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Semiclassical analysis of long-wavelength multiphoton processes:
The periodically driven harmonic oscillator
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The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular
electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a
nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is
obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-
Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms,
a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic
oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to
demonstrate that for the oscillator case there are no multiphoton resonances.

DOI: 10.1103/PhysRevA.66.053402 PACS nuntder32.80.Rm, 32.80.Wr, 03.65.Sq

[. INTRODUCTION The paper is organized as follows. In Sec. I, a review of

the quasiadiabatic approach is given. In Sec. lll, this method

For a number of reasons, there has been a long standinig applied to the general problem of the vector potential cou-
interest in multiphoton processes involving atomic and mo-Pling of radiation to atomic and molecular electrons with the
lecular electrons. In this paper, the focus is on intense beanfdydberg case given explicitly. It is shown that the Goeppert-

of long wavelength photons, such as microwave irradiatiorMayer gauge provides an exact conversion to an auxiliary
of Rydberg atoms. Experiments have been done in this corfquation of the electric dipole coupling form when the radia-
text and a number of theoretical treatments have been giveHOn IS of long wavelength, regardless of intensity. In Sec. IV,
some of which are directly related to questions of quantunil’® time evolution operator for the auxiliary equation is con-
chaos[1]. The goal of the present paper is to present a non_structed in closed form for the periodically driven harmonic

perturbative method for such problems when the radiatior?scmator' This permits determination of the eigenstates of

field is treated semiclassically and the wavelength of the rat-he associated monodromy operator in closed form. These, in

o . turn, yield the Floquet states for the periodically driven har-
gt'::';sn is much larger than the spatial extent of the electro%onic oscillator in closed form. In Sec. V, several properties

. o of these Floguet states are elucidated. Classical correlates are
The approach used here is based on the quasiadiaba g

) : Ufscussed as well as the observation that there are no multi-
method, recently developed for a different conf@t In this ;416 resonances. In Sec. VI, the paper is concluded with

approach, the original dynamics is replaced by an equivaleng, analysis of the Gribakin and Kuchiev treatment of the

auxiliary dynamics. The auxiliary dynamics may be solvedyke|gysh approach applied to the periodically driven har-
using the Floquet method. This amounts to a nonperturbatiVg,gnic oscillator.

solution to the original problem. In the present context, the
transition from the original problem to the auxiliary problem
is effectuated by the Goeppert-Mayer gauge transformation Il. REVIEW OF THE QUASIADIABATIC TIME
that makes use of the electric dipole approximafigh EVOLUTION METHOD
In order to make the method used here as clear as pos- o o o _
sible, the periodically driven harmonic oscillator is the physi- Quasiadiabatic time evolution is a method for Hamilto-
cal system to be studied. In a sequel, microwave irradiatiofians containing a time dependent contribut{@. In the
of Rydberg atoms will be the focus. However, a general set€Xtreme adiabatic limit, the descrl_pnon_ is very clpsely re-
ting and the problem for the Rydberg case will be setup ijated to the treatment of Berry’_s adiabatic geometrlcal phase
Sec. IIl. In Sec. IV, restriction to the oscillator case will be [6]. However, the results obtained are also valid when the
made. For the oscillator, explicit analytic expressions for thdime dependence is not truly adiabatic, i.e., more rapid
Floquet states are obtained. It is observed, and emphasized}anges are allowed, hence the qualifiquasiadiabatic
that for the periodically driven harmonic oscillator, there areThis was demonstrated by an analysis of the Landau-Zener
no multiphoton resonances. In demonstrating this result, thdynamics at an avoided level crossing in which the passage
Keldysh approachd], as presented by Gribakin and Kuchiev through the avo_lded level crossing varied in raFe by over six
[5], is applied and found not to be valid for the oscillator orde_rs of_magnltude, starting fror_n the adiabatic regime and
case. ending with the fast passage regifi#g.
Let R(t) denote a vector of parameters that depend on
time and let the Hamiltoniam =H(R(t)) be given. Write
*Electronic address: ron.fox@physics.gatech.edu R’=R(t) where the prime signifies dependence. At every
Electronic address: luzvela@cns.physics.gatech.edu instant of time, solve the adiabatic equation
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and only if thelm’)’s are complex. For redin’)’s, this term
vanishes. The one-parameter case does not yield a Berry’s

