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Semiclassical analysis of long-wavelength multiphoton processes:
The periodically driven harmonic oscillator

Ronald F. Fox* and Luz V. Vela-Arevalo†
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The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular
electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a
nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is
obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-
Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms,
a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic
oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to
demonstrate that for the oscillator case there are no multiphoton resonances.
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I. INTRODUCTION

For a number of reasons, there has been a long stan
interest in multiphoton processes involving atomic and m
lecular electrons. In this paper, the focus is on intense be
of long wavelength photons, such as microwave irradiat
of Rydberg atoms. Experiments have been done in this c
text and a number of theoretical treatments have been gi
some of which are directly related to questions of quant
chaos@1#. The goal of the present paper is to present a n
perturbative method for such problems when the radia
field is treated semiclassically and the wavelength of the
diation is much larger than the spatial extent of the elect
states.

The approach used here is based on the quasiadia
method, recently developed for a different context@2#. In this
approach, the original dynamics is replaced by an equival
auxiliary dynamics. The auxiliary dynamics may be solv
using the Floquet method. This amounts to a nonperturba
solution to the original problem. In the present context,
transition from the original problem to the auxiliary proble
is effectuated by the Goeppert-Mayer gauge transforma
that makes use of the electric dipole approximation@3#.

In order to make the method used here as clear as
sible, the periodically driven harmonic oscillator is the phy
cal system to be studied. In a sequel, microwave irradia
of Rydberg atoms will be the focus. However, a general s
ting and the problem for the Rydberg case will be setup
Sec. III. In Sec. IV, restriction to the oscillator case will b
made. For the oscillator, explicit analytic expressions for
Floquet states are obtained. It is observed, and emphas
that for the periodically driven harmonic oscillator, there a
no multiphoton resonances. In demonstrating this result,
Keldysh approach@4#, as presented by Gribakin and Kuchie
@5#, is applied and found not to be valid for the oscillat
case.

*Electronic address: ron.fox@physics.gatech.edu
†Electronic address: luzvela@cns.physics.gatech.edu
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The paper is organized as follows. In Sec. II, a review
the quasiadiabatic approach is given. In Sec. III, this meth
is applied to the general problem of the vector potential c
pling of radiation to atomic and molecular electrons with t
Rydberg case given explicitly. It is shown that the Goeppe
Mayer gauge provides an exact conversion to an auxili
equation of the electric dipole coupling form when the rad
tion is of long wavelength, regardless of intensity. In Sec.
the time evolution operator for the auxiliary equation is co
structed in closed form for the periodically driven harmon
oscillator. This permits determination of the eigenstates
the associated monodromy operator in closed form. Thes
turn, yield the Floquet states for the periodically driven h
monic oscillator in closed form. In Sec. V, several propert
of these Floquet states are elucidated. Classical correlate
discussed as well as the observation that there are no m
photon resonances. In Sec. VI, the paper is concluded w
an analysis of the Gribakin and Kuchiev treatment of t
Keldysh approach applied to the periodically driven h
monic oscillator.

II. REVIEW OF THE QUASIADIABATIC TIME
EVOLUTION METHOD

Quasiadiabatic time evolution is a method for Hamilt
nians containing a time dependent contribution@2#. In the
extreme adiabatic limit, the description is very closely r
lated to the treatment of Berry’s adiabatic geometrical ph
@6#. However, the results obtained are also valid when
time dependence is not truly adiabatic, i.e., more ra
changes are allowed, hence the qualifier:quasiadiabatic.
This was demonstrated by an analysis of the Landau-Ze
dynamics at an avoided level crossing in which the pass
through the avoided level crossing varied in rate by over
orders of magnitude, starting from the adiabatic regime a
ending with the fast passage regime@2#.

Let RW (t) denote a vector of parameters that depend
time and let the HamiltonianH5H„RW (t)… be given. Write
RW 85RW (t) where the prime signifiest dependence. At every
instant of time, solve the adiabatic equation
©2002 The American Physical Society02-1
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H~RW 8!un8&5En~RW 8!un8& ~1!

for the instantaneous eigenenergiesEn(RW 8) and the instanta-
neous orthonormal eigenstates,un8&. The prime onn in these
kets signifies that the ket is really time dependent, depend
on the instant of time when it was determined, and does
mean a value forn different from then that is the subscrip
of the eigenenergy. This point must be kept in mind throu
out the discussion. Generally, theun8& ’s are necessarily com
plex because of electromagnetic coupling terms such
AW (t)•pW in H, but there are one parameter cases in which
un8& ’s can be made to be real. This dichotomy has releva
for Berry’s phase.

