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Rayleigh-Bénard and Bénard-Marangoni instabilities have been studied
for roughly a century and have served as prototypes for the transition to
temporal chaos as well as spatiotemporal chaos of an initially stationary pat-
tern. Using the Marangoni effect [1,2] with an horizontal temperature gra-
dient to drive the system out of equilibrium, one can observe propagating
waves instabilities: hydrothermal waves [3]. This paper presents different in-
stability regimes of thermocapillary flows in extended geometry, focusing on
propagating waves. We first introduce thermocapillary flows, and give some
indications about physical effects involved. We then review experimental re-
sults in cylindrical geometry and illustrate how rich those systems are.

1 Thermocapillary flows

Thermocapillary effect arises when a temperature gradient is applied to a fluid
with a free surface [2,4]. We consider here a disk of fluid with a free surface
and an horizontal temperature gradient. The free surface is surrounded by
ambient air.

1.1 Non-dimensional numbers

The fluid is characterized by its Prandtl number Pr = ν/κ which is the
ratio of the diffusion coefficient of velocity to the one of temperature. But
others numbers are important to describe the flow regime. We write ρ the
density and σ the surface tension of the fluid. Those quantities depend on
the temperature T , and one can define

α =
1
ρ

∂ρ

∂T
as well as γ = − ∂σ

∂T
.

α is always positive. γ is also positive for pure fluids: when the temperature
increases, interactions between molecules decrease, and so does the surface
tension.

The existence of a free surface, and therefore surface tension, implies that
one can compute a capillary length λc. This quantity represents the spatial
extent on which surface energy is comparable to bulk energy —e.g. gravity—
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ie, it represents the spatial extend on which surface tension effects are relevant
for a layer of fluid at rest. In the presence of gravity, the capillary length reads:

λc =
√

σ

ρg
,

where g is the magnitude of the gravity field.
When the fluid depth h is lower than λc, surface tension is predominant

over gravity, and conversely. In fact, the ratio of h to λc is nothing less than
the static Bond number Bo, also defined as the ratio of the surface tension
forces to gravity:

Bo =
ρgh2

σ
=

(
h

λc

)2

.

When the temperature is not uniform, buoyancy is present — represented
by the Rayleigh number Ra — as well as thermocapillarity — represented by
the Marangoni number Ma. Ra is constructed as the ratio of buoyancy forces
to viscous forces and Ma as the ratio of thermocapillary forces to viscous
ones. If ∆T/l is the temperature gradient applied over distance l, they read:

Ra =
αgh4

ν

∆T

κl
and Ma =

γh2

ρνκ

∆T

l
.

The dynamical Bond number Bd is then defined as the ratio of thermocap-
illary forces to thermogravity forces:

Bd =
Ra
Ma

=
ραgh2

γ
=

(
h

λth

)2

.

This defines another length scale λth = λc

√
γ/(σα).

At ambient temperature (20◦C), one has λc = 2.8mm and λth = 88.5mm
for water. For the silicon oil we use, λc = 1.4mm and λth = 3.0mm.

This dimensional analysis suggests the existence of different flow regimes.
It turns out that those regimes are observed in the experiments as giving rise
to different pattern forming instabilities, as depicted in Fig. 1.

For higher fluid depth h > λth, i.e. for thermogravity flows, one observes
stationary patterns of rolls [5]; the axis of those rolls are parallel to the tem-
perature gradient; those rolls have been observed in cylindrical geometry as
well [6]. We are interested in wave patterns that appear in thermocapillary
flows for h < λth, among them are hydrothermal waves. Depending on the
fluid depth, two types of hydrothermal waves are observed: type 1 (HW1)
for medium fluid depth, and type 2 (HW2) for smaller fluid depth. Section 2
presents experimental observations of hydrothermal waves in the thermocap-
illary regime.

