
type of bifurcation involves a planar orbit, it must give ris
to a zero in the stability determinantM̃ of the planar orbit. In
fact, the examples given in Figs. 15 and 16 for both
destruction of a doublet and a quartet are two of the th
bifurcations whose presence was inferred from Fig. 10
discussion of the planar orbits.

The scenario just described is not restricted to rotator
bits. As can be seen in Fig. 11, the short vibrator orbits c
even at low electric-field strengths, reach rather high val
of q i . At F̃50.155 50 the first of them collides, atq i
5p/2, with its Z-reflected counterpart and is annihilate
This is a pitchfork bifurcation in which one of the plana
orbits with repetition numberm51 takes part. Similarly,
longer vibrators are destroyed in collisions with planar ro
tors of the appropriate repetition numbers. This exam
demonstrates that the distinction between vibrators and r
tors, which was borrowed from the case of vanishi
electric-field, does not apply, strictly speaking, if an electr

FIG. 15. Destruction ofT-doublet orbits in a collision with a

singlet orbit (DS̃5S̃22p327.603 24).

FIG. 16. Destruction of quartet orbits in a collision withZ dou-

blet orbits (DS̃5S̃22p326.569 655).
0-11
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BARTSCH, MAIN, AND WUNNER PHYSICAL REVIEW A67, 063410 ~2003!
field is present. Although it is generally useful for rather hi
electric-field strengths, it can fail in some instances. This
clearly the case when a bifurcation involves both vibra
and rotator orbits.

A collision with the plane perpendicular to the magne
field occurs only for vibrators of low repetition numbers, a
only for vibrators that descend from the orbit parallel to t
magnetic field. For longer orbits, the usual scenario is diff
ent. At low electric-field strength there is, for sufficient
high repetition numbers, one orbit stemming from the or
parallel to the magnetic field and one or several pairs
orbits created from nonparallel vibrators. It can be seen
Fig. 11, however, that for certain repetition numbers two
these orbits can be missing. This happens when the des
dant of the parallel orbit and one of the other vibrators an
hilate in a tangent bifurcation. A simple example of how th
can come about is provided by the orbits with the repetit
numberm541. Their bifurcations are illustrated in Fig. 17
Two of the orbits obviously bifurcate from a common fami
at F̃50, whereas the orbit proceeding from the parallel or
is isolated there and starts atq i50. It then merges with one
of the other orbits in a tangent bifurcation to form a pair
ghost orbits.

This bifurcation is as simple as one could expect. For
neighboring vibration numberm542, the scenario is more
complicated. It is illustrated in Fig. 18. In this case, one
the orbits generated in the rotational symmetry breaking
F̃50, which is aT doublet, undergoes a pitchfork bifurca
tion and gives birth to a quartet of orbits before it annihila
with the descendant of the parallel orbit. The quartet th
collides with the third, leftoverT doublet and is destroyed i
a second pitchfork bifurcation.

Corresponding to the three elementary bifurcations, th
are three ghost orbits involved in the scenario. For one
them, the starting anglesq i andw i show a peculiar behavio
at the electric-field strengthF̃050.087 50: Whereasq i ex-
hibits a square root behavior, changing from nearly rea
nearly imaginary values, the real part ofw i changes discon
tinuously by p/2, and the imaginary part ofw i seems to
diverge. Neither the action nor the stability determinant

FIG. 17. Simple bifurcation scenario for vibrator orbits of re

etition numberm541 (DS̃5S̃22p324.502 21).
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the orbit, on the contrary, show any kind of special behav
In particular,M̃ is nonzero, so that there cannot be a bifu
cation of the ghost orbit.

The Cartesian components of the unit vectors in the start-
ing direction are given in Fig. 19. For all of them either th
real or the imaginary parts are small, so that their numer
calculation is hard. Nevertheless, to within the numerical
curacy all components are smooth atF̃0, although the angles
q i andw i used to calculate them are not. Thus, the singu
ity must be due to the transformation from Cartesian to
gular coordinates. In the real case it is obvious that
(q,w) coordinate chart is singular atq50. To elucidate the
details in the case of ghost orbits, assume a model situa
where sz5cosqi is exactly real andsz51 at F̃5F̃0. For
ghost orbits,sz is not bound to be smaller than 1, so th
generically, to first order in«5F̃2F̃0 , cosqi21}«. There-

FIG. 18. Complicated bifurcation scenario for vibrator orbits

repetition numberm542 (DS̃5S̃22p325.099 41).

FIG. 19. Cartesian components of the unit vectors specifying
the starting direction of the ghost orbit (sx5sinqicoswi , sy

5sinqi sinwi , sz5cosqi). Vertical dotted lines mark the field

strengthF̃050.087 50 where the singularity of Imw i is encountered.
0-12
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CLOSED ORBITS AND THEIR BIFURCATIONS IN THE . . . PHYSICAL REVIEW A 67, 063410 ~2003!
fore,q i}A« shows a square root behavior and changes fr
purely real to purely imaginary values. At the same tim
sinqi}A« has a zero, so that forsx5sinqi coswi and sy
5sinqi sinwi to assume finite values, sinwi and coswi must
diverge as«21/2. This is only possible if the imaginary pa
of w i is large. More precisely, if Imw i.0 is assumed to be
large, sinwi and coswi are proportional toe2 iw i, whence

w i5
1

2i
ln «1O~«0! ~22!

achieves the desired divergence of sinwi and coswi . Now
Re ln«5lnu«u diverges at«50, whereas Im ln« changes dis-
continuously from 0 to6p, depending on what branch o
the logarithm is chosen. This behavior results in the obser
divergence of Imw i and a discontinuous jump in Rew i of
sizep/2.