The solution to the time dependent problem,uc(t)&, at
time t can be expanded in terms of the adiabatic eigenst

uc~ t !&5(
n

an~ t !un8&.

Noting the time dependence implicit in theun8& ’s, it is
straightforward to derive auxiliary equations for thean(t)’s
given by @2#

i\
d

dt
am~ t !5Em~RW 8!am~ t !2 i\(

n
an~ t !

3K m8U ]

]RW 8
Un8L •

dRW 8

dt
. ~2!

It also follows exactly that

]

]RW 8
En~RW 8!5K n8U ]H~RW 8!

]RW 8
Un8L ~3!

and forn5” m,

K m8U ]

]RW 8
Un8L 5

K m8U ]H~RW 8!

]RW 8
Un8L

En~RW 8!2Em~RW 8!
. ~4!

Equation ~3! is of the form of the Hellmann-Feynma
theorem@7#. Equation~4! converts Eq.~2! into

d

dt
am~ t !52

i

\
Em~RW 8!am~ t !2K m8U ]

]RW 8
Um8L •

dRW 8

dt
am~ t !

2 (
nÞm

an~ t !

K m8U]H~RW 8!

]RW 8
Un8L •dRW 8

dt

En~RW 8!2Em~RW 8!
. ~5!

This is the fundamental equation for quasiadiabatic time e
lution @2#. The last term on the right-hand side has the p
sibility to become large at avoided level crossings when
denominator energy difference becomes small. The sec
term on the right-hand side gives rise to Berry’s phase
the coefficient, ^m8u]/]RW 8um8&, is purely imaginary if
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and only if theum8& ’s are complex. For realum8& ’s, this term
vanishes. The one-parameter case does not yield a Be
phase as was shown in Ref.@2#.

The implementation of this approach requires that
un8& ’s andEn(RW 8)’s be found for each timet. In a practical
application, this can be done numerically at the outset fo
discrete set of times, and then Eq.~5! can be used to find the
quasiadiabatic coefficients, theam(t)’s.

III. VECTOR POTENTIAL COUPLING AND THE
AUXILIARY EQUATION

For an atomic or molecular electron in an intense se
classical microwave radiation field, the Hamiltonian is giv
by

H5
1

2m S pW 1
e

c
AW ~ t ! D 2

2ef

5
p2

2m
2ef1

e

mc
AW •pW 1

e2

2mc2
AW •AW ~6!

in which we takee.0 ~the electron charge is2e) and use
the Coulomb gauge so that¹W •AW 50. The scalar potentialf
for a Rydberg atom is given by

f~r !5
Ze

r
.

The microwave field is represented by a plane wave

AW 5A0«̂ sin~vt ! ~7!

in which «̂ is the polarization unit vector andA0 is the am-
plitude. The spatial dependence is replaced by 1 in the dip
approximation. If 10 GHz light is contemplated, thenv
52p31010 s21 andl53 cm. This is much larger than th
size of a hydrogen atom even with principal quantum nu
ber n5100 (0.52931024 cm). Thus, even though the lase
does not produce an infinite plane wave, the atomic elec
sees a plane wave, constant in space and variable in time
all practical purposes.

Denote byH0 the noninteracting part of the Hamiltonia

H05
p2

2m
2ef. ~8!

Let the stationary solutions to this time independent probl
be given by

H0ufn&5Enufn&. ~9!

The quasiadiabatic states are solutions for the time dep
dent Hamiltonian at an instant of time

H8ucn8&5En8ucn8&,

whereH8 is the Hamiltonian in Eq.~6! and the prime has
been included to emphasize its time dependence.
2-2
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Goeppert-Mayer gauge@3# permits an exact solution to thi
equation in terms of the solutions to Eq.~9!. This is proved
as follows:

Let

ucn8&5expF2 i
e

\c
rW•AW 8G ufn&. ~10!

