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Semiclassical quantization by harmonic inversion: Comparison of algorithms

Thomas Bartsch, Jo¨rg Main, and Gu¨nter Wunner
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~Received 20 April 2001; published 24 October 2001!

Harmonic inversion techniques have been shown to be a powerful tool for the semiclassical quantization and
analysis of quantum spectra of both classically integrable and chaotic dynamical systems. Various computa-
tional procedures have been proposed for this purpose. Our aim is to find out which method is numerically
most efficient. To this end, we summarize and discuss the different techniques and compare their accuracies by
way of two example systems.
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I. INTRODUCTION

Semiclassical trace formulas relate the spectra of quan
systems to the periodic orbits of the pertinent classical s
tems @1#. They yield expansions of the quantum respon
function of the form

g~E!5(
k

dk

E2Ek1 ie
5(

po
Apoe

iSpo/\. ~1!

Here,Ek are the energy eigenvalues of the quantum syst
dk are their multiplicities,Spo is the action of a classica
periodic orbit, Apo is an amplitude that can be calculate
from classical mechanics~including phase information given
by the Maslov index!, and the sum on the right-hand sid
extends over all periodic orbits and usually diverges for r
energiesE. Thus, the quantal information cannot be e
tracted directly from the semiclassical expansion.

One particular and widely applicable method to overco
the convergence problems of the periodic orbit sum is se
classical quantization by harmonic inversion@2,3#. By a Fou-
rier transform of Eq.~1! the problem of semiclassical quan
tization can be recast as a harmonic inversion problem, v
the extraction of the frequenciesvk5Ek /\ and amplitudes
dk from a given time signal

C~ t !5(
k

dke
2 ivkt. ~2!

Especially intriguing, and important, are systems posses
a classical scaling property, i.e., the classical dynamics d
not depend on an external scaling parameterw and the action
Spo5wspo of periodic orbits varies linearly withw, with spo
the scaled action. This is not a severe restriction sinc
covers a variety of systems, such as systems with hom
neous potentials, billiard systems, or a hydrogen atom
static external fields. For scaling systems the semiclass
signal that has to be harmonically inverted has the spe
form of a sum ofd functions with peaks at positions give
by the scaled actionsspo of the periodic orbits

C~s!5(
po

Apod~s2spo!. ~3!
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The frequencies of the signal~3! are the semiclassical ap
proximations to the quantum eigenvalueswk of the scaling
parameter. By the same token, harmonic inversion of sign
with the functional form~3! also plays a key role in the high
resolution analysis of the density of states%(E)5(nd(E
2En) of quantum spectra, in an effort to extract informatio
about the underlying classical dynamics@3–5#.

In practical applications, the signal~3! is always known in
a finite range 0<s<Smax only. The signal lengthSmax is
often fixed or at least hard to increase, e.g., for periodic o
quantization of classically chaotic systems where the num
of periodic orbits proliferates exponentially with the sign
length. To obtain the optimum results from the harmon
inversion procedure, it is essential to choose an algorit
that allows one to extract the most precise estimates for
spectral parameters$vk ,dk% from the signal of a given
lengthSmax.

Various computational procedures have been proposed
the harmonic inversion of signals of the type~3!. However, a
systematic study of the relative merits and demerits of
methods and a quantitative study of their efficiencies is s
lacking. To remedy this situation, we summarize and disc
different techniques of harmonic inversion and compare th
accuracies in the application to two simple albeit typical e
ample systems for which exact trace formulas are kno
The aim is to pin down the numerically most efficie
method for harmonic inversion.

II. HARMONIC INVERSION OF d FUNCTION SIGNALS

Due to the finite signal lengthSmax, the analysis of the
signal by conventional Fourier transform is limited by th
‘‘uncertainty principle,’’ which states that in a signal of finit
length Smax, two frequencies can only be resolved if the
difference is larger than 2p/Smax. The uncertainty principle
can be circumvented by the application of high-resolut
methods@6,7# that extract a discrete set of frequencies a
amplitudes without imposing anya priori restrictions on the
frequenciesvk . However, an uncertainty remains in th
weaker form of the ‘‘informational uncertainty principle’
@7#, which states that the signal lengthSmax required to re-
solve the frequencies is given by

Smax*4p%̄~v! ~4!
©2001 The American Physical Society05-1
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in terms of the local average density of frequencies%̄(v).
Since this relation involves the average instead of the m
mum spacing between frequencies, the signals can usual
significantly shorter than required by the Fourier transfor

