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We generalize and improve the result of F. Diacu (J. Differential Equations 128
(1996), 58�77) concerning the dynamics of three-points particles moving on the line
under the influence of a quasihomogeneous potential W=U+V, where U and V
are homogeneous functions of degree &a and &b, respectively. For b>2 we found
a set of positive measure of collision orbits that do not tend to form asymptotically
a central configuration. � 1998 Academic Press

1. INTRODUCTION

In 1996, F. Diacu [2] studied the collision�ejection orbits in a quasi-
homogeneous collinear three-body problem; that is, he studied the set of
triple collision orbits for three point particles whose dynamics is determined
by the potential W=U+V, where U and V are homogeneous functions of
degree &a and &b. He shows that the dynamics close to triple collision is
dominated by the potential V, and then he considers the following cases: b<2,
b=2, and b>2.

Here we have used the same techniques as Diacu [2]: regularization of
binary collisions, the McGehee blow-up of the singularity due to triple collision,
and topological arguments to analyze the flow given by the respective differential
equations. We have also considered in our analysis the same cases as Diacu.

For b<2, we found analogous results (see Diacu [2]), but our proof is
simpler. The analysis and results in the cases b=2 and b>2 differ from
those given in [2].

If b=2, regularization of the singularities due to binary collisions creates
a large set of equilibrium points. An orbit which reaches double collision
dies at one point of that set. To obtain more information on the global
flow, we introduce a new reparametrization of binary collisions. In the result-
ing equations the equilibria corresponding to double collisions disappear.
Unfortunately the vector field obtained is only continuous on those points that
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correspond to double collisions. We are not able to prove the existence of a
positive measure set of triple collision orbits in this case.

The case b>2 contains our main results. We characterize the orbits for
a large set of initial conditions, whose Lebesgue measure is infinity. The
corresponding orbits for these initial data tend to triple collision with two
particles colliding infinitely many times. The pair of particles that are
colliding never collide with the third one. Of course, asymptotically the
three particles collide. This is a significant difference with respect to the
behavior of the particles moving under the influence of a classical Newtonian
potential.

2. EQUATIONS OF MOTION AND GENERAL ASPECTS

The quasihomogeneous n-body problem is a generalization of the classical
Newtonian n-body problem of celestial mechanics, where the goal is to
describe the motion of n-point particles m1 , m2 , ..., mn moving in R3 under
the action of a quasihomogeneous potential W, which is the sum of two
homogeneous potentials U and V,

W(q)=U(q)+V(q),

where

U(q)= :
1�i< j�n

m i mj

|qi&q j |
a ,

V(q)= :
1�i< j�3

m i mj

|qi&q j |
b ,

q=(q1 , q2 , ..., qn), qi # R3, 0�a<b.

Similarly to the classical Newtonian n-body problem, the equations of
motion for the quasihomogeneous n-body problem are given by

Mq� ={W(q), (2.1)

with M=diag(m1 , m1 , m1 , ..., mn , mn , mn), or

mi q� i=
�W
�qi

(q),

= :
n

j{i _
&amimj

|q i&q j |
a+2 (qi&q j)+

&bm imj

|q i&q j |
b+2 (qi&q j)& ,

i=1, ..., n (2.2)
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Let 2ij=[q | qi=q j] and 2=�1�i< j�n 2ij ; then the vector field given
by (2.2) is defined in [(R3)n"2]_TR3n where TR3n is the tangent bundle
of R3n. The equations of motion (2.2) may be written as a first order system
of differential equations in Hamiltonian form, with Hamiltonian function

H(q, p)= 1
2ptM&1p&W(q)=T&W(q), (2.3)

where q=Mq* and the kinetic energy T is given by T= 1
2ptM&1p.

Analogous to the Newtonian case, the quasihomogeneous n-body problem
has the classical 10 first integrals. In order to get the Lagrange�Jacobi identity
for this problem we define:

Definition 2.1. The moment of inertia of the system (2.2) is given by

I= 1
2 :

n

i=1

mi |qi |
2.

Let us observe that for fixed j,

:
n

i=1

m i |qi&q j |
2= :

n

i=1

mi |qi |
2&2q j } :

n

i=1

m iqi+|q j |
2 :

n

i=1

m i

=2I+|q j |
2 M� ,

where M� =m1+m2+ } } } +mn is the total mass of the system. After multi-
plying by mi , and adding all the terms in the above equation we get

:
n

i, j=1

m im j |q i&q j |
2+4M� I. (2.4)

Thus total collision occurs if and only if I=0.
Now we differentiate the expression for the momentum of inertia I twice:

I4 = :
n

i=1

miq* i } qi ,

I� = :
n

i=1

miq� i } qi+ :
n

i=1

mi |q* i |
2.

Finally, using the equations of motion (2.2), the expression for the kinetic
energy T, and the energy relation T&U&V=h, we get the Lagrange�Jacobi
identity for quasihomogeneous potentials:

I� =(2&a) U(q)+(2&b) V(q)+2h. (2.5)
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Let us observe that for some quasihomogeneous potentials with b>2 it
is possible to have I� <0 for h>0, implying that it is possible to have all
motions on this level of energy bounded even for positive energy h. This
is the first huge difference from the classical Newtonian case where the
motions are unbounded for h>0.

