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Transition State in a Noisy Environment
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Transition state theory overestimates reaction rates in solution because conventional dividing surfaces
between reagents and products are crossed many times by the same reactive trajectory. We describe a
recipe for constructing a time-dependent dividing surface free of such recrossings in the presence of noise.
The no-recrossing limit of transition state theory thus becomes generally available for the description of
reactions in a fluctuating environment.
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Chemical reaction rates are determined by what happens
in a very small fraction of phase space: Such is the premise
of transition state theory (TST). It revolves around the
concept of the transition state (TS), also known as the
activated complex, that is defined by the dividing surface
that best separates ‘‘reactant’’ and ‘‘product’’ regions in
phase space. Actually, the TS is a general structure found
in all dynamical systems that evolve from reactants to
products. In addition to chemical reaction dynamics [1],
it also determines rates in many other interesting systems
such as asteroid capture [2], mass transport through the
solar system [3], the rearrangements of clusters [4], the
ionization of atoms [5], conductance due to ballistic elec-
tron transport through microjunctions [6], and diffusion
jumps in solids [7].

TST is central to the understanding of chemical re-
actions because its radical simplification captures the phys-
ics involved in a pictorial way, but its accuracy hinges on
the so-called ‘‘no-recrossing’’ requirement: If reagents and
products are separated by an abstract hypersurface in phase
space, the rate will be exact if each reacting trajectory
crosses this surface once and only once. Recrossings will
lead to an overestimate of the rate, a problem that occupied
Wigner in the early days of TST [8,9]. While in low-
dimensional systems a solution has been known for a
long time [10], enforcing the no-recrossing condition in
more than 2 degrees of freedom has been an open problem
until very recently [11–13]. It is even more difficult to
uphold for reactions in randomly fluctuating environments
(such as chemical and biological processes in liquids)
where the noise causes the particle to move randomly
back and forth, so that it will typically cross any fixed
dividing surface in phase space many times [14]. To solve
this long-standing problem, many approximate TS struc-
tures have been suggested in the literature [15–21].
Martens [21], in particular, constructed a stationary sto-
chastic separatrix (the collection of all phase-space points
for which the reaction probability is 1=2) that foreshadows
the time-dependent structures to be described here. In some
cases, infinite-dimensional representations of the Langevin
equation [18,22,23], in which the system is coupled to a
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bath of harmonic oscillators, have been used to obtain
approximate infinite-dimensional dividing surfaces that
lead to excellent approximations to the rate [18,24,25].

In this Letter, an exact transition state in a noisy environ-
ment is constructed as a dividing surface which moves so
as to avoid recrossings. For each instance of the noise,
there is a unique trajectory that remains in the vicinity of
the barrier for all time. This trajectory serves as the origin
of a moving coordinate system to which the geometric
structures of the noiseless phase space are attached. The
result is a moving dividing surface, free of recrossings, that
describes a reaction influenced by noise in the same way as
a static dividing surface does in conventional TST. This
construction goes beyond the geometric approach of [21]
by fully taking into account the time-dependence of the
fluctuating force. Indeed, the moving separatrices intro-
duced here determine with certainty if a trajectory will or
will not react.

We illustrate our findings on a reactive system described
by the Langevin equation [26]

�~q ��t� � �r ~qU� ~q��t��� � _~q��t� � ~���t�: (1)

The vector ~q denotes a set of N mass-weighted coordi-
nates, U� ~q� the potential of mean force governing the
reaction, � a symmetric positive-definite friction matrix,
and ~���t� a fluctuating force assumed to be Gaussian with
zero mean. The subscript � represents randomness by
labeling different instances of the fluctuating force. The
latter is related to the friction matrix � by the fluctuation-
dissipation theorem [26]

h ~���t� ~�
T
��t

0�i� � 2kBT�
�t� t0�; (2)

where the angular brackets denote the average over the
instances � of the noise.

The reactant and product regions in configuration space
are separated by a potential barrier whose position is
marked by a saddle point ~qz0 � 0 of the potential U� ~q�.
The reaction rate is primarily determined by the dynamics
in a small neighborhood of ~qz0 [1,16–20], so that the
deterministic force can be linearized around the saddle
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FIG. 1. Phase portrait of the one-dimensional noiseless
damped dynamics corresponding to Eq. (3). The thick line
indicates a possible choice for the no-recrossing surface. The
simple relative dynamics illustrated here is exemplified by the
trajectories in Fig. 2(a).
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point to yield the equation of motion

�~q ��t� � � ~q��t� � � _~q��t� � ~���t� (3)

with a symmetric matrix � given by �ij �

��@2U=@qi@qj� ~q� ~qz0
. Coordinates can always be chosen

so that � is diagonal. It must have one positive eigenvalue
!2

b equal to the squared barrier frequency and N � 1
negative eigenvalues �!2

i , where !i are the frequencies
of transverse oscillations. Including velocity-dependent
forces from, e.g., a magnetic field [5] in this setup would
be straightforward. Note that no restriction on the dimen-
sionality of the configuration space is imposed.

