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We apply the iterated edge state tracking algorithm to study the boundary between laminar and
turbulent dynamics in plane Couette flow at Re=400. Perturbations that are not strong enough
to become fully turbulent nor weak enough to relaminarize tend towards a hyperbolic coherent
structure in state space, termed the edge state, which seems to be unique up to obvious continuous
shift symmetries. The results reported here show that in cases where a fixed point has only one
unstable direction, as for the lower branch solution in in plane Couette flow, the iterated edge
tracking algorithm converges to this state. They also show that choice of initial state is not critical,
and that essentially arbitrary initial conditions can be used to find the edge state.
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Plane Couette flow and pipe flow belong to the class
of shear flows where turbulence occurs despite the per-
sistent linear stability of the laminar profile [1]. Trigger-
ing turbulence then requires the crossing of two thresh-
olds, one in Reynolds number and one in perturba-
tion amplitude. Guidance on the minimum Reynolds
number is offered by the appearance of exact coherent
states: once they are present, an entanglement of their
stable and unstable manifolds can provide the neces-
sary state space elements for chaotic, turbulent dynamics
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Since the exact
coherent states appear in saddle-node bifurcations, it is
natural to associate the upper branch (characterized by a
higher kinetic energy or a higher drag) with the turbulent
dynamics and the lower branch with the threshold in per-
turbation amplitude [8, 15, 16, 17, 18]. In plane Couette
flow this scenario seems to be borne out: at the point of
bifurcation, at a Reynolds number of about 127.7, the up-
per branch state is stable and the lower one has only one
unstable direction [6, 8, 18]. At slightly higher Reynolds
numbers, the upper branch undergoes secondary bifurca-
tions which could lead to the complex state space struc-
ture usually associated with turbulent dynamics. For the
lower branch, on the other hand, there are no indications
of further bifurcations. Since it has only one unstable
direction, its stable manifold can divide state space such
that initial conditions from one side decay more or less di-
rectly to the laminar profile, whereas those from the other
side show some turbulent dynamics. Such a description
of the transition along the lines of the phenomenology
of saddle-node bifurcations has been advanced by Toh
and Itano [15] for plane Poiseuille flow, by Viswanath
and Wang et al, [18, 19, 20] for plane Couette flow and
Kerswell and Tutty for pipe flow [21].

Empirically, one may study the boundary between
laminar and turbulent dynamics by following the time

evolution of flow fields and thereby assigning a lifetime,
i.e. the time it takes for a particular initial condition to
decay towards the laminar profile. Increasing the am-
plitude of the perturbation one notes changes between
regions with smooth variations in lifetimes (where trajec-
tories decay rather directly) and regions with huge fluc-
tuations showing a sensitive dependence on initial con-
ditions, since neighboring initial states can have vastly
different lifetimes [22, 23, 24, 25]. A point on the border
between laminar and chaotic regions was said to lie on
the edge of chaos in [24]. A trajectory starting from such
a point will neither decay to the laminar state nor swing
up to turbulence: it will move in regions intermediate
between laminar and turbulent motion. All points vis-
ited will lie in the edge of chaos, and can be identified by
the above search using suitable initial conditions. What
is interesting is that trajectories moving around in this
edge of chaos are dynamically attracted to a subset of
state space. This subset is invariant under the flow and
attracting for initial conditions within the edge of chaos:
we call it the edge state. It is only a relative attractor,
since it is unstable against perturbations that lead out-
side the edge of chaos.

The connection between this concept and the saddle-
node approach described before is straightforward: if
the boundary between laminar and turbulent regions is
formed by the stable manifold of a saddle state, then the
manifold coincides with the edge of chaos, and the edge
state is the saddle state itself. This is possible only if the
saddle state has a single unstable direction. If further
directions are unstable, the edge state will not be a fixed
point but a periodic orbit or a chaotic attractor: this
seems to be the case in certain low dimensional models
and in pipe flow [25, 26].