An interesting problem concerns the time in which an orbit reaches total
collision in a quasihomogeneous problem. The next result shows that this
time is always finite.

Proposition 2.1. In the quasihomogeneous n-body problem the total
collision always occurs in finite time.

Proof. We divide the proof into two cases:

(i) b>2. In this case I� <0 close enough to total collision, and there-
fore the function I is concave down and non-negative: The total collision
should occur in finite time.

(ii) 0�a<b�2. We prove this case by contradiction. Suppose that
total collision occurs in infinite time, so we have

U(q) � � and V(q) � � as t � �.

Then, from the Lagrange�Jacobi identity (2.5), we have that

I� � �, if t � �.

Thus, there exists t1>0 such that I� >1 for t>t1 . Integrating this inequality
twice we have

I�t2�2+ct+d, c, d constants, t>t1 .

Taking limits on both sides of the above inequality, we obtain

I � � as t � �.

This is a contradiction, since at infinity there is total collision with I � 0
as t � �.

Now suppose that for a given initial condition the corresponding orbit
reaches total collision at time t0 . Another interesting problem here is the
behavior of the moment of inertia I along this orbit when t � t+

0 . The
moment of inertia I represents the size of the system. We know that at total
collision limt � t0

+ I=0. We are interested in determining the order of this
limit. To this end we define

189TRIPLE COLLISION



Definition 2.2. Let q0 # R3n, the configuration q0 is called a central
configuration if there exists a scalar function r(t)>0 such that q(t)=r(t) q0

is a solution of the quasihomogeneous n-body problem.

Let us observe that central configurations are invariant under rotations
and homotheties, allowing us to define equivalence classes with respect to
these transformations. In the Newtonian case it is well known that total
collision and escapes to infinity always occur by central configuration; that
is, for an orbit that goes to total collision (ejection), the final configuration
tends asymptotically to a central configuration. Is the same result valid for
a quasihomogeneous problem? To address this question we define

Q=
I4 2

I 1&b�2.

If

lim
t � t0

Q=lim
t � 0

I4 2

I 1&b�2

exists and is positive, let limt � t0
Q=+>0. Then, close enough to total

collision, we have

I4 2
t+I 1&b�2,

which implies that

I4 t- + I (1�2)(1&b�2).

Solving this separable differential equation, we get

t&t0 t
4

2+b
1

- +
I (2+b)�4,

or equivalently

ItA(t&t0)4�(2+b).

Let us observe that in the Newtonian case (a=0 and b=1), the above
limt � t0

Q always exists and we have in this case It(t&t0)2�3, which is a
classical result in celestial mechanics [8].

Unfortunately, for a quasihomogeneous problem, the above limit does
not exist in general. Intuitively we can see that its existence depends on the
configuration of the particles at the moment of total collision. Later in this
paper we will show that for the quasihomogeneous collinear three body
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problem this limit in general does not exist for an orbit that reaches total
collision. When the limit does exist, then total collision (ejection) occurs by
central configuration and the order of the respective limit is ItA(t&t0)4�(2+b).
Our main result in this paper states that for any b�1 the measure (in the
Lebesgue sense) of the set of initial conditions which reaches total collisions
(ejection) by central configuration is zero, whereas the set of initial conditions
where the orbits reach total collision and limt � t0

Q does not exist has positive
measure. In summary, we will show that most of the orbits reach total collision
(ejection) on a configuration which is far from a central configuration.

3. TRIPLE COLLISION

In this section we will use the blow-up method introduced by R. McGehee
[5] to study the dynamics of the orbits that reach triple collision and the
orbits that pass very close to triple collision in the quasihomogeneous collinear
three-body problem. This is a particular case of the quasihomogeneous three-
body problem where we suppose that the particles are moving on a line, so
qi # R, and then q # R3. The equations of motion (2.2) and the energy relation
(2.3) hold for this case with

2=[q: q1=q2 , or q2=q3],

and the mass matrix is given by M=diag(m1 , m2 , m3).
If we define p=Mq* , the equations of motion can be written as a first-

order system of differential equations in Hamiltonian form,

q* =
�H
�p

=M&1p,

p* =&
�H
�q

={W(q),

where

H(q, p)= 1
2ptM&1p&W(q)=T&W(q),

and W(q)=U(q)+V(q), (remember that U and V are homogeneous
functions of degree &a and &b, respectively).

Now we define the planes:

Q=[q # R3"2: m1q1+m2q2+m3q3=0],
(3.6)

P=[p # R3: p1+ p2+ p3=0].
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From here on, we will work in the cartesian product Q_P intersected
with a fixed level of energy h given by

1
2ptM&1p&W(q)=T&W(q)=h. (3.7)

Introducing McGehee coordinates [5], we obtain

r=- qTMq,

v=rb�2pT s,

s=
1
r

q,

u=rb�2(p& yMs).