Our aim in the following is to construct a recrossing-free
surface for Eq. (3). The difference,

� ~q�t� � ~q��t� � ~qz��t�; (4)

of two trajectories under the influence of the same fluctu-
ating force, which describes the location of the trajectory
~q��t� relative to the moving origin ~qz��t�, satisfies a deter-
ministic equation of motion. Since this difference is inde-
pendent of noise, there is no need to refer to � in � ~q�t�.
Thus, invariant manifolds and a no-recrossing surface can
be specified for the relative dynamics. These geometric
objects in the noiseless phase space can then be regarded as
being attached to the reference trajectory ~qz��t� while being
carried around by it. They define randomly moving invari-
ant manifolds and a moving no-recrossing surface in the
phase space of the original, noisy system.

The construction outlined above can be carried out for
any reference trajectory ~qz��t� and leads to a multitude of
no-recrossing surfaces, but only one specific surface is
relevant to the reaction dynamics: The crossing of this
surface should signal the transition of the trajectory ~q��t�
from the reactant side to the product side of the barrier. If
the reference trajectory is chosen arbitrarily, it will typi-
cally descend into either the reactant or product wells over
time. However, only a reference trajectory that remains in
the vicinity of the barrier can carry a no-recrossing surface
that actually describes the reaction. Indeed, as shown here,
for each instance of the noise there is a unique reference
trajectory with this property. It represents, in mathematical
terms, an invariant measure of the noisy dynamical system
[27]. We call it the transition state trajectory and hence-
forth restrict the notation ~qz��t� to this privileged reference
trajectory.

We solve Eq. (3) by rewriting it as a first-order equation
in 2N-dimensional phase space with coordinates ~x �

� ~q; ~v�, with ~v � _~q, and diagonalizing its linear part.
Equation (3) then decomposes into a set of 2N independent
scalar equations

_x �j�t� � �jx�j�t� � ��j�t�; (5)

where �j are the eigenvalues of the linear part, x�j the
05830
components of ~x in a basis of eigenvectors, and ��j the

corresponding components of �0; ~���t��.
The components �qj�t� of the relative coordinate (4)

satisfy a noiseless version of (5) with ��j � 0. They grow
or decay exponentially, depending on whether the eigen-
value �j has a positive or negative real part. In N � 1
degree of freedom there is one positive and one negative
real eigenvalue. The phase portrait of the dynamics is
shown in Fig. 1. The eigenvectors span one-dimensional
stable and unstable manifolds of the saddle point. They act
as separatrices between reactive and nonreactive trajecto-
ries. The knowledge of the invariant manifolds allows one
to determine the ultimate fate of a specific trajectory from
its initial conditions. It is also easy to identify lines in the
quadrant of reactive trajectories that are surfaces of no
recrossing. Clearly, the half line �q � 0, with � _q > 0
serves this purpose.

In multiple degrees of freedom, transverse damped os-
cillations must be added to the phase portrait in Fig. 1.
Their presence manifests itself through N � 1 complex
conjugate pairs of eigenvalues �j. For strong damping,
some of the transverse modes can become overdamped,
so that further eigenvalues become negative real. In any
case, there is exactly one positive real eigenvalue which
corresponds to the particle sliding down the barrier. In all
other directions, the dynamics is stable. The eigenvector
corresponding to the smallest negative eigenvalue together
with the unstable eigenvector span a plane in phase space
in which the dynamics is given by the phase portrait of
Fig. 1. The separatrices between reactive and nonreactive
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FIG. 2 (color). A random instance of the TS trajectory (black) and a reactive trajectory (red) under the influence of the same noise in
a system with N � 2 degrees of freedom: the unstable reactive coordinate qu and the stable transverse coordinate qs. The potential is
U�qu; qs� � � 1

2!
2
bq

2
u �

1
2!