Clearly

pW ucn8&5expF2 i
e

\c
rW•AW 8G~pW ufn&)2

e

c
AW 8ucn8&.

Therefore

S pW 1
e

c
AW 8D ucn8&5expF2 i

e

\c
rW•AW 8G~pW ufn&) ~11!

and

H8ucn8&5expF2 i
e

\c
rW•AW 8G~H0ufn&)5Enucn8&, ~12!

which implies

En85En .

In this special case of quasiadiabatic time evolution,
adiabatic eigenenergies are constant in time and are equ
the En’s of Eq. ~9!. Moreover, the adiabatic states are p
cisely theucn8& ’s of Eq. ~10!.

The general solution for the Hamiltonian in Eq.~6! can be
expanded in terms of these time dependent adiabatic sta

uc~ t !&5(
n

an~ t !ucn8&. ~13!

Plugging this into Schro¨dinger’s equation and using Eq.~12!
yields

i\(
n

F S d

dt
anD ucn8&1an

d

dt
ucn8&G5(

n
anEnucn8&.

Therefore

d

dt
am52 i

Em

\
am2(

n
K cm8 U d

dt Ucn8L an . ~14!

From Eq.~12! we also get

S d

dt
H D ucn8&1H

d

dt
ucn8&5En

d

dt
ucn8&.

Therefore,

EnK cm8 U d

dt Ucn8L 5 K cm8 US d

dt
H D Ucn8L 1EmK cm8 U d

dtUcn8L .

~15!

Whenm5n, it follows that

K cn8US d

dt
H D Ucn8L 50

must hold. This is easily proved as follows:
05340
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dt
H5

e

mcS d

dt
AW D •S pW 1

e

c
AW D

which implies, using Eq.~11!,

S d

dt
H D ucn8&5F e

mcS d

dt
AW D •pWUfnL expF2 i

e

\c
rW•AW G .

~16!

Therefore,

K cn8US d

dt
H D Ucn8L 5

e

mcS d

dt
AW D •^fnupW ufn&50. ~17!

The Goeppert-Mayer gauge factors have cancelled
and the last matrix element vanishes because theufn& ’s are
parity eigenstates in the case of Rydberg atoms. Whenm
5n, Eq. ~15! implies

K cm8 U d

dt Ucn8L 5

K cm8 US d

dt
H D Ucn8L

En2Em
5

e

mcS d

dt
AW D •^fmupW ufn&

En2Em

because of Eq.~16! and the analogue to Eq.~17! for m5” n.
By a standard textbook argument for this case

^fmupW ufn&5 im
Em2En

\
^fmurWufn&.

Putting all of this into Eq.~14! yields the exact quasiadia
batic time evolution auxiliary equation

d

dt
am52 ivmam1 i(

n

e

\c S d

dt
AW D •^fmurWufn&an, ~18!

wherevm5Em /\.
Two observations about Eq.~18! are in order. The energy

difference denominator, so important for understanding
dynamics of avoided level crossings, has cancelled ou
this special case of vector potential coupling. It was no
function of time in any event. In addition, the electric field
related to the vector potential by

EW 52
1

c

]

]t
AW 52

A0v

c
«̂ cos~vt ! ~19!

when Eq.~7! is used. It is convenient to writeA05cE0 /v so
that Eq.~18! takes the form

d

dt
am52 ivmam1 i(

n

eE0

\
cos~vt !«̂•^fmurWufn&an .

~20!

This auxiliary equation is precisely what one would o
tain if one were analyzing the problem of electric dipo
coupling with the Hamiltonian

H5
p2

2m
2ef1erW•EW , ~21!

where

EW 52E0«̂ cos~vt !
2-3
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and the general solutionuc(t)& is expanded in terms of th
eigenstates ofH0, as given in Eqs.~8!–~9!. That is

uc~ t !&5(
n

an~ t !ufn&

leads to

i\
d

dt
am5Emam2(

n
eE0 cos~vt !«̂•^fmurWufn&an .

~22!

This is identical with Eq.~20!. However, in Eq.~20!, the
am’s are coefficients for the quasiadiabatic time evoluti
given in Eq.~13!, which is exact and must be solved to a
orders in E0. Equation ~22!, by contrast, is the ordinary
equation for the standard Schro¨dinger solution to the time
dependent problem with the Hamiltonian in Eq.~21!. More-
over, theerW•EW coupling is an approximation and, thus E
~22! should be solved only to leading order inE0. This dif-
ference is fundamental and must be emphasized to a
confusion.