After the time parametrization dt�d{=r(b�2)�1, the system of differential
equations becomes

r$=rv,

v$=
b
2

v2+uTM&1u&arb&aU(s)&bV(s),

s$=M&1u, (3.8)

u$=\b
2

&1+ vu&(uTM &1u) s

+rb&a({U(s)+aU(s) Ms)+({V(s)+bV(s) Ms),

where ($) means differentiation with respect to the new time {. The energy
relation (3.7) goes over to

1
2 (uTM&1u+v2)&rb&aU(s)&V(s)=hrb. (3.9)

Equations (3.8) and (3.9) are of class C1 at r=0 if b&a�1. Moreover,
if a, b # N _ [0], then the flow is analytic at r=0. Thus, in these cases we
have extended the equations of motion to include triple collision.

The total collision manifold 4 is defined by setting r=0 in the energy
relation (3.9),

4=[(r, v, s, u): r=0, 1
2 (uTM&1 u+v2)&V(s)=0]. (3.10)

From the equations (3.8), r=0 implies r$=0; that is, the total collision
manifold is invariant under the flow given by the system (3.8), and from
(3.9) we obtain that 4 is independent of the energy level h, in other words
we are gluing the same border 4 to all levels of energy h. The set of orbits
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ending in total collision corresponds to the set of orbits asymptotic to 4.
Also by continuity of the flow with respect to initial conditions the knowledge
of the orbits on 4 can be used to understand the behavior of orbits for r small
(orbits passing close to triple collision).

4. REDUCTION OF COORDINATES

Before regularizing the singularities due to double collisions, it is convenient
to reduce the coordinates in order to work with a vector field defined in a
subset of R4. In this section we will follow the ideas of McGehee [5].

Let S3=[q # R3 | qtMq=1] be the unit sphere in the metric induced by
the mass matrix M, and let SQ=S3 & Q. In the quasihomogeneous collinear
three-body problem we will consider that the configuration q=(q1 , q2 , q3)t

satisfies q1�q2�q3 , and then we will study the configuration space in SQ

restricted to this order. In other words, we are restricting our study to an arc
S1 on SQ . This arc has extremes at the points a=(a1 , a2 , a3) and b=
(b1 , b2 , b3), where a1=a2<a3 and b1<b2=b3 . These points a and b
correspond to double collisions.

S1=[s # SQ : a1�s1�s2�s3�b3].

Using the same computations given in [5], we can construct an analytic
diffeomorphism S between the interval [&1, 1] and S1 such that S(&1)=a
and S(1)=b. S: [&1, 1] � S1 is defined by

S(s)=
1

sin 2*
([sin *(1&s)] a+[sin *(1+s)] b), (4.11)

where

1 1 1 0 1 &1

A1=\1 1 1+ , A2=\&1 0 1+ ,

1 1 1 1 &1 0

A=
1

m1+m2+m3

A1M+\ m1m2 m3

m1+m2+m3+
1�2

M&1A2 , and

sin 2*=(Aa, b).

To reduce the McGehee coordinates we define the new variables

s=S&1(s), u=sTATu
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and the new potentials

U� : (&1, 1) � R V� : (&1, 1) � R

s [ U(S(s)) s [ V(S(s)).

The analytic expressions for these functions in their respective domains
are given by

U� (s)=sina 2* _ m1m2

[(b2&b1) sin *(1+s)]a+
m2m3

[(a3&a2) sin *(1&s)]a

+
m1m3

[(b2&b1) sin *(1+s)+(a3&a2) sin *(1&s)]a& ,

(4.12)

V� (s)=sinb 2* _ m1m2

[(b2&b1) sin *(1+s)]b+
m2m3

[(a3&a2) sin *(1&s)]b

+
m1m3

[(b2&b1) sin *(1+s)+(a3&a2) sin *(1&s)b]& .

Finally the equations (3.8) in the new reduced coordinates are given by
the following system defined in a subset of R4,

r$=rv,

v$=
b
2

v2+u2&arb&aU� (s)&bV� (s),

(4.13)

s$=
1
*

u,

u$=\b
2

&1+ vu+rb&a 1
*

dU�
ds

+
1
*

dV�
ds

,

and the energy relation (3.9) goes over

1
2 (v2+u2)&rb&aU� (s)&V� (s)=hrb. (4.14)

5. REGULARIZATION OF DOUBLE COLLISIONS

The vector field given by (4.13) still has singularities; The potentials U�
and V� are not defined at s=1 and s=&1, which correspond to double
collisions. In this section we will regularize those kind of singularities by
a technique introduced by Sundman [10]. Physically this corresponds to
an elastic bounce. Since the degrees of homogeneity &a and &b of the

194 PE� REZ-CHAVELA AND VELA-ARE� VALO



potentials U and V satisfy 0�a<b; the potential V ``dominates'' at double
collisions.

The Sundman regularization (or more precisely, Sundman type regulariza-
tion), consists in general of defining a new tangential velocity together with
a rescaling of time. That is, let

w=,(s) u,
d{
d_

=,(s), (5.15)

where the function ,(s) must satisfy the necessary conditions for the
equations (4.13), written in the new variable w and the new time _, to be
at least of class C1.