for the instantaneous eigenenergig¢R’) and the instanta- PNase as was shown in R¢2]. _
neous orthonormal eigenstatés,). The prime om in these The implementation of this approach requires that the
kets signifies that the ket is really time dependent, dependinf’)’s andE,(R’)’s be found for each time In a practical
on the instant of time when it was determined, and does nadpplication, this can be done numerically at the outset for a
mean a value fon different from then that is the subscript discrete set of times, and then Ef) can be used to find the
of the eigenenergy. This point must be kept in mind throughquasiadiabatic coefficients, tfag,(t)’s.
out the discussion. Generally, th& )’s are necessarily com-
plex because of electromagnetic coupling terms such as
A(t)-p in H, but there are one parameter cases in which the
[n’)'s can be made to be real. This dichotomy has relevance
for Berry’s phase.

The solution to the time dependent problep(t)), at
time t can be expanded in terms of the adiabatic eigenstaté%y

H(R)[n")=E,(R")[n") (1)

IlI. VECTOR POTENTIAL COUPLING AND THE
AUXILIARY EQUATION

For an atomic or molecular electron in an intense semi-
classical microwave radiation field, the Hamiltonian is given

2

. e.
[w()=3 an(tn’). Mo am|PTAW) med
Noting the time dependence implicit in tHa’)’s, it is p? e . . € ..
' =——ep+—A-p+ A-A 6
straightforward to derive auxiliary equations for thg(t)’s 2m ¢ mc P 2mc ©)

given by[2]
in which we takee>0 (the electron charge is e) and use

the Coulomb gauge so th&tA=0. The scalar potentiab

ih%amu):Em(Fi')am(t)—ihE an(t)

ol il 2| dR’ X
m 3|§’ n W ( )
It also follows exactly that
7 (& JIHRY | @
= ={n = n
R " IR’
and forn#m,

IH(R")

m'| ———n’
_< IR’ >

am
=—|n | = = = .
IR’ En(R,)_Em(R,)

(4)

[

Equation (3) is of the form of the Hellmann-Feynman

theorem[7]. Equation(4) converts Eq(2) into

>

d i , |\ dR
aam(t)__gEm(R )ap(t)—{ m m 'Wam(t)

IR’
JHRY |\ dR
s m IR’ "
— an(t - — . 5
5 oV Eq(R')—En(R') ©

for a Rydberg atom is given by

_ Ze
$(r)=—.
The microwave field is represented by a plane wave
A= Age sin(wt) 7

in which ¢ is the polarization unit vector ankl, is the am-
plitude. The spatial dependence is replaced by 1 in the dipole
approximation. If 10 GHz light is contemplated, them
=27x10Y st and\=3 cm. This is much larger than the
size of a hydrogen atom even with principal quantum num-
bern=100 (0.52% 10" % cm). Thus, even though the laser
does not produce an infinite plane wave, the atomic electron
sees a plane wave, constant in space and variable in time, for
all practical purposes.

Denote byH, the noninteracting part of the Hamiltonian

2
Ho=3—— . ®

Let the stationary solutions to this time independent problem
be given by

HO|¢n>:En|¢n>- 9)