In ordinary time dependent perturbation theory, the re
tionship between the Hamiltonians in Eqs.~6! and ~21! has
been the cause of many papers. As is well known, to fi
order in perturbation theory, both Hamiltonians give t
same results~the AW •AW term is ignored to this lowest order!.
The difficulty that arises when higher-order perturbations
considered stems from the fact that the two Hamiltonians
not in fact act on the same set of unperturbed functions.
basis states for the time independent parts of these Ham
nians, in terms of which the perturbation expansions are
dered, are not identical but are related by the Goepp
Mayer gauge transformation@3#. Only when this gauge is
properly incorporated do the two approaches yield ident
results to all orders in perturbation theory. In the pres
context of quasiadiabatic time evolution, the auxiliary equ
tions in Eq.~22! are to be solved to all orders inE0 and the
resultingam(t)’s are then used in Eq.~13! along with Eq.
~10! to generate a complete solution.

IV. THE PERIODICALLY DRIVEN HARMONIC
OSCILLATOR

For the periodically driven harmonic oscillator, th
Hamiltonians in Eqs.~6! and ~21! must be changed so tha
they include explicitly the potential energy for a harmon
oscillator

f~q!5
1

2
mv0

2q2,

where q is the generalized coordinate and the oscillator
considered one-dimensional. In this one dimensional c
the polarization of the radiation is taken to be along
coordinateq. Thus, Eq.~6! becomes
05340
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H5
1

2m S p1
e

c
AD 2

1
1

2
mv0

2q2 ~23!

and Eq.~21! becomes

H5\v0S a†a1
1

2D2eE0A \

2mv0
cos~vt !~a1a†!,

~24!

where creation and annihilation operators have been in
duced. Equation~24! is the Hamiltonian for the auxiliary
equations. These take the form

d

dt
am52 ivmam1 i(

n

eE0

\
cos~vt !^fmuqufn&an ,

where theufn& ’s satisfy

H0ufn&5Enufn&,

En5S n1
1

2D\v0

in which H0 is given by

H05\v0S a†a1
1

2D .

From here on, the standard notation for the eigenstate
H0 will be used, i.e.,

ufn&5un&.

Using time ordered operator algebra techniques@8#, it is
possible to express the evolution operatorU(t) for the time
dependent Hamiltonian in Eq.~24! by

U~ t !5 T←expF2 i
\E0

t

dsH~s!G
5expF2 iv0tS a†a1

1

2D Gexp@2r 0
2J~ t !#

3exp@2 ir 0I ~ t !a†#exp@2 ir 0I * ~ t !a#

5expF2 iv0tS a†a1
1

2D GexpF2r 0
2S J~ t !2

1

2
uI ~ t !u2D G

3exp@2 ir 0~ I ~ t !a†1I * ~ t !a!#, ~25!

where

r 05
eE0

\
A \

2mv0
, ~26!

which has the units of a rate, and
2-4
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I ~ t !5 i $eiv0t%
v0@cos~vt !2cos~v0t !#2 i @v sin~vt !2v0 sin~v0t !#

v0
22v2

,

J~ t !5
1

4

1

v22v0
2 H 12cos 2~vt !1 i

v0

v
sin~2vt !1 i2v0t14

v0

v22v0
2 @v0~12cos~vt !!2 iv sinvt#J . ~27!
-
se
l i

th
Moreover, it follows that

uI ~ t !u25J~ t !1J* ~ t !. ~28!

In the first equality of Eq.~25!, the time ordered exponen
tial appears. The second and third equalities repre
equivalent factorizations of the time ordered exponentia
terms of ordinary exponential factors.

Construction of the Floquet states is based upon
eigenstates of the monodromy operatorU(T) where T
52p/v ~see the Appendix!. Using Eqs.~25!–~28! yields

U~T!5expF2 iv0TS a†a1
1

2D G
3expF2

r 0
2

2
@J~T!2J* ~T!#G

3exp$2 ir 0@ I * ~T!a1I ~T!a†#%.