The system (4.13) using (5.15) goes over to

r$=,(s) rv,

v$=\b
2

&1+ ,(s) v2+(2&a) rb&a,(s) U� (s)+(2&b) ,(s) V� (s)+2hrb,(s),

s$=
1
*

w, (5.16)

w$=\b
2

&1+ ,(s) vw&
1
*

,(s)
d,
ds

v2+
1
*

rb&a _2,(s)
d,
ds

U� (s)+,2(s)
dU�
ds &

+
1
* _2,(s)

d,
ds

V� (s)+,2(s)
dV�
ds &+2hrb,(s)

d,
ds

,

where ($) now means differentiation with respect to the new time _.
The vector field given by (5.16) will be at least of class C1 if all the

functions defined in (5.16) are at least of class C1; in this way we have
several choices for the function ,, for example

,(s)=
1

V� (s)
, ,(s)=(1&s2)b, ,(s)=

(1&s2)b�2

[2V� (s)]1�2 .

Nevertheless, the dynamics given by the equations (5.16) using each of
these functions , are qualitatively the same. We can easily check that the
vector field (5.16) is differentiable only if b�2, or b=1 and a=0. If
1<b<2, then (5.16) is only continuous.

In order to simplify the computations we choose

,(s)=
(1&s2)b

W(s)1�2 ,
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where

W(s)=2(1&s2)b V� (s)

=
2
*b sinb 2* _

m1m2(1&s)b

_(b2&b1)
sin *(1+s)

*(1+s) &
b+

m2m3(1+s)b

_(a3&a2)
sin *(1&s)

*(1&s) &
b

+
m1m3(1&s2)b *b

[(b2&b1) sin *(1+s)+(a3&a2) sin *(1&s)]b& .

With this choice of the function ,(s), the system (5.16) can be written

r$=
(1&s2)b

W(s)1�2 rv,

v$=\b
2

&1+ W(s)1�2 _(1&s2)b

W(s)
v2&1&

+
(1&s2)b

W(s)1�2 [(2&a) rb&aU� (s)+2hrb],

s$=
1
*

w, (5.17)

w$=&
b
*

s(1&s2)b&1+
2
*

bs
(1&s2)2b&1

W(s)
[v2&2rb&aU� (s)&2hrb]

+
1

2*
W$(s)
W(s)

[(1&s2)b&w2]+\b
2

&1+ (1&s2)b

w(s)1�2 vw

+
rb&a

*
(1&s2)2b

W(s)
dU�
ds

,

and the energy relation (4.14) goes over to

w2&(1&s2)b+
(1&s2)2b

W(s)
[v2&2rb&aU� (s)&2hrb]=0. (5.18)

We remark that the vector field (5.17) is of class C1 only if b>2 and
b&a�1; if moreover we have a, b # N _ [0], then the system (5.17) is
analytic. If 1<b<2 and b&a�1, we can only guarantee that the vector
field (5.17) is continuous, so we do not have necessarily uniqueness of the
solutions.
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5.1. The Special Case b=2

For b=2, all points with coordinates (0, v, \1, 0) which correspond to
double collisions are equilibrium points for the global flow given by (5.17).
That is, in the special case b=2, when we regularize double collisions we
are creating a large set of equilibrium points. So in this case we actually
have not regularized the double collisions, i.e., an orbit which reaches
double collisions dies at that point.

For b=2, using the energy relation, it is not difficult to check that from
(5.16) the variable v$ can be written as

v$=v2+u2&arb&aU� (s)&2V� (s)=(2&a) r2&a,(s) U� (s)+2hr2,(s),

so in this particular case, in order to guarantee the differentiability of the
function v$ it is enough to define the function , as

,(s)=
(1&s2)3�2

W(s)1�2 . (5.19)

The vector field (5.16) goes over to

r$=
(1&s2)3�2

W(s)1�2 rv,

v$=
(1&s2)3�2

W(s)1�2 [(2&a) r2&aU� (s)+2hr2],

s$=
1
*

w, (5.20)

w$=&
s
*

+
3s
*

(1&s2)2

W(s)
[v2&2U� (s) r2&a&2hr2]

+
W$(s)

2*W(s)
[1&s2&w2]+

r2&a

*
dU�
ds

(1&s2)3

W(s)
,

and the energy relation takes the form

w2+
(1&s2)3

W(s)
v2=(1&s2)+

(1&s2)
W(s)

[2U� (s) r2&a+2hr2]. (5.21)

The differentiability of the above vector field depends on the degree of
homogeneity &a of the function U. If 0�a� 1

2 , then the vector field is
differentiable, but if 1

2<a�1, then the equations (5.20) are only continuous
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at s=\1, and therefore we cannot guarantee the uniqueness of the orbits
that pass across double collision. Let us observe that the important case
a=1 and b=2, known as the Manev problem, corresponds to the last
affirmation. We will come back to this case later in this paper.