Harmonic inversion of the signal~3! is a nontrivial task
for the following two reasons. First, the number of freque
cies contained in the signal is usually large, which impl
that simple methods for solving the harmonic inversion pr
lem may be numerically unstable. Second, the special fu
tional form of a signal as a sum ofd functions does not fulfill
the prerequisites of several established algorithms thatC(s)
should be known on an equidistant grid,s5nt, with n
50,1,2, . . . @7,8#. We briefly review the four numerical tha
which so far have been successfully applied to the harmo
inversion of signalsC(s) given as a sum ofd functions.

Method 1: Discrete filter diagonalization.A powerful tool
for the harmonic inversion of signals given on an equidist
grid is the filter-diagonalization~FD! method of Wall and
Neuhauser@6# in the version of Mandelshtam and Taylor@7#.
The basic idea is to introduce a set of basis functions lo
ized in frequency space and to recast the harmonic inver
problem as a generalized eigenvalue problem. For a suit
choice of the frequency window the subset of frequenc
located in that window can be obtained by solving a gen
alized eigenvalue equation with small matrices.

To evaluate the signal~3! on an equidistant grid, thed
functions must be given an artificial widths that spans sev
eral grid points, i.e.,s.t. This regularization can be
achieved by convoluting the signal with a narrow, e.
Gaussian function. In this form the FD method has be
applied in Refs.@2,3# as a tool for semiclassical period
orbit quantization.

The convolution of the signalC(s) results in a damping
of the amplitudesdk→dk

(s)5dkexp(2wk
2s2/2). The widths

of the Gaussian function should be chosen sufficiently sm
to avoid an overly strong damping, e.g., by settings
&uwmaxu21 wherewmax is the largest frequency of interes
To properly sample each Gaussian a dense grid with s
ciently small step size (t's/3) is required. Therefore, th
convoluted signal to be processed by FD usually consist
a large number of data points, in particular when high f
quency regions of the signal are to be analyzed. The num
cal treatment of such large data sets may suffer from rou
ing errors and loss of accuracy.

Method 2:d-function filter diagonalization.The artificial
smoothing of the signal can be circumvented when follow
a different approach suggested by Gre´maud and Delande@5#.
In contrast to Ref.@7# where the signal is assumed to b
known on an equidistant grid, Gre´maud and Delande sta
from a continuous-time formulation of the FD algorith
close to the original ansatz in@6#. Integrals involving the
d-function signal~3! can then easily be calculated and e
pressed in terms of periodic orbit sums.

Method 3: Discrete decimated signal diagonalization.An
alternative method to FD for high-resolution signal proce
ing is decimated signal diagonalization~DSD!, which was
introduced by Belkic´ et al. @8#. DSD is a two-step process fo
harmonic inversion. In the first step a low-resolution fr
05670
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quency filter is applied by subjecting the signal to a discr
Fourier transform, selecting the Fourier components in
frequency interval of interest, and applying an inverse F
rier transform to them. The resulting band-limited sign
contains only a small number of frequencies in the cho
interval and can, therefore, be further processed, in the
ond step, by conventional high-resolution methods such
e.g., linear prediction or Pade´ approximants@9,10#. DSD ef-
fectively uses, in this processing stage, the operational
of the discrete version of FD@7#, which constructs smal
matrices of a generalized eigenvalue problem directly fr
digitized points of the band-limited decimated signal. T
DSD technique is designed for signals given on an equi
tant grid but can be applied to thed-function signal~3! after
convolution with a narrow, e.g., Gaussian function in t
same way as explained above~see method 1!.

The DSD method of Ref.@8# is easy to implement as i
basically resorts to standard algorithms for discrete Fou
transform and matrix diagonalization. However, the appli
tion of the low-resolution Fourier filter in the first step of th
method implicitly assumes periodicity of the signal~with the
period equal to the signal length!, in which case the DSD
filter is exact. In general, of course, this condition is not m
so that only approximate filtering can be achieved. The
fore, DSD must be expected to be less accurate than
~method 1! for frequencies close to the borders of the wi
dow, or when very short frequency windows are chosen~see
the discussion in Sec. III!.