In the actual scenariosz will not be exactly equal to 1 a
F̃0 because this is a situation of real codimension 2. Ho
ever, if Imsz is small, the singular behavior described abo
will be closely approximated. Indeed, a closer look at
starting angles reveals that they are actually smooth,
close toF̃5F̃0 they change extremely.

It should be noted that the singularity described here
occur for ghost orbits only. In the real case, as the poleq i
50 on the real unit sphere~which still has codimension 2! is
approached, bothsx andsy must vanish instead of assumin
finite values, so that no divergences of any kind are requi

VI. THE CLASSIFICATION OF CLOSED ORBITS

The fundamental classification scheme used in the ab
description of closed-orbit bifurcations is the distinction b
tween rotators and vibrators. This distinction was adop
from the case of vanishing electric-field strength, so it can
expected to be applicable if the electric field is not t
strong. ForẼ521.4 and F̃50.1, orbits can uniquely be
classified as rotators or vibrators of a certain series simply
inspection of Fig. 12~a!. However, if the electric-field
strength is increased toF̃50.6 @see Fig. 12~b!#, all orbits get
completely mixed up. The figure suggests that there is
way to achieve a classification.

Nevertheless, a classification can be achieved. Of cou
it can only be heuristic since it must gradually break do
for strong electric fields. The criteria we are going to propo
are largely based on the behavior of thez coordinate of the
motion as a function of time. To illustrate them, this functi
is plotted for rotators of roughly equal length from differe
series in Fig. 20. Figure 21 shows the analogous data
vibrators.

First of all, vibrators are connected to an orbit along thz
axis in the pure magnetic field case. In this limit, the moti
takes place either ‘‘above’’ thex-y plane, i.e., in the half
spacez.0, or ‘‘below’’ the plane. Rotator motion, by con
trast, takes place both above or below the plane. Rotators
therefore be distinguished from vibrators if the maximu
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and minimum values of the coordinatez are compared. For a
rotator, they must have roughly equal absolute valu
whereas for a vibrator ‘‘above’’ the plane, the minimu
value is much smaller in magnitude than the maximu
value.

As shown in Fig. 21, this criterion gets better the high
the series of the vibrator is chosen. For the vibrator of
first series, which is closest to the domain of rotators,
excursion into the lower half space is of the same order
magnitude as that into the upper half space. As the elec
field strength increases further, the vibrator orbit will becom
indistinguishable, by the present criteria, from a rotator
the second series.

It has already been noted in Sec. V B that a rotator of
first series that starts from the nucleus into the upper h
space returns to it from the lower half space, whereas a
tator of the second series returns from the upper half sp
This alternation between motion in the upper and lower h
spaces can be used to determine the series of a rotator.

To assign a series number to a vibrator, the beat struc
of z(t) can be used: As is apparent from Fig. 21, the mini
of z(t) oscillate between zero and some negative value.

FIG. 20. Rotator orbits of the~a! first, ~b! second, and~c! third

series: scaled coordinatez̃ as a function of the scaled pseudotimet̃

for Ẽ521.4 andF̃50.2.
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number of such oscillations gives the vibrator ser
number.

The criteria described above readily lend themselves
numerical implementation, so that the classification of orb
can be achieved automatically. As an example, the rotator
the first series are shown in Fig. 22 for three differe
electric-field strengths. Although the neat ‘‘wiggly-line
structure characterizing the series in Fig. 11 quickly bre
down for larger electric-field strengths, the distinction b
tween different series persists. Figure 22~c! should be com-
pared to Fig. 12~b!. It might appear surprising that the mes
looking set of orbits still permits a classification, but with th
help of the criteria just described an ordered pattern of clo
orbits can still be discerned. In this sense, the classifica
scheme derived from the DKP turns out to be remarka
robust.

VII. SUMMARY

In this work, a systematic study of the closed classi
orbits of the hydrogen atom in crossed electric and magn
fields has been carried out. As an important step toward
complete understanding of the complicated pattern of clo

FIG. 21. Vibrator orbits of the~a! first, ~b! second, and~c! third

series: scaled coordinatez̃ as a function of the scaled pseudotimet̃

for Ẽ521.4 andF̃50.2.
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orbits, a bifurcation theory of closed orbits was develop
and the generic bifurcations of codimension 1 were ide
fied.

A variety of bifurcation scenarios observed in the cross
field system was described. They demonstrate that, e
though only two types of elementary bifurcations exist, th
combine into a variety of complicated bifurcation scenari
The abundance of bifurcations exacerbates both a comp
classical description of the crossed-field hydrogen atom
its semiclassical treatment@21#.

Based on the classification of closed orbits in t
hydrogen atom in a magnetic field, heuristic criteria ha
been proposed, which allow a systematization of clos
orbits for moderately high electric-field strengths. Althou
the present analysis cannot yet claim to have achieve
complete classification of closed orbits in the crossed-fi
hydrogen atom, it does give a detailed impression of h
orbits bifurcate as the electric-field strength increases. It t
introduces a high degree of order into the complex set
closed orbits.

FIG. 22. Rotators of the first series forẼ521.4 and ~a! F̃

50.2, ~b! F̃50.4, and~c! F̃50.6. C doublets are indicated by3
symbols, and quartets by * symbols.
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