6. GLOBAL FLOW ON THE TRIPLE COLLISION MANIFOLD

In Section 3 we defined the total collision manifold 4. In our case we will
call it, for simplicity, the triple collision manifold. In the regularized and
reduced McGehee coordinates (r, v, s, w) this manifold will be further
denoted by

4={(r, v, s, w): r=0, w2&(1&s2)b+
(1&s2)2b

W(s)
v2=0= . (6.22)

We have seen that 4 is invariant under the flow given by (5.17). Taking
r=0 in that equations we get a vector field defined on 4,

v$=\b
2

&1+ W(s)1�2 _(1&s2)b

W(s)
v2&1& ,

s$=
1
*

w,

(6.23)

w$=&
b
*

s(1&s2)b&1+
2
*

bs
(1&s2)2b&1

W(s)
v2

+
1
2*

W$(s)
W(s)

[(1&s2)b&w2]+\b
2

&1+ (1&s2)b

W(s)1�2 vw.

6.1. Equilibrium Points

For b{2, the equilibrium points on 4 given by the vector field (6.23)
have the form (0, \vc , sc , w) with

vc=- 2V� (sc),
dV�
ds

(sc)=0, w=0.

We can check that these are all the equilibrium points on 4 for the global
flow given by (5.17). In other words, all equilibrium points of the equations
(5.17) are the points above defined located on 4. For b=2, in addition
to these equilibrium points, we also have all points (0, v, \1, 0) which
correspond to double collisions.
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By straightforward computations and using the fact that the vectors
[s0 , As0] form a basis for the plane Q, where s0=S(s0), we can check that

dV�
ds

(s0)=0 � M&1 {V(s0)=+s0 . (6.24)

So equilibrium points on the triple collision manifold 4 correspond to
vectors (q,p), in which the configuration vector q is parallel to the vector
M&1 {V(q). In other words, at triple collision, the potential V predominates
on the behavior. In the homogeneous case, that is, when a=0, this corre-
sponds to a central configuration. Since we will be interested in these kinds
of configurations, we define:

Definition 6.1. A configuration q0 is called a quasi-central configura-
tion if the vectors q0 and M&1 {V(q) are parallel.

Of course, as for the central configurations, these new configurations are
considered equivalence classes with respect to rotations and homotheties.
F. Diacu in his paper [2] takes the above definition to be like the defini-
tion of central configuration for the quasihomogeneous case. We consider
that is convenient to take both degrees of homogeneity &a and &b of the
potentials U and V at the same time in the definition of central configura-
tion. (See Definition 2.1.)

Differentiating the function V� twice we get

d 2V�
ds2 (s)=*2[AS(s)]T D2V(S(s))[AS(s)]+b*2V(S(s)).

This function is positive because D2V is positive definite, and therefore
the function V� is a convex function with lims � \1 V� =+�. Then we can
affirm that V� has a unique critical point on the interval [&1, 1], and,
therefore, there exists only one quasi-central configuration in the quasi-
homogeneous collinear three-body problem. (See Fig. 1.)

6.2. Linearization Around the Equilibrium Points

Consider the vector field given by (5.17), the energy relation (5.18),
and the equilibrium point A0=(0, &vc , sc , 0), where vc=- 2V� (sc) and
(dV� �ds)(sc)=0. The analysis of the Jacobian matrix at the equilibrium
point A0 depends on the exponent of the coordinate r. On this basis we
have divided the analysis into three cases.

Case I. b>1 and b&a>1.
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FIG. 1. The triple collision manifold.

In this case, when we calculate the Jacobian matrix, it is possible to
eliminate all terms which have as factor some power of the variable r,
getting the following expression for the Jacobian matrix:

\
&(1&s2

c)b�2 0 0 0

+ .

0 &(b&2)(1&s2
c)b�2 0 0

0 0 0 1�*

0 &
4bsc(1&s2

c)b&1

*vc
(1&s2

c)b V� "(sc)
*v2

c \1&
b
2+ (1&s2

c)h�2

From the energy relation (5.18), we have that the level of energy h is given
by

F(r, v, s, w)=w2&(1&s2)b+
(1&s2)b

2V� (s)
[v2&2rb&aU� (s)&2hrb]=0.

Then the tangent space of this manifold at A0 is

TA0
F=[(\, #, _, /): {F(A0) } (\, #, _, /)=0]=[(\, #, _, /): #=0].
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The linear part of the vector field (5.17) restricted to the space TA0
F is

given by

J� =\
&(1&s2

c )b�2 0 0 0

+ .

0 0 0

0 0 0 1�*

0 0 (1&s2
c)b V� "(sc)

*v2
c \1&

b
2+ (1&s2

c)h�2

A basis for TA0
F is formed by the vectors

!1=\
1
0
0
0+ , !2=\

0
0
1
0+ , !3=\

0
0
0
1+ ,

and a representative of J� in this basis is the matrix

J*=\
(&1&s2

c)b�2

0

0

0
0

(1&s2
c)b V� "(sc)

*v2
c

0
1�*

\1&
b
2+ (1&s2

c)b�2+ .

Thus !1 is an eigenvector with eigenvalue &(1&s2
c)b�2<0. The other two

eigenvalues are computed by solving the quadratic polynomial

P(m)=m2+\b
2

&1+ (1&s2
c)b�2 m&(1&s2

c)b V� "(sc)
*2v2

c

=0,

which has one positive and one negative root. Therefore, we can conclude
that the equilibrium point A0 is hyperbolic. Let B0 be the equilibrium point
B0=(0, vc , sc , 0). We can repeat the same analysis for the Jacobian matrix
at B0 , getting that B0 is also hyperbolic with two positive eigenvalues and
one negative eigenvalue.