This is the fundamental equation for quasiadiabatic time evo- The quasiadiabatic states are solutions for the time depen-
lution [2]. The last term on the right-hand side has the posdent Hamiltonian at an instant of time

sibility to become large at avoided level crossings when the

H'[ym)=Edlyn),

denominator energy difference becomes small. The second
term on the right-hand side gives rise to Berry’s phase angyhereH’ is the Hamiltonian in Eq(6) and the prime has

the coefficient, (m'|a/dR’'|m’'), is purely imaginary if

been included to emphasize its time dependence. The
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Goeppert-Mayer gauded] permits an exact solution to this d e/d.\ /. e.
equation in terms of the solutions to E®). This is proved aH “me aA Pt EA
as follows:
Let which implies, using Eq(11),
e dH ,_edﬁﬁ _eﬁA
|wa>=exr{—i%r-A'}|¢n>. (10 a1 = el g P #n ) & ~iAcT A
(16)
Clearly Therefore,
- e. .| - e.
plt//F,):eXF{—i—r-A’}(pl¢n>)——A’lwé>-
fi
c c v dt Un) = e dt (alpld)=0. (17)
Therefore

The Goeppert-Mayer gauge factors have cancelled out

p+ EA*')W(]):ex;{ —i ﬁifé"&'}(fﬂd’n)) (11  and the last matrix element vanishes becausd ¢h¥'s are
c c parity eigenstates in the case of Rydberg atoms. When

=n, Eqg. (15 implies

e . . ’
H’lw;>=exp[—iﬁ—cr‘A'}<Hol¢n>)=Enlw;>, 12 <¢, g¢,><‘/’m
mdt n

and

d
(a“)“’”>_ LIERRCLLE
E,—En mc\dt’ | E,—En

which implies
because of Eq.16) and the analogue to E@GL7) for m#n.
By a standard textbook argument for this case

In this special case of quasiadiabatic time evolution, the

adiabatic eigenenergies are constant in time and are equal to (bl p|¢n>_ Im—-— <¢>m|r|¢>n>
the E,’'s of Eq. (9). Moreover, the adiabatic states are pre-
cisely the|#;)'s of Eq. (10). Putting all of this into Eq(14) yields the exact quasiadia-

The general solution for the Hamiltonian in E) can be  batic time evolution auxiliary equation
expanded in terms of these time dependent adiabatic states d

. ) e(d. -
ﬁam__lwmam"'l; % aA '<¢m|r|¢n>anr (18)

[9(0)=2 an(O] ). (13
) o L _ ) wherew,,=E,/h.
Plugging this into Schrdinger’s equation and using E(L.2) Two observations about E(L8) are in order. The energy
yields difference denominator, so important for understanding the
) dynamics of avoided level crossings, has cancelled out in
th dtan [ ) +an dt|¢n = aEq| ). this special case of vector potential coupling. It was not a
" function of time in any event. In addition, the electric field is
Therefore related to the vector potential by
d E d = E 9. _Ao
—an,=—I _mam_ E wm — lpr; a,. (14) E= c atA_ _C 8 cog wt) (19)
dt h o dt
From Eq.(12) we also get when Eq.(7) is used. It is convenient to writ®,=CcEy/w so
q q that Eq.(18) takes the form
—H ||y +H—|y)=E d
(dt )Wn) dtlwn> ”dtwn> ad |wmam+|2 —cos{wt)s (ulT | br)an -
Therefore, (20
<¢ ! > <¢ ( )‘w > <l/f E‘ ¢'> This auxiliary equation is precisely what one would ob-
m d| " m : m : tain if one were analyzing the problem of electric dipole
coupling with the Hamiltonian
. 2
Whenm=n, it follows that H— b —epterE, 21)
< d 2m
Ao
"\ dt " where
must hold. This is easily proved as follows: E=— Eoe coq wt)
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and the general solutiojis(t)) is expanded in terms of the 1 2

eigenstates ofly, as given in Eqs(8)—(9). That is H= °m

e 1 2.
p+EA +§mwoq (23

and Eq.(21) becomes

! —eEy\/ Zr:wo cogwt)(a+al),

fa+ =
alat s
(29

(1) =2 an(t)]bn)

n

H=ﬁw0

leads to

where creation and annihilation operators have been intro-
duced. Equation(24) is the Hamiltonian for the auxiliary
(22)  equations. These take the form

d -~ -
iﬁ&am: Emam_z eEOCOS(x)t)8'<¢m|r|¢n>an'

This is identical with Eq(20). However, in Eq.(20), the d ek,
an's are coefficients for the quasiadiabatic time evolution aam=—iwmam+i2 Tcos(wt)(¢m|q|¢n>an,
given in Eq.(13), which is exact and must be solved to all n
orders inEy. Equation (22), by contrast, is the ordinary
equation for the standard Schlinger solution to the time
dependent problem with the Hamiltonian in Eg1). More-
over, theer-E coupling is an approximation and, thus Eg. Hol¢n)=Enlén),
(22) should be solved only to leading orderkt. This dif-
ference is fundamental and must be emphasized to avoid

e

where the| ¢,,)'s satisfy

confusion.