Finally, one also has to consider aspect ratios to discriminate if confine-
ment is important or not. In the following, we assume large horizontal aspect
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Fig. 1. Different regimes for thermocapillary and thermogravitational flow, depend-
ing on the fluid depth h. Limits are approximated by h = λc and h = λth. We have
precised instabilities into stationary rolls or hydrothermal waves which are observed
experimentally in those different regimes. For hydrothermal waves, two types are
observed (type 1, HW1, and type 2, HW2).

ratios, i.e. that the two horizontal directions (parallel and perpendicular to
the temperature gradient) are much larger then the fluid depth h. In this
case, confinement is negligible and we have an extended system in the two
horizontal directions, as in the rectangular geometry of [7]. We are interested
here in results obtained in cylindrical geometry. The curvature is then an
additional parameter that can be defined locally; as we will discuss in § 2.3,
one of its effects is to localize the wave-patterns [8].

1.2 Physical mechanisms

Let’s now briefly give an heuristic description of instability mechanisms in a
fluid layer submitted to a vertical or horizonal temperature gradient. Oblique
temperature gradients have effects close to horizontal ones [9].

Vertical temperature gradient: Bénard-Marangoni instability Pear-
son [10] gave a simple mechanism to explain hexagons formation in Bénard-
Marangoni convection. In that case, the temperature gradient is purely verti-
cal and the fluid is at rest when the system is on the thermodynamic branch.
If one considers a positive temperature perturbation at the surface of the
fluid, then one deduces that due to a locally smaller surface tension at that
point, the fluid is flowing away from that point. Due to mass conservation,
this implies that fluid is flowing up to the point at the surface, from the bulk
which is at a higher temperature. So the perturbation is amplified: there is
instability.
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Horizontal temperature gradient In that case a basic flow exists when
the system is on the thermodynamic branch, and we expect an instability
into propagating waves. Giving a physical mechanism for propagating waves
is a more tedious exercise than it is for stationary patterns. In the case of
thermocapillary flows, the time-oscillatory nature of the instability comes as
a result of the existence of well-defined profiles for the temperature and the
velocity in the basic flow. A relevant mechanism has to involve features from
those profiles such as the local sign of the horizontal and vertical tempera-
ture and velocity gradients. Smith [11] expressed two different mechanisms
depending on the Prandtl number. Each of those is based on the Pearson
mechanism, but whereas this former is Pr independent, Smith considered
the extreme cases of a flow dominated by inertial effects (Pr → 0) or by
viscous effects (Pr → ∞). The relaxation of temperature and velocity per-
turbations are then occurring on very different time scales. Depending on
the signs of the underlying temperature and velocity gradients, an oscilla-
tory behavior is shown to be unstable and to propagate along the horizontal
temperature gradient (small Pr), or perpendicularly to it (large Pr).

It is worth mentioning that hydrothermal waves are an instability mode
present in the absence of surface deflections, i.e., assuming that the free
surface is non-deformable. Taking into account surface deflections as in [12]
may lead to another instability mode. Our experiments suggest that fluid
depth variations are small compared to the fluid depth so that they can be
neglected. The stability analysis of [3,13] is then valid.

2 Experiments

We now present some experimental results, focusing on extended cylindrical
geometries, with large horizontal aspects ratios. A sketch of the experimental
cell is reproduced in Fig. 2. The setup allows us to work at various fluid
depths h while always having no meniscus on the side walls [14] and thus
a perfectly homogeneous fluid depth h. We define the control parameter as
∆T = Text − Tint. This quantity can be positive or negative, and both cases
are not equivalent, due to the presence of curvature [8].

We use silicon oil of Prandtl number 10 and work with h < λth = 3mm to
have hydrothermal waves. Both cases h ≷ λc = 1.4mm are studied. Figure 3
gives a phase diagram of the experiment. Detailed observations and precise
measurements have been performed for h = 1.2mm (small Bo) and h =
1.9mm (large Bo) for both positive and negative ∆T and are reproduced
on Fig. 3, left. The inset of Fig. 3 (right) shows accurate determinations of
HW1 and HW2 instability onsets for ∆T > 0. The onset of each mode is
determined by searching at which value of ∆T the squared amplitude of the
corresponding pattern is vanishing, following a linear law. By doing so, we
also check that each instability is supercritical.
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Fig. 2. Sketch of the experimental cell. External diameter is 135mm, fluid depth h
is of order 1 mm and ∆T = Text − Tint is of order 10K.