A trajectory in the edge can be bracketed by initial
conditions on the laminar and the turbulent side, i.e.
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initial conditions which eventually decay or become tur-
bulent. Technically, if we have an initial condition u that
becomes turbulent, then we study, with uL the laminar
profile, the familiy of initial conditions

uλ = uL + λv (1)

For λ = 1, this is just the continuation of the previ-
ous trajectory. Reducing λ the initial conditions move
closer to the laminar profile and will not become tur-
bulent. Therefore, one can find an interval of λ-values
bounded at one end by a trajectory that becomes tur-
bulent and at the other by one that returns directly to
the laminar profile. Bisecting in λ we can focus on tra-
jectories which live for a substantial time interval with-
out becoming turbulent or decaying towards the laminar
profile. Since the two trajectories separate exponentially,
they are followed for a finite time only, and the bisection
is repeated several times (see [15, 20, 24, 25] for descrip-
tions of the method and Fig. 1 for an illustration for
plane Couette flow.) Different initial conditions can be
expected to evolve towards the same edge state, unless
there should be several, coexisting ones.

The tracking of the dynamics in the edge without the
requirement of an a priori knowledge of the hyperbolic
structure offers several exciting possibilities: first of all,
it allows to study whether the dynamics in the edge is
indeed attracted to some invariant flow structures. In
principle, as the famous examples of Julia and Mandel-
brot sets [27], and the findings for a simple model in [24]
show, the dynamics in the edge could be persistent and
periodic or even chaotic. Secondly, the convergence of the
algorithm only requires the edge state to be an attracting
set, without further assumptions about its nature (fixed
point, periodic orbit or chaotic attractor). Thirdly, the
rate of separation gives valuable dynamical information,
as it limits the time interval over which the dynamics
will be close to this edge state in numerical or exper-
imental situations, unless further measures such as the
edge tracking algorithm are implemented. The applica-
tion to plane Couette flow given here demonstrates the
versatility of the method and allows to connect it to the
ideas about lower branch solutions advocated in [18].

On the numerical side, we solve the Navier-Stokes
equations using a Fourier-Chebyshev-τ scheme [28, 29].
The flow domain is set to be 2 units high, 2π units wide
and 4π units long, and periodically continued in spanwise
and downstream direction. The coordinate system is cho-
sen such that x, y and z correspond to the downstream,
spanwise and wall-normal directions, respectively. We
use 64 Fourier modes in x- and 32 in the y-direction, and
25 Chebyshev modes in the z-direction. The equations
for the wall-normal components of velocity w and vor-
ticity ωz were solved and the remaining components of
velocity were computed by making use of the incompress-
ibility condition∇·u = 0. The code is fully dealiased and
was verified by reproducing the linear eigenvalue spec-
trum and the turbulent statistics. The Reynolds number
is based on half the channel height and half the velocity

FIG. 1: (Color online) Time traces of the perturbation energy
for three typical initial conditions, followed over several refine-
ments in the edge-tracking algorithm. The abscissa gives the
time in units of h/U0 and the ordinate the energy per volume.
The solid lines are orbits that escape to the turbulent side,
the dashed ones decay. Time zero corresponds to the time
where the edge tracking algorithm starts.

difference between the plates. Units are chosen such that
the velocity of the top plate is U0 = 1 and time is mea-
sured in units of h/U0, where h is half the height of the
channel. All calculations shown here are for a Reynolds
number Re = U0h/ν = 400.

The time traces in Fig. 1 show that independent of
the initial condition the edge tracking algorithm con-
verges to one with constant energy. The initial and fi-
nal states shown in Fig. 2 emphasize the very different
topologies in the initial conditions, and the coincidence
in the final states, modulo obvious translational shifts in
the downstream or spanwise direction. Wang et al [18]
suggested that this state should coincide with a particu-
lar lower branch solution. Their state is similar to, but,
as pointed out by F. Waleffe (private communication),
not identical to the state found here. Introducing the
wavenumbers α and γ for the structures, so that the pe-
riods in the downstream and spanwise direction are 2π/α
and 2π/γ, the state found by the edge tracking algorithm
is (α, γ) = (0.5, 2), whereas [18] suggested a state with
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FIG. 2: (Color online) Isosurfaces for vx = 0 for the three
trajectories shown in Fig. 1. The left column shows the initial
state taken from the turbulent run, the right column the final
state obtained after iteration times 1568, 1250 and 2100. Note
the reduced fluctuations. The final states coincide up to a
shift in the downstream direction.