In ordinary time dependent perturbation theory, the rela-
tionship between the Hamiltonians in Eq6) and (21) has
been the cause of many papers. As is well known, to firs
order in perturbation theory, both Hamiltonians give the

same result§the A- A term is ignored to this lowest order

The difficulty that arises when higher-order perturbations are

considered stems from the fact that the two Hamiltonians do

not in fact act on the same set of unperturbed functions. The From here on, the standard notation for the eigenstates of

basis states for the time independent parts of these Hamiltdd, will be used, i.e.,

nians, in terms of which the perturbation expansions are ren- ) =|n)

dered, are not identical but are related by the Goeppert- " '

Mayer gauge transformatiof8]. Only when this gauge is

properly incorporated do the two approaches yield identicaﬁ
n

1
n+ E h(l)o

'{n which Hg is given by

1
ata+=|.

H0=ﬁw0 2

Using time ordered operator algebra technigi&sit is
ossible to express the evolution operdttt) for the time

results to all orders in perturbation theory. In the prese ependent Hamiltonian in E24) by

context of quasiadiabatic time evolution, the auxiliary equa-

tions in EqQ.(22) are to be solved to all orders E, and the .
resultinga,,(t)'s are then used in Eq13) along with Eq. U(t)=Texp{—i—f dsH(s)}
(10) to generate a complete solution. - filo

t 1)] 2
a a+§ exd —rgd(t)]

X exd —irol (t)allexd —irql* (t)a]

IV. THE PERIODICALLY DRIVEN HARMONIC =expg —iwgt
OSCILLATOR L

For the periodically driven harmonic oscillator, the

Hamiltonians in Eqs(6) and (21) must be changed so that r 1\ ] 1
they include explicitly the potential energy for a harmonic =exg —iwpt| a'a+z ex;{ —rS(J(t)— —|I(t)|2”

d 2 2
oscillator ] ]

X exg —iro(l(t)a’+1*(t)a)], (25)
1
é(q)= Emwng’ where

whereq is the generalized coordinate and the oscillator is " :ﬁ h (26)
considered one-dimensional. In this one dimensional case, T h 2Meg’
the polarization of the radiation is taken to be along the
coordinateg. Thus, Eq.(6) becomes which has the units of a rate, and
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wo[ cog wt) —coq wot) | —i[ w SIN(wt) — wq SIN(wqt) ]

I(t)=i{e'o} 2_ 2 ’
wo_w
1 1 . Wo . . wo . .
J(t) =~ 51 1=cosAwt)+i—siN(2wt) +i2wet +4———[wo(1l-cogwt)) —iwsinwt] . (27)
4 wz—wo w wz—wo
|
Moreover, it follows that 1
U(T)=expg —iwgT aTa+§
[1(D)]2=(t) +I*(1). (28)
2
o
In the first equality of Eq(25), the time ordered exponen- X eXF{ -5 M= (T)]} Doirgim -
tial appears. The second and third equalities represent

equivalent factorizations of the time ordered exponential intherefore
terms of ordinary exponential factors.
Construction of the Floquet states is based upon the
eigenstates of the monodromy operatd(T) where T U(T)D;(T)|n>=exp{—iw0T
=27/ w (see the Appendjx Using Eqs.(25—(28) yields

1
Ta4+ =
aa+2

g
Xexp — E[J(T)—J*(T)]

1
T +—
a'a 2

U(T):exp{—ion

) ><D—ir0|(T)D—y(T)|n>
o
Xexg — E[J(T)—J*(T)]

2
=exp[—r2—°[J(T>—J*<T>]}
xexp{—iro[I*(T)a+1(T)a™}.