Fig. 3. Experimental phase diagram in a cylindrical cell. Left: general view. Right:
precise measurements of HW1 (◦) and HW2 (�) onsets.
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We report in table 1 the experimental values of the critical temperature
difference for the wave instabilities. The critical values of the Rayleigh Ra
and Marangoni Ma numbers are also reported.

fluid depth ∆Tc Rac Mac pattern

h = 1, 2 mm 7,8 K 80 500 HW2
18 K 190 1150 HW1

h = 1, 9 mm 11 K 735 1760 HW1
−5, 2 K 350 830 flowers
−10 K 670 1600 HW1

Table 1. Critical values at the onset of time-oscillatory patterns.

As can be seen on the phase diagram, the system exhibits a large variety
of pattern-forming instabilities. This richness cannot be inferred from the
dimensional analysis of the previous section. The next paragraph details each
of the observed structures.

2.1 Tint < Text

Large Bond number (large fluid depth) For higher Bond numbers, the
basic thermocapillary flow composed of a single large roll is stable as long as
∆T < 8.5K. For ∆T > +8.5K a structuring of the basic flow occurs: concen-
tric corotative rolls exist. These rolls first appear close to the hot side of the
container, then invade all the cell, as represented on Fig. 4. For higher temper-
ature gradient (∆T > +11K), hydrothermal waves appear. The correspond-
ing pattern is composed of spiraling waves. Two realizations are presented in
Fig. 5. A source of waves with a large spatial extension may be present, as
well as a (smaller) sink, and those objects separate two regions of right- and
left-turning waves. On some realizations, a single wave (right- or left-turning)
is present. In both cases, the two components of the local wavenumber are
proportional, and their ratio is roughly constant anywhere in the cell and
does not depend on the control parameter. Those hydrothermal waves are
called HW1. They are also observed in rectangular geometries [5,7,15] and
are well described by linear stability analysis [3,13].

HW1 propagate with an angle from the temperature gradient. The radial
propagation, i.e. the propagation along the temperature gradient, is always
from the cold center (Tint) towards the hot perimeter (Text = Tint + ∆T ).
The orthoradial propagation is either to the right or to the left, both cases
having equal probability.

Small Bond number (small fluid depth) For lower Bond numbers, and
increasing the temperature difference ∆T from 0K, no structuring of the
basic flow by stationary corotative rolls is observed. The first instability mode
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Fig. 4. Shadowgraph images for h = 1.9mm and cold center. Stationary corotative
rolls appear on the hot side of the container (left: ∆T = +10K), and invade all the
radial extension for higher temperature gradient (right: ∆T = +11.75K).

Fig. 5. Shadowgraph images for h = 1.9mm and cold center. left: ∆T = +13K,
right: ∆T = +14.25K. Hydrothermal waves of type I (HW1) in the shape of rotating
spirals are appearing on top of the stationary rolls pattern. On the left, the pattern
is composed of a uniform right-turning spiral.

appears for ∆T > 7.8K; it is a bidimensional hydrothermal wave (HW2) [14]
localized near the center of the cell. At onset, the wavevector of the pattern
is purely radial and the propagation is from the cold center towards the hot
perimeter. As the control parameter is increased, the orthoradial component
is growing from zero. So the spatial structure of the HW2 mode evolves from
a pulsing target to a spiraling pattern. Increasing the temperature gradient
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Fig. 6. h = 1.2mm and cold center. Hydrothermal waves of type II (HW2). Close
to onset (left: ∆T = +8.5K), the pattern is composed of pulsing targets and the
wavevector is purely radial. Further in the supercritical region (right: ∆T = +12K),
the wavevector has an additional azimuthal component. No stationary pattern is
present. Arrows on the schematics represent the phase velocity.

also results in an extension of the domain occupied by the HW2 pattern
(Fig. 6).

For larger temperature gradients, HW1 appear in the whole domain of the
cell where HW2 have a small or vanishing amplitude (Fig. 7). Measurements
of the local frequency and of the local wavenumber along the radial direction
allow one to distinguish HW1 and HW2 instability modes. We have measured
the onset of HW1 on top of the HW2 pattern, and shown that the two
modes do not interact close to the onset of the second one (HW1). For higher
temperature gradient, interactions occur and the overall pattern is spatio-
temporally chaotic.