DefineDa by

Da5eaa†2a* a5expF2
1

2
uau2Geaa†

e2a* a. ~29!

These operators satisfy the identities

DbDa5Da1b expF2
1

2
~ab* 2a* b!G ,

Da
†5Da

215D2a . ~30!

Let

g~T!5 ir 0I ~T!
1

eiv0T21
. ~31!

Claim: Dg(T)
† un& is an eigenstate ofU(T) with Floquet

multiplier e2 imnT, where

mn5S n1
1

2Dv02 i
r 0

2

2T
~J~T!2J* ~T!!

2
r 0

2

2T
uI ~T!u2

sin~v0T!

12cos~v0T!
.

Proof. Rewrite the monodromy operator as
05340
nt
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U~T!5expF2 iv0TS a†a1
1

2D G
3expF2

r 0
2

2
@J~T!2J* ~T!#GD2 ir 0I (T) .

Therefore

U~T!Dg(T)
† un&5expF2 iv0TS a†a1

1

2D G
3expF2

r 0
2

2
@J~T!2J* ~T!#G

3D2 ir 0I (T)D2g(T)un&

5expF2
r 0

2

2
@J~T!2J* ~T!#G

3D2 ir 0I (T)e2 iv0TD2g(T)e2 iv0T

3expF2 iv0TS n1
1

2D G un&

because of the general identity

exp@2 iv0Ta†a#Da5Dae2 iv0Texp@2 iv0Ta†a#.

Now use Eq.~30! to obtain

D2 ir 0I (T)e2 iv0TD2g(T)e2 iv0T

5D2[ ir 0I (T)1g(T)]e2 iv0T expF2
1

2
@2g~T!ir 0I * ~T!

2g* ~T!ir 0I ~T!#G .
Using Eq.~31! yields

2@ ir 0I ~T!1g~T!#e2 iv0T52g~T!

and

2g~T!ir 0I * ~T!2g* ~T!ir 0I ~T!52 ir 0
2uI ~T!u2

sinv0T

12cosv0T
.

QED.
Further calculation yields the identities
2-5
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I ~T!5
iv0

v0
22v2

~eiv0T21!,

J~T!2J* ~T!5
1

v22v0
2 S iv0T12i

v0
2

v22v0
2

sin~v0T!D ,

g~T!52
r 0v0

v0
22v2

, ~32!

mn5S n1
1

2 F11
r 0

2

v22v0
2G D v0 .

The Floquet statesFn(t) are given by~see the Appendix!

Fn~ t !5U~ t !Dg(T)
† un&

5expF2
r 0

2

2
@J~ t !2J* ~ t !#GD2 ir 0I (t)e2 iv0tD2g(T)e2 iv0t

3expF2 iv0tS n1
1

2D G un&. ~33!

Using Eqs.~27!, ~31!, and~32!, it may be shown that

eimntFn~ t !5expF2
ir 0

2v0

4v

sin 2vt

v22v0
2GDh(t)un&, ~34!

where

h~ t !5
r 0

v0
22v2

@v0 cos~vt !2 iv sin~vt !#. ~35!

This right-hand side of Eq.~34! is manifestlyT periodic
as is required of a genuine Floquet state when multiplied
the inverse of the Floquet multiplier. From the first equal
in Eq. ~33! it follows that

un&5Dg(T)Fn~0!

and this justifies the claim that the Floquet states are a c
plete set of states. Moreover, they are orthonormal as foll
from

^Fm~ t !uFn~ t !&5^muDg(T)U
†~ t !U~ t !Dg(T)

† un&

5^mun&5dmn . ~36!

Armed with these Floquet states, it is now possible
solve the original problem of finding solutions for th
am(t)’s. At t50,

uc~0!&5(
n

an~0!un&

both for the original equations and for the auxiliary equatio
since they agree att50. For the auxiliary equations,

am~ t !5^muc~ t !&5^muU~ t !uc~0!&.
05340
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Using the completeness of the Floquet states, this becom

am~ t !5(
k

^muU~ t !uFk~0!&^Fk~0!uc~0!&

5(
k

^muFk~ t !&^Fk~0!uc~0!&.