Method 4: d-function decimated signal diagonalization
The DSD technique~method 3! can be modified for a more
direct application to thed-function signal~3! without the
necessity of convoluting the signal with a narrow, e.
Gaussian function. Because the signalC(s) is given as a
periodic orbit sum ofd functions, the ‘filtering’ step can be
performed analytically by replacing the discrete Four
transform of method 3 with the continuous form of the Fo
rier transform and expressing the integrals in terms of p
odic orbit sums. This technique was proposed in Ref.@11#.
The application of the analytical filter for a rectangular fr
quency window @w02Dw,w01Dw# results in a band-
limited ~bl! signal @11#

Cbl~s!5(
po

Apo

sin@~s2spo!Dw#

p~s2spo!
eispow0 , ~5!

where thed functions are basically replaced with sinc fun
tions @sincx5(sinx)/x#. The band-limited signal~5! can be
discretized with a small number of points and further p
cessed, in the second step, by conventional harmonic in
sion methods as described above~see method 3).

In practice, the band-limited signal can only be evalua
approximately because the signal is only known up to a fin
length. Since the sinc functions decay slowly at infini
peaks well beyond the end of the known signal may have
influence on the band-limited signal points. Omitting cont
butions from the~unknown! peaks beyond the limit of the
given signal amounts to the assumption that the signa
zero outside the given range. Note that this filter differs fro
5-2
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SEMICLASSICAL QUANTIZATION BY HARMONIC . . . PHYSICAL REVIEW E 64 056705
the low-resolution filter of method 3 where the signal is im
plicitly assumed to be periodic.

In summary, the four methods can be classified accord
to whether they are discrete-time algorithms~methods 1 and
3), which require a regularization ofd-function signals to be
discretized, or continuous-time algorithms adapted
d-function signals~methods 2 and 4!. Alternatively, they can
be classified into FD methods~methods 1 and 2) and DSD
methods~methods 3 and 4! where the low-resolution ‘‘filter-
ing’’ and high-resolution signal processing is performed
two separate steps.

III. NUMERICAL EXAMPLES AND DISCUSSION

To quantitatively assess the relative performances of
different algorithms, we present a comparison of the num
cal accuracy achieved by all of these methods for two sim
but archetypal examples, viz., first, the high-resolution ana
sis of the spectrum of the harmonic oscillator and, seco
the search for the zeros of Riemann’s zeta function a
mathematical model for periodic orbit quantization in chao
systems. We choose these systems because they posse
act trace formulas, so that the decomposition of the semic
sical signal in a sum of exponentials is known to be exa

A. Harmonic oscillator

The one-dimensional harmonic oscillator~with \v51)
has energy eigenvaluesEn5n1 1

2 , n50,1,2, . . . . Its density
of states can be written as an exact trace formula@12#

g~E!5 (
n50

`

d~E2En!5 (
k52`

`

~21!ke2p ikE. ~6!

The right-hand side of Eq.~6! can be interpreted as a per
odic orbit sum@in analogy to Eq.~1!# whereSk52pkE is
the action of the (k times traversed! periodic orbit anddk
5(21)k is the periodic orbit amplitude.@The interpretation
of the k50 Thomas-Fermi term is special, see Ref.@12# for
more details.# The high-resolution analysis of the quantu
spectrumg(E)5(n50

` d(E2En) should yield equally space
real frequenciesvk52pk and amplitudesdk5(21)k of
equal magnitude. Thus, this simple application of harmo
inversion to the extraction of classical periodic orbit para
eters from a quantum spectrum@3–5# is ideally suited to
compare the efficiencies of the different methods for the h
monic inversion ofd-function signals.

Since the signal is periodic with periodDE51, an integer
signal length would render the low-resolution Fourier filt
of method 3 exact. To avoid this atypical situation, w
choose signal lengths as rational multiples ofp. According
to the informational uncertainty principle~4! a signal length
of Emax*2 should suffice to resolve the frequencies. Ty
cally, Eq. ~4! slightly underestimates the required sign
length. We therefore present results calculated with a sig
of lengthEmax5p, which means that only three energy le
els contribute to the signal. To assess the accuracy of
results, we use the absolute values of the imaginary par
the calculated frequencies and amplitudes as error indica
05670
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If the analysis of the signal were exact, all imaginary pa
should vanish. Therefore, an inspection of the sizes of
imaginary parts allows us to check the accuracy of the c
culation. We note that this sort of accuracy test can be
plied to all bound systems. If the exact frequencies
known, as is the case in our example systems, the real p
can also be compared. The errors of the real and imagin
parts typically are of the same order of magnitude and
hibit, at least qualitatively, the same behavior.