2.2 Tint > Text

When the center is heated with respect to the outside perimeter, the dynamics
is less coherent and more localized near the hot center; the phase diagram in
the region ∆T < 0 is richer.
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Fig. 7. h = 1.2mm and cold center, ∆T = +20K. HW2 are localized near the cen-
ter. The HW1 pattern is either composed of right- and left-propagating waves (left
photograph) or of a single wave (right photograph). Both configurations are unsta-
ble and the system oscillates randomly between the two regimes. The schematics
detail propagation directions and source/sink positions for each realization. The
radial propagation is always from the center and towards the perimeter.

Large Bond number (large fluid depth) For −2K < ∆T < 0K, the basic
flow is stable. The first instability is stationary, and as in the case ∆T > 0, it
consist of a structuring of the base flow by corotative rolls. Those rolls appear
on the hot side of the container, i.e. around the inner cylinder for |∆T | > 2K
(Fig. 8, left).

For |∆T | > 5.1K, a time-oscillatory instability develops around the hot
center. At onset, we observe a rotating hexagon (Fig. 8, right). When the
temperature gradient is increased, each corner of the hexagon moves away
from the center, and the pattern takes the shape of a flower (Fig. 9). While
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increasing |∆T |, one observes an elongation of the petals, then the apparition
of a seventh petal (due to a modulational instability like the Eckhaus insta-
bility in the azimuthal direction). Outside the flower, a structure is present
with the same azimuthal wavenumber and it evolves with |∆T | to form visible
branches that rotate at the same angular frequency as the flower.

Fig. 8. h = 1.9mm and hot center. left: ∆T = −5K, Stationary corotative rolls
are present close to the hot center of the cell. right: ∆T = −5.2K, same stationary
rolls, with an additional hexagon turning around the center.

For ∆T < −9K, HW1 appear. Again, their radial propagation is from
the cold side towards the hot side; so the HW1 pattern is such that energy
flows from the external perimeter to the center. As we will detail further,
this situation is not confortable and the structure has a strong tendency to
be incoherent. Fig. 10 presents a spatio-temporally chaotic realisation for a
large value of the control parameter. Stationary rolls are visible, and HW1
are barely recognizable.

Small Bond number (small fluid depth) First, for small |∆T |, only
the basic flow is observed. For ∆T < −6K, corotative rolls appear near
the center. Their wavelength is small because it scales with the fluid depth
which is small in that case. The amplitude of this stationary pattern is small
and the corresponding shadowgraphic signal is very weak. Then, for ∆T <
−6.9K, spiral waves appear on top of the corotative rolls. We believe those are
hydrothermal waves. Like HW2, they are localized near the center and their
radial and azimuthal wavenumbers are not constant in space. An example
is reproduced in Fig. 11, left. The radial component of the wavevector is
pointing toward the center, and the pattern is a left-turning wave. So the
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Fig. 9. h = 1.9mm and hot center. left: ∆T = −5.6K, a six-petals flower is turning.
right: ∆T = −7K, an additional wavelength has appeared, as well as branches in
between the petals, outside the flower.

Fig. 10. h = 1.9mm and hot center; left: ∆T = −15.0K, right: ∆T = −20.0K.
Hydrothermal waves of type 1 have appeared on top of the flower pattern. Because
the radial component of the HW1 wavevector is pointing toward the center of the
cell, the spatial coherence of the resulting structure is small, and the overall pattern
is spatio-temporally chaotic.
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radial direction of propagation is reversed compared to an HW1 (or HW2)
pattern of the same chirality obtained for ∆T > 0.

Fig. 11. h = 1.2mm and hot center. left: ∆T = −8K, left-turning spiral waves.
right: ∆T = −11K, right-turning spiral waves and radii. Radial propagation of the
spirals is from the external perimeter towards the inner plot. (Radii are not shown
on the schematics).