Case II. b>1 and b&a=1.

In this case, when we derive rb&a, it is not possible to eliminate the corre-
sponding term, and then the tangent space to the manifold corresponding
to the level of energy h at the equilibrium point A0 is

TA0
F=[(\, #, _, /): U� (sc) \+vc#=0].
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As in Case I, this tangent vector space has dimension 3; a basis for TA0
is

given by

!1=\
&vc

U� (sc)
0
0 + , !2=\

0
0
1
0+ , !3=\

0
0
0
1+ ,

and a representative of the linear part of (5.17) in this basis is

J*=\
&(1&s2

c)b�2

0

&(1&s2
c)b�2 U� (sc)

*v2
c

0
0

(1&s2
c)b V� "(sc)

*v2
c

0
1�*

\1&
b
2+ (1&s2

c)b�2+ .

The eigenvalues of this matrix are &(1&s2
c)b�2 and the roots of

P(m)=m2+\b
2

&1+ (1&s2
c)b�2 m&(1&s2

c)b V� "(sc)
*2v2

c

=0,

which is the same quadratic polynomial as in the above case, and therefore
we have the same conclusions: The equilibrium point A0 is hyperbolic, with
two negative eigenvalues and one positive eigenvalue, for the equilibrium
point B0 we have one negative eigenvalue and two positive eigenvalues.

Case III. a=0 and b=1.

This case corresponds to the classical Newtonian case. Here we have that
the potential U� is a constant. The tangent space for the level of energy h
at the equilibrium point A0 is

TA0
F=[(\, #, _, /): (U� (sc)+h) \+vc#=0].

In this case we work with the new energy h$=U� (sc)+h, and then from the
above expression #=&h$\�vc on TA0

, a basis for this vector space is
formed by the vectors

!1=\
&vc

h$
0
0 + , !2=\

0
0
1
0+ , !3=\

0
0
0
1+ ,
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and the respective matrix J* can be written as

J*=\
&(1&s2

c)1�2

0

0

0
0

(1&s2
c)

V� "(sc)
*v2

c

0
1�*

1
2

(1&s2
c)1�2+ .

Like in the two previous cases, the equilibrium point A0 is hyperbolic, with
two negative eigenvalues and one positive eigenvalue.

Let W s(u)
A0(B0) be the stable (unstable) submanifold associated to the equili-

brium point A0(B0). We summarize the previous analysis of the equilibrium
points A0 and B0 in the following result.

Theorem 6.1. The equilibrium points A0 and B0 for the global flow of
the quasihomogeneous collinear three-body problem are hyperbolic, both of
them are on 4, and

dim W s
A0

=2 dim W s
B0

=1

dim W u
A0

=1 dim W u
B0

=2.

6.3. Global Flow on 4

In order to describe the flow on 4 we start by giving a characteristic
property of the flow on 4. In this way we define

Definition 6.2. A flow is called gradient-like with respect to one of its
coordinates if this coordinate increases along every nonequilibrium solution.

With this definition we can now prove that, for the quasihomogeneous
collinear three-body problem, the coordinate v plays a very important role
if b{2.

Proposition 6.3. If b{2, then the flow on 4 is gradient-like with respect
to the v coordinate.

Proof. From the equations (6.23) and using (6.22) we get that for s{\1

v$=\1&
b
2+ W(s)1�2 w2

(1&s2)b .
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Then if w{0 we have

if 1�b<2, then v is increasing,

if b=2, then v is constant, and

if b>2, then v is decreasing.

For w=0 we have that

v"=0, and v$$$=(2&b)
W(s)1�2

(1&s2)b (w$)2,

but w$ can be written as

w$=\ v2

V� (s)
&2+ bs(1&s2)b&1+

1
2

(1&s2)
dV� �ds
V� (s)

,

and again from (6.22) we get that v2=2V� (s) if w=0, then in this case we
have that v$$$=0 iff dV� �ds=0, which correspond to equilibrium points.

When s=\1, then we know that

v$=\1&
b
2+ W(s)1�2,

getting the same results.
Therefore, we have proved that the nonequilibrium solutions increase

along the coordinate v for 1�b<2, and decrease if b>2. This proves that
the flow on 4 is gradient-like with respect to v if 1�b<2 and with respect
to &v if b>2. (See Fig. 2.)

FIG. 2. Global flow on 4.
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7. THE SET OF TRIPLE COLLISION�EJECTION ORBITS

In this section we will describe the set of all orbits which end or start at
triple collisions. We will prove that for 1�b<2, the set of orbits ending in
triple collision for the quasihomogeneous collinear three-body problem
corresponds to the stable manifold associated to the equilibrium point A0 .
That is, in this case the collision orbits tend asymptotically to form a quasi-
central configuration. Surprisingly this is not true for b>2, where we will
find a large set of triple collision orbits which tend to 4, but far of the
stable manifold associated to A0 . For b=2 the regularization of double
collisions is a big obstacle; in this case we are not able to show the existence
of a positive measure set of triple collision orbits.