2
sq2s . Trajectories are projected onto (a) the reactive degree of freedom, (b) the transverse degree of

freedom, and (c) configuration space. Units are chosen so that !b � 1 and kBT � 1. The transverse frequency is !s � 1:5, and the
friction is isotropic, � � �I, with � � 0:2. The bottom of each column shows the projected trajectories in the corresponding space.
Above this, their time evolution is illustrated using the same axes. The blue cut marks the unique reaction time treact � 8:936 when the
moving TS surface is crossed. Dotted lines in this cut, at t � 0, and at t � 20, indicate the moving coordinate axes centered on the TS
trajectory. These axes are labeled explicitly only at the top face. Dashed lines in the cuts of column (a) show the moving invariant
manifolds. No TS is indicated in column (b) because the qs � vs subspace lies entirely within the moving TS surface. Thick green dots
indicate repeated crossings of the stationary TS surface qu � 0. Green lines in the top face of all three columns show the reactive
trajectory in relative coordinates � ~q, � ~v [not to scale in (a), for graphical reasons]. The typical behavior of a reactive trajectory shown
in Fig. 1 is visible in the top face of column (a).
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trajectories that were identified for the one-dimensional
dynamics together with the stable transverse subspace
form separatrices in the high-dimensional phase space. In
a similar manner, a no-recrossing surface in the full phase
space is spanned by a no-recrossing curve in the plane and
the transverse directions.

Using the Green function technique and assuming
Re�j < 0, we find a particular solution

xsz�j�t� �
Z 0

�1
e��j���j�t� ��d� (6)
of Eq. (5). The general solution consists of (6) plus an
exponential term that must be suppressed to keep the
solution bounded as t ! �1. Similarly, for unstable com-
ponents with Re�j > 0, the only solution to (5) that re-
mains bounded for t ! �1 is
05830
xuz�j�t� � �
Z 1

0
e��j���j�t� ��d�: (7)

Eqs. (6) and (7) specify all the phase-space components of
the unique random trajectory—viz. the TS trajectory—
that remain bounded in the remote future as well as in the
distant past. Its configuration-space representation is ob-
tained by transforming back to position and velocity coor-
dinates. Because the components ��j of the fluctuating
force are Gaussian random variables with zero mean, so
are the components (6) and (7) of the TS trajectory. Their
joint probability distribution can readily be specified
through the explicit calculation of their cross-correlation
function by insertion of the correlation function (2) of the
noise.

As described above, the TS trajectory serves as the
origin of a moving coordinate system to which the geo-
metric structures in the noiseless phase space are attached.
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This is illustrated in Fig. 2 for N � 2 degrees of freedom.
The phase space is four-dimensional and already exhibits
all the salient features of the dynamics in arbitrarily high
dimensions. The figure compares a TS trajectory with a
reactive trajectory under the influence of the same noise.
The trajectory approaches the TS trajectory from the re-
actant side qu < 0, remains in its vicinity for a while, and
then wanders off to the product side. Because the moving
invariant manifolds of the TS trajectory are known, it can
be predicted already at time t � 0 that the trajectory ac-
tually will lead to a reaction instead of returning to the
reagent side of the saddle.

The reactive trajectory crosses the space-fixed TS sur-
face qu � 0 several times before it finally descends on the
product side. The moving TS surface �qu � 0, by contrast,
is crossed only once, at the reaction time treact indicated by
blue lines. That this is actually the case can be seen from
the curves in the top faces of each column, which indicate
the noiseless relative motion � ~q�t�, � ~v�t� between the TS
trajectory and the reactive trajectory. The relative coordi-
nates show, as expected, the hyperbolic motion known
from Fig. 1 in the unstable degree of freedom, a damped
oscillation in the stable transverse degree of freedom, and a
superposition of the two in the configuration-space projec-
tion in Fig. 2(c).

The derivations presented here are based on the assump-
tion (2) of white noise. If the noise were correlated, the
friction would contain memory and the dynamics would
consequently be significantly more complicated [26]. The
construction of the TS trajectory can be carried out none-
theless. It leads to integral formulas similar to (6) and (7),
with the eigenvalues �j given by the Grote-Hynes equation
[18,28]. These generalizations will be presented in a forth-
coming publication.

In recent simulations [29,30], ensembles of transition
paths, i.e., trajectories connecting reactants to products,
have been shown to be useful in computing rates even for
high-dimensional systems. Our identification of the TS
trajectory provides additional insight into the geometry
of reaction dynamics that complements the transition
path ensemble method. While the TS trajectory introduced
here is not itself a transition path, it carries a dividing
surface that is transverse to all transition paths and is
crossed once and only once by each of them. It is no harder
to compute than a typical trajectory. This is to be con-
trasted with most TST approaches in which finding a no-
recrossing dividing surface requires the onerous solution of
a highly nonlinear problem.

In summary, to generalize the formalism of TST to
reactive systems driven by noise, a moving surface has
been constructed that is crossed once and only once by
each transition path. This surface is therefore suited to take
over the role of the well-known and widely applied static
dividing surface of conventional TST in a broader time-
dependent setting.
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Rev. Lett. 86, 5478 (2001).
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