For ∆T < −9.5K, another propagating structure appear around the cen-
ter of the cell. This structure has a wavevector which is purely azimuthal,
so we label it ”radii” as well. They are visible on Fig. 11, right, very close
to the inner cylinder. We observed that radii have a frequency close to twice
the one of hydrothermal waves. The azimuthal wavenumber is the same so
the azimuthal phase velocity of the radii is twice the one of the spirals. This
allows us to conclude that they are different instabilities, though they may
be 1:2 resonant. The strong localization of the radii suggests that it may be
an instability of the hot boundary layer.

2.3 Curvature and localization

We can interpret to some extent the above observations using local curvature
as introduced in [8]. The first effect of curvature is to distribute the tem-
perature with an hyperbolic profile in the radial direction. This implies that
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the temperature gradient is larger in magnitude close to the center. For this
reason, it is clear that the region close to the center becomes supercritical
before the rest of the cell. This explains why most of the wave-patterns we
observe appear first close to the center, and afterwards in the bulk.

A second effect of curvature is to constraint the wavevectors. Close to the
center, the azimuthal direction is not as extended as it is further from the
center. This implies that to keep a constant value of the wavenumber, the
pattern has to increase the number of wavelengths in the azimuthal direction,
and reduce the wavelength in the radial direction.

Moreover, in the case of hydrothermal waves, and in particular of HW1,
the radial propagation is always from the cold to the hot side. In one-
dimensional geometries [17–19], it has been checked that phase and group
velocities point towards the same direction; this property seems satisfied as
well in 2D. When the center is colder than the outside, the pattern propa-
gates from the center, and therefore spreads in the azimuthal direction. This
can be achieve while keeping the spatial coherence. In the opposite case when
the outside perimeter is colder than the center, the propagation is from the
outside towards the inside, and the information (or energy) of the structure
has to converge from an extended region to a confined one; in that case,
any inhomogeneity of the structure (wavenumber, frequency or amplitude)
in the azimuthal direction will result in a destruction of the coherence of the
converging process. For example, if the amplitude of the pattern is locally
smaller at some given angle in the cell, the equivalent of a Bénard cell at
that point will be squizzed by neighboring cells of larger amplitude, which
will result in a decrease of the wavelength, and therefore of the amplitude:
there is instability. This will ultimately result in the disappearance of the cell
(i.e., of one wavelength), and the nucleation of modulations of, e.g., the am-
plitude. Those modulations will be amplified by the same mechanism while
the pattern converges towards the center. All those events occur incoherently
in time and in space, giving rize to a turbulent pattern more easily when
Tint > Text than in the reverse case.

2.4 About rectangular geometries

We have also conducted experiments in rectangular geometry. In that case,
positive and negative temperature gradients are equivalent, and one recovers
the same behaviors: HW1 for high Bo and HW2 for low Bo. As in previous
experiments [5,15,16], we found that corotative rolls appear only for large
Bo, and prior to the HW1 instability; the HW1 are emitted by ”line”-sources
which extend over the whole extension between the hot and the cold sides.
For smaller depth h < λc, HW2 are observed; they are emitted by ponctual
sources located on the cold side of the container [5]. Moreover, for large fluid
depth and therefore large Bond number, hydrothermal waves instability is
replaced by the stationary instability into parallel rolls with axis aligned
with the temperature gradient, as presented in Fig. 1.
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3 Applications

Many quantitative results have been obtained for hydrothermal waves, on
the theoretical side (linear stability analysis [3,8,9,13]) as well as on the ex-
perimental side [4,5,7,14–16]. For more fundamental studies, hydrothermal
waves represent an ideal experimental nonlinear waves system. As Bénard
cells, hydrothermal waves are not just nice-looking; we have used them to
study the transition to spatio-temporal chaos of a traveling waves system.
In one horizontal dimension, they are well modeled by a complex Ginzburg-
Landau equation [17,18]. As their group velocity is finite, they are subject to
the convective/absolute distinction [17,19], not only for their primary onset,
but also for the onset of their secondary instabilities.

One century after the pioneering work of Henri Bénard, thermocapillary
flows are still a promising field of research not only on the hydrodynamical
point of view — including challenging fundamental and applied industrial
studies [1] — but also as a robust model for the study of nonlinear waves and
spatiotemporal chaos.
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