We being remarking that the global flow given by (5.17) is reversible;
that is, if ,(_)=(r, v, s, w)(_) is a solution of the system (5.17), then ,� (_)
=(r, &v, s, &w)(&_) is also a solution of (5.17). So, using this property,
it is enough to study the orbits ending in triple collision, the ejection orbits
are obtained by the reversibility of the flow.

We have seen in the last section that the flow on 4 depends on whether
1�b<2, b=2, or b>2. Here, we will show that the same is true for the
global flow given by (5.17).

7.1. Case 1�b<2

Let us remember that in this case, the flow on 4 is gradient-like with
respect to v. That is, the coordinate v is increasing along the nonequilibrium
solutions. Now applying the theorem of continuity with respect to initial
conditions, we obtain that the same is true for the orbits that are close
enough to the triple collision manifold 4. That is, for r small enough and
1�b<2, the global flow of the quasihomogeneous collinear three-body
problem is gradient-like with respect to the coordinate v. With this remark,
we can prove the following result:

Theorem 7.1. Let C be the set of collision orbits in the quasihomo-
geneous collinear three-body problem. For 1�b<2, any orbit in C reaches
the triple collision manifold 4 along the stable submanifold associated to the
equilibrium point A0 . The Lebesgue measure of the set C is 0.

Proof. Let #(_)=(r(_), v(_), s(_), w(_)) be an orbit of the global flow
given by (5.17), such that #(0) � 4 and r(_) � 0 as _ � �. That is, #(_) � 4 as
_ � �, and therefore it is a triple collision orbit. We will prove that #(_) � A0 .
The proof is by contradiction: Suppose that #(_) does not converge to any
point on 4. We affirm that, there exists _1>0 such that v(_1)>0, because
if v(_)�0 \_, we can choose T>0 such that r(_)<= \_>T, since this is
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a collision orbit and we know that the global flow is gradient-like with
respect to v. With this hypothesis let

:=Sup[v(_): _�T].

If lim_ � � v(_)=:, then #(_) should converge to a periodic orbit on 4,
since the functions s(_) and w(_) are bounded and r(_) � 0. This a
contradiction, because the flow on 4 is gradient-like with respect to v, so
on 4 there are no periodic orbits. Therefore, there exists _*>T>0 such
that v(_*)=:. But then v(_)>v(_*)=: for _>_*, because the global flow
is also gradient-like with respect to v if r(_) is small enough, which is a
contradiction. This proves the affirmation.

Then there exists _1>T such that v(_1)>0, and using again the fact that
the global flow is gradient-like with respect to v for r small enough, we
have that v(_)>0 \_>_1 , and then from the equations (5.17) we get that

r$(_)=r(_) v(_) ,(s(_))>0 \_>_1 ,

but this is false, because our initial hypothesis was that r(_) � 0.
In this way we have proved that #(_) converges to a point on 4. This

implies that #(_)/W s
A0

_ W s
B0

but W s
B0

/4, this manifold is invariant
under the flow, and #(0 � 4. Therefore #(_)/W s

A0
, which proves the first

par of the theorem #(_) � A0 as _ � �.
The second part follows from the fact that C/W s

A0
, and this is a 2-dimen-

sional manifold, while the phase space has dimension 3.

Remark. Let E be the set of ejection orbits in the quasihomogeneous
collinear three-body problem. Using the reversibility of the flow we can
prove that the Lebesgue measure of the set E is zero, that is, +(E)=0, and
therefore +(C _ E)=0.

Another important consequence of the above theorem is that, for 1�b<2,
all collision or ejection orbits tend asymptotically to form a quasi-central
configuration. This result was proved previously by F. Diacu [2], using the
ideas of McGehee [5]. The proof presented here is simpler.

7.2. Case b=2

In this case, from the equations (5.17) we get that v$=0. Let us remember
that here, using the classical regularization, we have created a large number of
equilibrium points on 4, corresponding to double collisions. In this case, all
the orbits on 4 are homoclinic or heteroclinic. An orbit tending to 4 can die
in double collision.

In order to obtain more information on the global flow close to 4, we
have used a new function ,(s) given by (5.19), the corresponding vector
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field (5.20) is only continuous at s=\1. However, the advantage of this
regularization is that the equilibrium points corresponding to double colli-
sions have disappeared, and the vector field (5.20) has only the equilibrium
points A0 and B0 . In this case, the triple collision manifold is foliated by
periodic orbits, except for the values of v=\- 2V� (sc), which correspond
to a couple of homoclinic orbits. As in the previous case, let C and E be
the sets of collision and ejection orbits, respectively, in the quasihomo-
geneous collinear three-body problem. We will prove the following result.

Proposition 7.2. For b=2, any orbit in C tends to an periodic orbit on 4,
or to the corresponding equilibrium point, or to one of the two homoclinic orbits
with v<0.

Proof. First, let us observe that from the equations (5.20) we have

v$=
(1&s2)3�2

W(s)1�2 [(2&a) r2&aU� (s)+2hr2].

Since a�1 the global flow outside 4 is gradient-like with respect to the
coordinate v for r small enough regardless of the sign of h.