_ XD _jr g1 (m)e-iwoTD — y(T)eiwoT
DefineD, by

1
Xex;{—ion n+§) [n)

* 1 *
Da:eaaT,a a:eXF{_§|a|2 eaaTefa a (29

because of the general identity
These operators satisfy the identities

ex —iwoTa'a]D,=D o io;texd —iwgTa'al.

1
DgD,=Dgsip exr{ —E(aﬁ* —a* B)}, Now use Eq.(30) to obtain
pt=D-*=D_,. (30 D (meieotD -y et
1 .
Let = D*[”o'(T)Jr y(T)]e iwoT eXF{ - z[_ V(T)”OI*(T)
Y(T)=irgl(T)— : (3D —v*(T)irol(T)]}-
eleT_l

Using Eq.(31) yields
Claim: DL(T)|n> is an eigenstate ofJ(T) with Floquet 9Eq-(3Dy

multiplier e~"#nT, where ir ol (T)+ y(T)]e 10T = — 5(T)

B L and
pn=| N+ 5 | wo—i 5 (I(T) = I*(T))
2 i (T)irol* (T)— y* (T)irol(T)=—ir3|1(T)|? sinwol
—r—O|I(T)|2 Sin(wgT) . Y 0 Y 0 0 1—coswgT’
2T 1—-coq wqgT)
QED.
Proof. Rewrite the monodromy operator as Further calculation yields the identities
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o Using the completeness of the Floquet states, this becomes
(T)= —2  (el@oT_1
(M=——e ),

Q)O_ w

am<t>=2k (M|U(1)[F(0)){F(0)|4(0))

1 ) ) wg )
J(M)—=JI*(T)= 53| 1@oT+2i — 5 Sin(woT) |,
w = wy = wy

=§ (M[F(1)){F(0)]4(0)).

lowo

YT)=— 02— o (32 The solution to the original problem is
. s > ant)lypm =2 am<t>ex;{—iiA<t>q}|m>
Mn n+2 1+ wz_wngO. - ™ hc

The Floquet stateB,(t) are given by(see the Appendijx =% Ek exp{ —i ﬁ—eCA(t)qhm)
F“(”:U(”DLT'M X(MFy (D) (Fy(0)](0))

:ex‘{ - %O[J(t) -J (t)]}Dirolme*wo‘Dyme-""of - Ek‘, exp{ —i ﬁ—eCA(t)q}

xexr{—iwot n+% Iny. (33 X|F(1)(Fk(0)|%(0)) .

Using Egs.(27), (31), and(32), it may be shown that The Goeppert-Mayer gauge factor can be rewritten as

(1 irdwg sin 2wt
n = X —_ —_—
e n( ) e 460 wz—wé

e
D'l(t)| n>, (34) eX[{ —i %A(t)q

[ [ &
where — & ; t
exp_ 'ﬁcAO sin( wt) 2mwo(a+a )
7= —2 [wycogwh)—iwsinwl)]. (39 [ e cE h )
wi— w? =expg —i %Tsm(wt) 2mwo(a+a )
This right-hand side of Eq(34) is manifestlyT periodic [ sin(wt)
as is required of a genuine Floquet state when multiplied by =exp —irg (a+ah)
the inverse of the Floquet multiplier. From the first equality .
in Eq. (33) it follows that =D_;, Sin(!) (37)

0w

[N)=DnFn(0) N . o .
that utilized the inverse of the identity following E¢L9),
and this justifies the claim that the Floquet states are a conky=wAy/c, Egs.(26) and (29). Therefore, the solution to
plete set of states. Moreover, they are orthonormal as followthe original problem is
from

<Fm(t)|Fn(t)>:<m|Dy(T)UT(t)U(t)D;(T)|n> lg(t)) = D—iros"lf"t - [Fi(1)) (Fi(0)[(0)).
:<m|n>:5mn- (36)