The solution to the original problem is

(
m

am~ t !ucm8 &5(
m

am~ t !expF2 i
e

\c
A~ t !qG um&

5(
m

(
k

expF2 i
e

\c
A~ t !qG um&

3^muFk~ t !& ^Fk~0!uc~0!&

5(
k

expF2 i
e

\c
A~ t !qG

3uFk~ t !&^Fk~0!uc~0!& .

The Goeppert-Mayer gauge factor can be rewritten as

expF2 i
e

\c
A~ t !qG

5expF2 i
e

\c
A0 sin~vt !A \

2mv0
~a1a†!G

5expF2 i
e

\c

cE0

v
sin~vt !A \

2mv0
~a1a†!G

5expF2 ir 0

sin~vt !

v
~a1a†!G

5D2 ir 0
sin(vt)

v
~37!

that utilized the inverse of the identity following Eq.~19!,
E05vA0 /c, Eqs. ~26! and ~29!. Therefore, the solution to
the original problem is

uc~ t !&5D2 ir 0
sin vt

v (
k

uFk~ t !& ^Fk~0!uc~0!&.

Let N be an integer and consider

^Fm~NT!uc~NT!&5(
k

^Fm~NT!uFk~NT!&^Fk~0!uc~0!&

5^Fm~0!uc~0!& ~38!

that follows from the orthonormality of the Floquet state
Eq. ~36!, and from the fact that the Goeppert-Mayer gau
factor, Eq. ~37!, is the identity when evaluated att5NT.
Thus the projections of the solution onto the Floquet sta
2-6
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are T periodic. As an example, consider the caseuc(0)&
5u0&. Using Eqs.~34!–~35!, it follows that

u^Fm~ t !u0&u25u^muD2h(t)
† u0&u25exp@2uh~ t !u2#

uh~ t !u2m

m!
.

~39!

This satisfies Eq.~38! for t5NT and it is manifestlyT peri-
odic for all t since Eq.~35! implies

uh~ t !u25
r 0

2

~v0
22v2!2

@v0
2 cos2vt1v2 sin2~vt !#. ~40!

Note that the right-hand side of Eq.~39! is always less than
1 and that the sum overm equals 1.

V. DRIVEN HARMONIC OSCILLATOR FLOQUET STATE
PROPERTIES

The n50 Floquet state, according to Eq.~34!, is propor-
tional to

D2h(t)
† u0&5expF2

1

2
uh~ t !u2G(

n

~2h~ t !!n

An!

that happens to be an ordinary harmonic oscillator cohe
state. Forn.0, noncoherent state generalizations are c
ated. By using

q5A \

2mv0
~a1a†!,

p52 iAmv0\

2
~a2a†!,

and the identity

Da
† f ~a,a†!Da5 f ~a1a,a†1a* ! ~41!

the following expectation values can be computed:

^Fn~ t !uquFn~ t !&5A \

2mv0
~h1h* !5

eE0

m

cos~vt !

v0
22v2

,

^Fn~ t !upuFn~ t !&52 iA mv0\

2
~h2h* !52eE0v

sin~vt !

v0
22v2,

~42!

^Fn~ t !uq2uFn~ t !&5
\

2mv0
~2n111h21h* 212uhu2!,

^Fn~ t !up2uFn~ t !&52
mv0\

2
@2~2n11!1h21h* 222uhu2#.

Therefore, the uncertainty product for all t is given by

DqDp5
\

2
~2n11!,
05340
nt
-

which has the minimum possible value only for then50
case for which the Floquet state reduces to a phase fa
times a coherent state.

The classical problem corresponding to the quantum F
quet problem solved here for the auxiliary equations h
Hamiltonian

H5
p2

2m
1

1

2
mv0

2q22eE0q cos~vt !.

Definingy by y5mv0q, results in the classical equation
of motion

d

dt S y

pD 5S 0 v0

2v0 0 D S y

pD 1S 0

eE0 cos~vt !
D .

For arbitrary initial conditions, the solution contains
term that oscillates with frequencyv and other terms tha
oscillate with frequencyv0. Only for the special initial con-
ditions

q~0!5
eE0

m

1

v0
22v2

and p~0!50

is the solution given in terms of purelyv oscillations

q~ t !5
eE0

m

cos~vt !

v0
22v2

,

~43!

p~ t !52eE0v
sin~vt !

v0
22v2

.