Now we consider a collision orbit #(_)=(r(_), v(_), s(_), w(_)) that is,
lim_ � � r(_)=0. Again, from (5.20), we know that

r$=
(1&s2)3�2

W(s)1�2 rv; (7.25)

that is, r$ has the same sign as v. Thus by the gradient-like condition, in
order to have a collision orbit, the coordinate v must satisfy v(_)�0 \_>T.
Then, since all coordinates along the orbit # are bounded, the |-limit of # is
a compact set, and by the gradient-like condition of the flow it must be an
equilibrium point, or a periodic orbit, or one of the two homoclinic orbits
with v<0.

Let us observe here that we can have similar initial conditions with v<0
and such that the corresponding orbit of the first one goes to collision,
but the orbit of the second one does not. Remember from Eq. (7.25) that
if for a positive time T we have v(T)=0, then, for all t>T, v(t)>0 by the
gradient-like property of the flow with respect to the coordinate v; hence
this orbit is not a collision orbit.

So in the case b=2, at least using the techniques shown in this paper,
we cannot prove the existence of a set of collision-ejected orbits of positive
measure.
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7.3. Case b>2

In the case b>2, the flow on the total collision manifold 4 is gradient-
like with respect to the function &v, so the v coordinate decreases on 4
along nonequilibrium solutions. This will imply really different behavior for
the collision orbits. First we will prove the following result.

Theorem 7.3. Let b>2. If #(_) is an orbit of the global flow of the quasi-
homogeneous collinear three-body problem, which satisfies r(_0) is small enough,
and v(_0)<0 for some time _0 , then #(_) is a triple collision orbit.

Proof. Let us remember the Lagrange�Jacobi equation (2.5)

I� =(2&a) U(q)+(2&b) V(q)+2h.

From this equation we know that the moment of inertia I along #(_) is
concave down, because this orbit is close to triple collision. Using the
works of Painleve� [7] and von Zeipel [6, 9], it is not difficult to prove
that the orbit #(_) only has singularities due to the collision of at least two
particles, because along this orbit the positions of all the particles remain
bounded. That is, in this problem we cannot have a non-collision singularity,
and thus the function I along #(_) is bounded. So, if we prove that the moment
of inertia I is a decreasing function of real time along #, then this orbit will
necessarily be a triple collision orbit.

We know from the McGehee coordinates definition that

r=- I, v=rb�2r* , and
dt
d{

=rb�2+1,

Thus, in the new time {, we have r$=rv.
Remember also that we have regularized binary collisions using a positive

function ,(s) and a new time d{�d_=,(s), giving r$=,(s) rv. Therefore, r* and
v have the same sign. Now, since

r* =
1

2 - I
I4 ,

we have that

v<0 � I4 <0.

We shall now show that, on #(_), the coordinate v remains negative after _0 .
The initial condition with r(_0)r0 and v(_0)<0 and the continuity of the
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flow with respect to initial conditions imply that we have v$�0 for a finite time
interval [_0 , _1]; therefore

v(_)�v(_0)<0, _ # [_0 , _1].

Now observe that on this time interval r$(_)<0, and thus r(_)<r(_0),
which implies that on this interval the orbit becomes closer and closer
to 4.

Thus we must have v<0 for _>_0 . And for this orbit, we have I4 <0 in
real time. Since I is a non-negative, concave-down, and decreasing function
along #(_), it must have a root corresponding to a triple collision; that is,
#(_) is a triple-collision orbit.

This theorem has really important consequences. The main one is given
in the following result, which establishes that the set of triple collision
orbits far from a quasi-central configuration is quite huge.

Theorem 7.4. For b>2 the Lebesgue measure of the set of triple collision
orbits C, has positive measure; moreover, +(C)=�.

Proof. Let us remember that the coordinates of the equilibrium point
A0 are given by

A0=(0, &vc , sc , 0), where vc=- 2V� (sc), and
dV�
ds

(sc)=0.

Let r0* be small enough, given by Theorem 7.3; that is, if r0<r0*
and v0<0, the corresponding orbit is a triple collision orbit. Then the set

0=[(r, v, s, w): 0<r<r0 , v< &vc]

is an unbounded open set in the phase space of the vector field (5.17), and
by the theorem, any point in 0 corresponds to a triple collision orbit.

Remark 1. The orbits with initial conditions in 0 spiral the left branch
of 4 or the right branch of 4 depending on whether the respective initial
condition is s0<sc or s0<sc . (See Fig. 3.)

Physically, this means that the triple collision orbits with initial data in
0 tend to triple collision with two particles colliding infinitely many times.
The particles which are colliding with each other never collide with the
third particle, whereas the third particle is closer and closer to them. The
fact that the middle particle is colliding with the left or the right particle
depends on the position of the respective initial data with respect to the quasi-
central configuration. This means that we have total control of the dynamics
of the triple collision orbits starting in a large set of initial data.
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FIG. 3. Triple collision orbits for b>2.

Remark 2. Since the equilibrium point A0 is hyperbolic and the stable
submanifold associated to it has dimension 2, the set of initial conditions
getting triple collision asymptotically to a quasi-central configuration has
Lebesgue measure zero.

Remark 3. A similar result corresponding to the set of ejection orbits E
is obtained applying the reversibility of the flow.
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