Results for the harmonic inversion of the quantum sp
trum g(E) obtained with the four methods introduced in Se
II are presented in Figs. 1 and 2 for the imaginary parts of
frequenciesvk and amplitudesdk , respectively. For frequen
cies that appear to be missing, imaginary parts of zero h
been obtained by the pertinent method. From figure parts~a!
to ~f! the widthDv of the frequency filter is increased. Fo
the application of methods 1 and 3 the signal has been
cretized with step widtht50.002 after convolution of the
signal with a Gaussian function with widths50.006. In all
cases it can be seen that the precision achieved decreas
the boundaries of the frequency window. The reason is
none of the filtering methods is exact and can neither co
pletely remove the influence of frequencies outside the w
dow of interest nor exactly preserve the contributions of f
quencies inside the window. For narrow windows, the F
methods 1 and 2 outperform the DSD algorithms 3 and
for wide windows the situation is reversed. The frequenc
obtained by methods 1 and 2 are equally precise for sm
windows, whereas for wide windows method 2 gains su
riority and even competes with the DSD methods. In gene
the distance from the window boundaries where a met

FIG. 1. Imaginary parts~absolute values! of the frequenciesvk

extracted from a harmonic oscillator signal of lengthEmax5p. Sym-
bols 3, 1, ), and ( denote the methods 1 to 4, respective
Windows are@102Dv,101Dv# with Dv5 ~a! 4.5, ~b! 5.5, ~c!
6.5, ~d! 7.5, ~e! 8.5, and~f! 9.5.
5-3
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THOMAS BARTSCH, JÖRG MAIN, AND GÜNTER WUNNER PHYSICAL REVIEW E64 056705
acquires its full precision is smaller for the FD than for t
DSD methods. Calculations were carried out with dou
precision. For the widest window shown, frequencies h
practically been obtained to machine precision.

For all methods, the precision of the amplitudes in Fig
is somewhat lower than that of the frequencies in Fig
because the amplitudes are calculated from the eigenve
of a generalized eigenvalue problem, which in general
less accurate than the eigenvalues. In particular, the di
ence in precision between the frequencies and amplitude
considerably larger for method 1 than for any other meth
so that even for small windows the amplitudes obtained
this technique are the least accurate~see the3 symbols in
Fig. 2!.

B. Zeros of Riemann’s zeta function

It is a peculiar feature of the harmonic oscillator sign
that the density of frequencies is constant, i.e., the preci
of frequencies obtained from a signal of a given length is
same throughout the whole frequency domain. However
typical systems the density of states grows rapidly with
frequency, which means that a longer signal is required
extract higher frequencies. As an example of a system ex
iting this typical behavior, we discuss the Riemann z
function that has served as a mathematical model for p
odic orbit quantization@2,13#. It is well known that, if the
zeros ofz(z) on the critical line Rez5 1

2 are written asz
5 1

2 2 iw, the density of zeros on the critical line can be e
pressed as@13#

g~w!52
1

p (
p

(
m51

`
ln p

pm/2
cos~wm ln p!, ~7!

FIG. 2. Same as Fig. 1 but for the imaginary parts of the am
tudesdk .
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wherep runs over all prime numbers. Equation~7! is for-
mally identical to a semiclassical trace formula withSpm
5wmlnp corresponding to classical actions andApm
5(ln p)/pm/2 corresponding to classical amplitudes. With th
interpretation, the Riemann zeta function can be used a
mathematical model for chaotic dynamical systems, and
Riemann zeros are obtained by harmonic inversion of
d-function signal@2#

C~s!5(
p

(
m51

`
ln p

pm/2
d~s2m ln p!. ~8!

Unlike typical semiclassical trace formulas, Eq.~7! is exact.
As the zeta function has only simple zeros, the amplitudesdk
obtained from the harmonic inversion of the signal~8! must
all be equal to 1.

In Fig. 3 we present our numerical results obtained
application of methods 1 to 4 to extract the~numerically
complex valued! Riemann zeros with Rewk,100. Ideally,
all valueswk should be real. Therefore, the absolute valu
of the imaginary parts of thewk can again serve as a measu
for the accuracy of the harmonic inversion process. For
application of methods 1 and 3 the signal has been
cretized with step widtht50.002 after convolution of the
signal with a Gaussian function with widths50.006.