Since these solutions areT periodic, they are the classica
Floquet solutions, and they agree precisely with the expe
tion values for the quantum Floquet states given in Eq.~42!.

A similar analysis can be done for the Hamiltonian in E
~23!. The classical result forq(t) is the same as in Eq.~43!
but the solution forp(t) is different since the relationship
between momentum and velocity now involves the vec
potential. The expectation values appropriate for this p
spective require the Goeppert-Mayer gauge factor given
Eq. ~37!. This factor must premultiply the Floquet state b
fore the expectations are computed. Since this factor c
mutes with the operatorq but not with the operatorp the
result for the positional expectation is the same as in
~42!, whereas the result for the momentum expectation
different, as in the classical analysis, and agrees preci
with the classical result.

VI. ARE THERE ANY MULTIPHOTON RESONANCES?

A primary motivation for this paper was to elucidate mu
tiphoton excitation of a harmonic oscillator when the drivin
2-7
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frequencyv is much less than the natural oscillator fr
quencyv0. The naive expectation is that whenv05nv for
integern an n-photon resonant event occurs. Starting fro
the ground state,u0&, the result in Eqs.~39!–~40! shows that
there are no such events. The only singularity in Eq.~40!
occurs for the simple resonancev05v. While starting in an
excited state produces a somewhat more complicated
mula than appears in Eq.~39!, the result is the same, ther
are non-photon resonances. This is presumably a peculia
of the harmonic oscillator and not the general situati
However, a detailed study of the general two-level quant
system gave the same result. In addition, a brute force an
sis of the perturbation expansion for the oscillator ca
shows that this conclusion for the oscillator is justified. T
reason can be seen with the three photon terms in the pe
bation expansion. The perturbation expansion suggests
there are two ways to make a three photon resonance
tween the ground state and the first excited state. In one
the oscillator creation and annihilation operators appea
the orderaa†a† and in the other way they appear in the ord
a†aa†. When the expectation values of these combinati
between the ground state and the first excited state are c
bined with the corresponding time integral factors, there
precise cancellation. This phenomenon can be seen t
repeated in higher-order terms. It is this precise cancella
that is not to be expected in general for cases such as
microwave irradiation of Rydberg atoms. The details of wh
happens in the Rydberg case remain to be studied.

While engaged in this research, the work of Gribakin a
Kuchiev @5# was brought to our attention. This work wa
inspired by an early paper of Keldysh@4#. A number of other
authors developed the idea@9#. In the Gribakin and Kuchiev
paper, a very intriguing and tantalizing idea is presented.
the notion that then-photon resonances are not to be e
pected between the unperturbed states of the oscillator
between an initial unperturbed state and a final Floquet s
Thus, the energy difference between the Floquet quasien
and the initial unperturbed energy should equal the energ
n photons

\mm2\v0S k1
1

2D5\v0~m2k!1
1

2
\v0

r 0
2

v22v0
2

5n\v,

~44!

wherein Eq.~32! has been used. This result is based on
Fourier components of the transition matrix element giv
by the expression

Amn5
1

TE0

T

dt^eimmtFm~ t !uV~ t !u0&einvt, ~45!

whereT52p/v and

V~ t !52eE0A \

2mv0
cos~vt !~a1a†!.

In Eq. ~45!, it is assumed that the initial state is the u
perturbed ground state and that the final state is themth
05340
r-

ty
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Floquet state, represented in the integral by itsT-periodic
portion. Using Eqs.~34!, ~35!, ~40!, and ~41!, the matrix
element in Eq.~45! becomes

g~ t !5^eimmtFm~ t !uV~ t !u0&

52\r 0 cos~vt !

expF2
1

2
uh~ t !u2G

Am!
$@m2uh~ t !u2#

3@2h~ t !#m21%expF i
r 0

2v0

4v

sin~2vt !

v22v0
2 G . ~46!