FIG. 3: (Color online) Bifurcation diagram for three pairs
of lower/upper-branch equilibrium solutions, with (α, γ) =
(0.5, 1), (0.5, 2) and (1, 2). The drag D is the wall drag nor-
malized by the drag of laminar flow at the same Reynolds
number. For Re = 400, the (0.5, 2)-state has the lowest drag.

(α, γ) = (0.5, 1). In order to explain this difference, we
show in Fig. 3 the bifurcation diagram for three states
that fit into the periodic domain. This diagram shows
the (0.5, 2)-state to be on the edge for Re = 400. How-
ever, in view of discussion about the number of unstable
directions, we need to verify that this state does not have
more than one unstable direction.

Fig. 4 shows the (α, γ) = (0.5, 1), (0.5, 2) and (1, 2)
states and their eigenvalue spectra. The eigenvalues were
computed with Arnoldi iteration on a Nx × Ny × Nz =
32 × 49 × 64 grid. Recomputing on 24 × 35 × 48 grid
confirmed their accuracy to three digits. Note that

Ny/Ly = 4Nx/Lx, making the spatial resolution four
times finer in y than in x. This is best for the problem at
hand because the Fourier spectrum is far from isotropic.
All states have two neutral eigenvalues (not shown) from
the neutral shifts in the periodic directions downstream
and spanwise. The number of unstable directions (where
complex eigenvalues come in pairs and count as two di-
rections) are 4, 1 and 5 for the states (α, γ) = (0.5, 1),
(0.5, 2) and (1, 2), respectively. Thus only the (0.5, 2)
state has only one unstable direction, consistent with
the observed convergence of the edge state tracking algo-
rithm.

The initial conditions used here are typical in the sense
that they are taken from a turbulent velocity field. Pre-
vious studies have focused on initial conditions with cer-
tain properties, such as modulated downstream vortices
or oblique waves. It seems that all of them can be used to
track the edge of chaos, and that all converge to the same
invariant edge state, modulo translational symmetries.

The observation that the application of the refined
edge tracking method to plane Couette flow converges
to the lower branch solution, independent of initial con-
ditions, also has implications for the observations on pipe
flow: the fact that no steady or travelling wave invariant
object is found suggests very strongly that the invariant
object is not simple, in the sense that it has more than
one unstable direction, resulting in a chaotic edge state.
Obviously, if it is chaotic, there will be simpler objects
embedded, and the coherent travelling waves identified
by Pringle and Kerswell [30] could be first examples of
such structures.

To summarize, the refined edge tracking algorithm ap-
plied here to plane Couette flow in a parameter range
where the lower branch solutions has a stable manifold
of codimension 1 confirms the expectations based on the
saddle node bifurcation scenario, in that it does converge
to the lower branch solution known from the work of Na-
gata, Busse and Clever [6]. This confirms the robustness
of the algorithm and demonstrates that it is capable of
identifying the edge state as the relative attractor in the
edge of chaos. Specifically, if the edge state has only one
unstable direction it manages to find the corresponding
invariant coherent state, since only the energy content is
controlled. Conversely, if it does not converge to a simple
invariant object this must be due to the presence of more
than one unstable direction. Of course, if the edge state is
dynamically non-trivial and chaotic (i.e. neither a steady
state nor a travelling wave) then it will contain simpler
periodic or relatively periodic structures, but they will
have more than one unstable direction so that their sta-
ble manifold has codimension higher than one and cannot
divide state space. This seems to be the case for all co-
herent structures observed thus far in pipe flow. The
versatility of the method immediately suggests applica-
tions to a variety of other shear flows where laminar and
turbulent dynamics coexist.

We thank Fabian Waleffe for his helpful comments
and for his identification of the differences in the edge
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FIG. 4: (Color online) Eigenvalue spectra (top row) and velocity fields (bottom row) for the states (from left to right) (α, γ) =
(0.5, 1), (0.5, 2) and (1, 2) at Re = 400.
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