It is no problem to construct the signal~8! for the Rie-
mann zeros up to quite large maximum valuesSmax because
only prime numbers are used as input. However, the perio
orbit quantization of physical systems usually requires a
merical periodic orbit search that becomes more and m
expensive for longer orbits, especially in chaotic system

i-
FIG. 3. Imaginary parts~absolute values! of locations wk of

zeros of the Riemann zeta function in the frequency wind
@10,100#. Symbols3, 1, ), and ( denote the methods 1 to 4
respectively. Signal lengths areSmax5 ~a! 4.5, ~b! 5.0, ~c! 5.5, ~d!
6.0, ~e! 6.5, and~f! 7.0.
5-4
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SEMICLASSICAL QUANTIZATION BY HARMONIC . . . PHYSICAL REVIEW E 64 056705
where the number of orbits proliferates exponentially w
increasing signal length. Therefore, in practical periodic o
quantizations the given signal length is often rather short
Fig. 3 we present the results for the accuracy of the meth
for harmonic inversion for various signal lengths, increas
from Smax54.5 in Fig. 3~a! to Smax57.0 in Fig. 3~f!. The
frequency windowwP@10,100# is kept fixed.

For a fixed signal length, the zeros up to a certain criti
value can be obtained to a constant precision. Above
critical frequency, the precision decreases rapidly due to
higher density of states. As expected, for all methods
critical frequency increases with growing signal leng
which means that frequencies in regions of higher spec
density can be resolved. Roughly, the critical frequency
determined by the informational uncertainty principle~4!. In
fact, it is slightly higher for the FD methods 1 and 2 than f
the DSD methods 3 and 4. As before, the maximum ac
racy below the critical frequency is obtained by the DS
methods. However, above the critical frequency the precis
yielded by the FD methods is higher.

The lowest zero of the zeta function is located atw
514.1347, not far above the lower boundary of the f
quency window atw510. For the first zeros a decrease
accuracy due to the proximity of the boundary can be se
Evidently, the influence of the boundary diminishes with
creasing signal length. Again, it is considerably more p
nounced for the DSD than for the FD methods. For the lat
it can only be seen in the shortest signals. Using any of
four methods, the boundary effects on the lowest zeros
be removed if the lower boundary of the frequency wind
is decreased tow50.

FIG. 4. Same as Fig. 3 but for the imaginary parts of the m
tiplicities dk .
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Figure 4 presents results similar to those shown in Fig
but for the imaginary parts of the multiplicitiesdk . The ac-
curacy of the results achieved with the different metho
resemble those obtained for the imaginary parts of the
quencieswk , with the exception of method 1~see the3
symbols! that provides amplitudes with significantly lowe
precision.

IV. CONCLUSION

In this paper we have quantitatively determined the ac
racies of four different algorithms for the high-resolutio
harmonic inversion ofd-function signals, by applying all al-
gorithms to two, physically motivated, example signals. F
sufficiently long signals and broad frequency windows t
four methods provide excellent results of very high accura
in the case of the examples selected even close to mac
precision. However, when either the width of the frequen
filter or the signal length is considerably reduced, the ac
racy of the results obtained by the four methods can vary
several orders of magnitude.

Our calculations show that no general clear-cut answe
the question ‘‘Which method is best in all physical situ
tions?’’ is possible. In practice, the window width can b
regarded as a free parameter, i.e., it can usually be ch
sufficiently large to achieve good results before increas
computational effort or numerical instabilities become a
striction. The signal length, on the contrary, is often fixed
at least hard to increase. In such a case the choice of
algorithm for harmonic inversion of the signal will be esse
tial to achieve the optimum results. When the signal lengt
quite at the limit for convergence of the frequencies a
amplitudes, the filter-diagonalization~FD! methods 1 and 2
provide superior accuracy compared to the decimated si
diagonalization~DSD! methods 3 and 4. For signals given
the sum ofd functions, method 2 will often prove to be th
method of choice.

We conclude by noting that harmonic inversion tec
niques can be generalized so as to cope with the analysis
of multidimensional signals, with important applications
other areas of physics@14#. The knowledge gained from th
comparison of methods for one-dimensional harmonic inv
sion in this paper should also serve as a useful guide
future developments and applications of accurate and
cient algorithms for multidimensional high-resolution sign
processing.
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