. o . Let N be an integer and consider
Armed with these Floquet states, it is how possible to

solve the original problem of finding solutions for the

An(t)'s. ALL=0, (Fr(NT)HNT) =3 (Fr(NT)|Fy(NT))(Fi(0)|(0))
|9(0))=2 a,(0)|n) =(F(0)|4(0)) (39
both for the original equations and for the auxiliary equationghat follows from the orthonormality of the Floquet states,
since they agree at=0. For the auxiliary equations, Eq. (36), and from the fact that the Goeppert-Mayer gauge
factor, Eq.(37), is the identity when evaluated a&=NT.
am(t)={(m|(t))=(m|U(t)|(0)). Thus the projections of the solution onto the Floguet states
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are T periodic. As an example, consider the cdgg0))
=1|0). Using Eqs.(34)—(35), it follows that

| p(t)]2™
m!
(39

[(Fm(D)]0)[2=[(m|DT, ,|0)2=exd —|5(1)|?]

This satisfies Eq(38) for t=NT and it is manifestlyT peri-
odic for allt since Eq.(35) implies

2
|nan2=(7;33;{wﬁm§wt+w29¥umn. (40)
(1)0_(1)

Note that the right-hand side of E(B9) is always less than
1 and that the sum oven equals 1.

V. DRIVEN HARMONIC OSCILLATOR FLOQUET STATE
PROPERTIES

The n=0 Floquet state, according to E@4), is propor-
tional to

PHYSICAL REVIEW A66, 053402 (2002

which has the minimum possible value only for the=0
case for which the Floquet state reduces to a phase factor
times a coherent state.

The classical problem corresponding to the quantum Flo-
quet problem solved here for the auxiliary equations has
Hamiltonian

p2

H=om

1 2.2
+ §mw0q —eEyg cogwt).

Definingy by y=muwg(q, results in the classical equations
of motion

1 B [ L

For arbitrary initial conditions, the solution contains a
term that oscillates with frequenay and other terms that
oscillate with frequencywy. Only for the special initial con-

1 (—p(t)" ditions
T _ - 2 A
ek
that happens to be an ordinary harmonic oscillator coherent a(0)= m 2_ > and p(0)=0

state. Forn>0, noncoherent state generalizations are cre-

ated. By using

_ h 4 T
q—\/mnwéa a'),

(a—a'),

p=—i\—

and the identity

D!f(a,a")D,=f(a+a,a’+a*) (41)

the following expectation values can be computed:

ek, cog wt)

Fo(O)|g|Fa(t))= +9p*)=— ,
) Mwofi . sin(wt)
(Fa(O)|p|Fu(t))=—i 5 (1= 7")=—eBw——7
(1)0_ !
(42)

(Fo(DIGRIFo() = g (20 1+ 14 7*242] )

n n 2May nTn n
2 Mwofi 2. %2 2
(Fa(O)|p?[Fn(t))=— 5 [—@n+D)+ 77+ 7 —2[7|*].

Therefore, the uncertainty product for all t is given by

h
AgAp= §(2n+ 1),

Wo— W

is the solution given in terms of purely oscillations

ek, coq wt)
Q)= m,
(43
- sin(wt)
P = —eBou 5=

Since these solutions afk periodic, they are the classical
Floguet solutions, and they agree precisely with the expecta-
tion values for the quantum Floquet states given in (&8).

A similar analysis can be done for the Hamiltonian in Eq.
(23). The classical result fog(t) is the same as in E¢43)
but the solution forp(t) is different since the relationship
between momentum and velocity now involves the vector
potential. The expectation values appropriate for this per-
spective require the Goeppert-Mayer gauge factor given in
Eq. (37). This factor must premultiply the Floquet state be-
fore the expectations are computed. Since this factor com-
mutes with the operatog but not with the operatop the
result for the positional expectation is the same as in Eq.
(42), whereas the result for the momentum expectation is
different, as in the classical analysis, and agrees precisely
with the classical result.