In Fig. 1~a!, the real part of the matrix elementg(t) in Eq.
~46! is plotted against time for parameter valuesm53, k
50, v051.0, v50.1, r 052.312, andn53. These param-
eters refer to Eq.~44! and reflect choosing the electric fiel
strength to have a value that implies the energy of th
photons matches the difference in energy~quasienergy! be-
tween the ground state and the third Floquet state. It is c
from the figure that this quantity isT periodic (T562.83). In
Fig. 1~b!, the square of the absolute value of the Four
transformF(g) of g, is shown in a plot ofuA3nu2 againstn,
as defined in Eq.~45!. There is no peak atn53, as antici-
pated, and there are many other peaks at other odd num
Only the peak at 3 would have satisfied the quasienergy c
servation requirement of Eq.~44!. No sign of this putative
resonance is seen in Eqs.~39!–~40!. Indeed, att50, the
largest value foru^Fm(0)u0&u2 occurs when

uh~0!u25m expF 1

2mG
as follows from Stirlings approximation. For the parame
values used in Fig. 1, this implies a value ofm55. Since the

FIG. 1. ~a! shows the real part of the matrix elementg(t)
5^eimmtFm(t)uV(t)u0& @Eq. ~46!# as a function of time~dimension-
less! with parameter valuesm53, k50, v051.0, v50.1, r 0

52.312, andn53. It is clearlyT periodic with periodT562.83.
~b! shows the square of the absolute value of the Fourier transf
F(g) of g, as a function of the Fourier transform variablej divided
by v @Eq. ~45!#. While there is no peak at 3, there are many oth
peaks at other odd numbers, but none at 5.
2-8
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results in Eq.~39! areT periodic, them55 Floquet state will
be the dominant contributor periodically. By contrast, t
Fourier transform in Fig. 1 shows no peak whatsoever
n55. We are forced to conclude that the Gribakin a
Kuchiev perspective is not valid for the periodically drive
harmonic oscillator.

For the periodically driven harmonic oscillator, a com
pletely explicit solution has been obtained in terms of clos
form Floquet states. These states make it manifestly c
that there are non-photon resonances. This quantum resul
born out by the corresponding classical Floquet solution.
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APPENDIX: FLOQUET STATES

Construction of Floquet states in quantum mechanic
most easily achieved using the time ordered exponential.

H~ t1T!5H~ t !. ~A1!

The evolution operator is expressible by

U~ t1 ,t2!5 T←expF2 i
\Et1

t2
dsH~s!G , ~A2!

wherein the right-hand side utilizes the time-order expon
tial @8#. The factorization property

T←expF2 i
\Et1

t2
dsH~s!G5 T←expF2 i

\Er

t2
dsH~s!G

3 T←expF2 i
\Et1

r

dsH~s!G
~A3!

for t2.r .t1 is used below. LetT52p/v be the period of
the periodic driving term. The monodromy operator,U(0,T),
has eigenstates with unimodular eigenvalues

U~0,T!um&5e2 immTum&. ~A4!

Using factorization, Eqs.~A3!, and~A4! yields

U~ t,t1T!~U~0,t !um&)5U~T,t1T!U~0,T!um&

5U~T,t1T!e2 immTum&

5e2 immTU~T,t1T!um&

5e2 immT~U~0,t !um&),
r

t.
F.

05340
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where the last equality follows from Eq.~A1! because

U~T,t1T!5 T←expF2 i
\ET

t1T

dsH~s!G
5 T←expF2 i

\E0

t

ds8H~s81T!G
5 T←expF2 i

\E0

t

ds8H~s8!G5U~0,t !.

Thus,U(0,t)um& is an eigenfunction ofU(t,t1T) with the
same eigenvalue as the monodromy operator has for ei
function um&. Let um,t&5U(0,t)um&.

The Floquet statesFm(t) have the form

Fm~ t !5e2 immtfm~ t !,

fm~ t1T!5fm~ t !,

i\
]

]t
fm~ t !5H~ t !fm~ t !2\mmfm~ t !.

Claim:

Fm~ t !5um,t&.

Proof. From Eq.~A2! it follows that

i\
]

]t
U~0,t !5H~ t !U~0,t !,

which implies

i\
]

]t
um&5H~ t !um,t&.

Therefore,

i\
]

]t
~eimmtum,t&)5~H~ t !2\mm!~eimmtum,t&).

Thus,fm(t)5eimmtum,t&. Moreover,

fm~ t1T!5eimm(t1T)um,t1T&

5eimm(t1T)U~ t,t1T!um,t&

5eimm(t1T)e2 immTum,t&

5eimmtum,t&5fm~ t !.

QED.
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