VI. ARE THERE ANY MULTIPHOTON RESONANCES?

A primary motivation for this paper was to elucidate mul-
tiphoton excitation of a harmonic oscillator when the driving

053402-7



R. F. FOX AND L. V. VELA-AREVALO PHYSICAL REVIEW A 66, 053402 (2002

frequency w is much less than the natural oscillator fre-
guencywg. The naive expectation is that whep=nw for
integern an n-photon resonant event occurs. Starting from
the ground statd0), the result in Eqs(39)—(40) shows that ~ ©
there are no such events. The only singularity in Ef)
occurs for the simple resonaneg= . While starting in an
excited state produces a somewhat more complicated for 0 20 20 60 80
mula than appears in E439), the result is the same, there !
are non-photon resonances. This is presumably a peculiarity — T
of the harmonic oscillator and not the general situation.
However, a detailed study of the general two-level quantum
system gave the same result. In addition, a brute force analy® o 1
sis of the perturbation expansion for the oscillator case g
shows that this conclusion for the oscillator is justified. The — oo l l l ‘ 1
| W N P
=¢/o

0.5

reason can be seen with the three photon terms in the pertu A e 3 e o o
bation expansion. The perturbation expansion suggests thz n
there are two ways to make a three photon resonance be- G b H | ( th o el
tween the ground state and the first excited state. In one way Fi'#m'tFl' t(j)vst %"S[é € 2:? partfo tt N n}att_nx ;eme@(ﬂ)
the oscillator creation and annihilation operators appear in (¢ Fm(DIV(1)]0) [Eg. (46)] as a function of timgdimension-
Tt . . less with parameter valuesn=3, k=0, w,=1.0, ®=0.1, r

the orderaa'a'’ and in the other way they appear in the order_2 312 -~ . NS e

tot . _ .~ =2.312, andh=3. It is clearly T periodic with periodT=62.83.
a'aa'. When the expectation values of these combination

; ) %b) shows the square of the absolute value of the Fourier transform
between the ground state and the first excited state are corp g) of g, as a function of the Fourier transform varialgléivided

bineq with the correspon.ding time integral factors, there is By w [Eq. (45)]. While there is no peak at 3, there are many other
precise cancellation. This phenomenon can be seen to Bays at other odd numbers, but none at 5.
repeated in higher-order terms. It is this precise cancellation

that is not to be expected in general for cases such as thﬂoquet state, represented in the integral byTitperiodic

microwave irradiation of Rydberg atoms. The details of whatyotion. Using Eqs.(34), (35), (40), and (41), the matrix
happens in the Rydberg case remain to be studied. element in Eq(45) becomes

While engaged in this research, the work of Gribakin and it
Kuchiev [5] was brought to our attention. This work was ~ 9(t)=(&"*" Fn(t)[V(1)[0)

inspired by an early paper of Keldyﬁh].'A nl_meer of other 1
authors developed the id¢@]. In the Gribakin and Kuchiev exp —=|n(t)|?
paper, a very intriguing and tantalizing idea is presented. It is = —#irycog wt) {Im—|7(t)|2]
the notion that then-photon resonances are not to be ex- \/W
pected between the unperturbed states of the oscillator but 5 .
between an initial unperturbed state and a final Floquet state. [ — (1)1 _Towo sin(2wt) 46)
Thus, the energy difference between the Floquet quasienergy [= (O] TJexpi 4o @2— o2 (
and the initial unperturbed energy should equal the energy of In Fig. 1(a), the real part of the matrix elemegt) in Eq.
n photons (46) is plotted against time for parameter values=3, k
1 1 ré =0, wg=1.0, w=0.1,ry=2.312, andh=3. These param-
Apm—hog| k+ 5) =hwe(m—Kk)+ Ehwoﬁ:nhw, eters refer to Eq(44) and reflect choosing the electric field
W™ g strength to have a value that implies the energy of three

(44) photons matches the difference in enefguasienergy be-
tween the ground state and the third Floquet state. It is clear
wherein Eq.(32) has been used. This result is based on thdrom the figure that this quantity i§ periodic (T=62.83). In
Fourier components of the transition matrix element givenFig. 1(b), the square of the absolute value of the Fourier

by the expression transformF(g) of g, is shown in a plot ofA,|? againstn,
1T as defined in Eq(45). There is no peak at=3, as antici-

A== | di(eirmtE _(t)|V(t)|0)elnet, 45 pated, and there are many other peaks at other odd numbers.

mn TJ’o { m(DIV(D]0) “9 Only the peak at 3 would have satisfied the quasienergy con-

servation requirement of Eq44). No sign of this putative
whereT=2m/w and resonance is seen in Eq89)—(40). Indeed, att=0, the
largest value fof(F,,(0)|0)|? occurs when

%
v(t)=—eEo\/meOCOS(wt)(aJraT)- |7z(0)|2=me><ﬂ[i

2m

In Eq. (45), it is assumed that the initial state is the un- as follows from Stirlings approximation. For the parameter
perturbed ground state and that the final state isnile  values used in Fig. 1, this implies a valuem£5. Since the
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results in Eq(39) areT periodic, them=5 Floquet state will where the last equality follows from E¢Al) because
be the dominant contributor periodically. By contrast, the
Fourier transform in Fig. 1 shows no peak whatsoever for

n=5. We are forced to conclude that the Gribakin and

Kuchiev perspective is not valid for the periodically driven
harmonic oscillator.
For the periodically driven harmonic oscillator, a com-

pletely explicit solution has been obtained in terms of closed
form Floquet states. These states make it manifestly clear

. t+T
U(T,t+T)=Tex4—'%J dsH(s)}
- T
. t
=Iex4— %—Jods’H(s’ +T)}

:Iexr{_%—f;dsm(s’ﬁ=U(0.t)-

that there are na-photon resonances. This quantum result isThus U(01)|m) is an eigenfunction ob(t,t+T) with the

born out by the corresponding classical Floguet solution.
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APPENDIX: FLOQUET STATES

Construction of Floquet states in quantum mechanics is

same eigenvalue as the monodromy operator has for eigen-

function|m). Let |m,t)=U(O;t)|m).

The Floquet stateB ,(t) have the form
Fn(t)= e_i'umt(ﬁm(t)v

Dn(t+T)=dn(1),

d
ih E Dm(D)=H (1) dpm(t) =it Pm(t).

most easily achieved using the time ordered exponential. Let

H(t+T)=H(1). (A1)
The evolution operator is expressible by
. t
U(tl,tz)zTex;{—f'flf stH(s)}, (A2)

wherein the right-hand side utilizes the time-order exponen-

tial [8]. The factorization property
. t . t
Texp{— '—f 2dsH(s)}=Tex;{— '—f 2dsH(s)}
— ﬁ tl — fL r

. r
xTex;{— '—f dsH(s)

1

(A3)

for t,>r>t, is used below. LeT =27/ be the period of
the periodic driving term. The monodromy operatd(0,T),
has eigenstates with unimodular eigenvalues

U(0,T)|my=e""#mT|m). (A4)
Using factorization, EqQSA3), and(A4) yields
U(t,t+T)(U(Ot)|m))=U(T,t+T)U(0,T)|m)
=U(T,t+T)e '#n|m)
=e #mTU(T,t+T)|m)
=e #mT(U(0L)|m)),

Claim:
Fm(t)=|m,t).

Proof. From Eq.(A2) it follows that
9
|hﬁU(O,t):H(t)U(O,t),

which implies

d
HImy=H(b)m,b).

Iﬁﬁ_

Therefore,
(9 . .
i ﬁ(e'“mtlm,t>)= (H(t) = ) (€'#mm,t)).

Thus, ¢(t) =€'“m'|m,t). Moreover,
Pm(t+T)=€#n+Dm,t+T)
=e DY (t,t+T)|m,t)
— el #m(t D ikmT|m 1)
=e'#ml|m,t)= p(t).

QED.
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