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We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and
molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling
Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multi-
photon probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-
Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delin-
eates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as
functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and
multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and
Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are
accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the
field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the
simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved
ionization probability.
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I. INTRODUCTION

Multiphoton processes involving atomic and molecular
electrons have been widely studied both in experiments and
in different theoretical treatments, some of which are directly
related to questions of quantum chaos[1–3]. The goal of this
work is to study dynamical features of multiphoton transi-
tions in the three-dimensional hydrogenlike Rydberg atom in
a semiclassical radiation field. The problem is studied by
direct integration of the system of ordinary differential equa-
tions (ODE’s) resulting from expanding the time-dependent
solution in terms of a finite basis of unperturbed states. With
this approach, we describe the effect of the Goeppert-Mayer
gauge transformation[4], that is, we calculate the wave func-
tion for the standard vector potential coupling Hamiltonian
(in the velocity gauge[5]) and for the electric dipole Hamil-
tonian (length gauge[5]). We compute time-evolving prob-
abilities and their strong dependence on field parameters. We
are focused on field frequencies close to unperturbed reso-
nances, which in general interfere with results obtained from
perturbative methods.

A detailed analysis of the Floquet quasienergies and Flo-
quet states for the Rydberg Hamiltonian allows us to describe
their role in multiphoton probability exchange. We provide
analytical expressions of the variation of Floquet states and
quasienergies as a function of the field parameters(strength
and frequency). This analysis provides the basis for the un-
derstanding of the effects of avoided quasienergy crossings
on probability exchange. We show that avoided quasienergy
crossings are accompanied by dramatic changes in the com-
ponents of the Floquet states, which may feature probability
exchange. With this analysis we can predict transition rates
and selection rules for multiphoton transitions. The analytic

and numerical techniques presented in this work are nonper-
turbative and can be extended to general Rydberg atoms.

In the study of multiphoton processes due to a radiation
field, often perturbative methods have been attempted, which
are based mainly on the reduction of the problem to a two-
level system(see, for instance, Refs.[5,6], and references
therein). Naturally, low-order transition probability is only
justified for the case of a weak field and for frequencies that
are far from resonance, since the formulas have small de-
nominators for resonant frequencies. The problem of in-
trashell dynamics has attracted attention since experiments in
Ref. [2] suggest that intrashell dynamics is responsible for
enhancement of ionization probability; in Ref.[7], intrashell
dynamics is treated as two two-level problems. For the prob-
lem of a strong field, nonperturbative methods have been
attempted, based on Floquet analysis introduced by Shirley
[8]. With this approach, the Floquet states are obtained in the
Fourier domain, and the problem is reduced to an eigenvalue
problem for a time-independent infinite-dimensional matrix.
Successful applications of this method can be found in Refs.
[9,10]. In Ref. [11], there is a comparison between one- and
two-dimensional probability transitions of the Rydberg
Hamiltonian. Also for the Rydberg problem, multiphoton
transitions are studied in Refs.[12,13] under the influence of
both a microwave and a static field. Their analysis is based
on Floquet states obtained by Blochinzew[14]. These Flo-
quet states, however, are obtained within ann shell of a
Rydberg Hamiltonian under a microwave field, in which
nondiagonal matrix elements between states with different
principal quantum numbern have been neglected. We are
interested in the Floquet analysis of the fully coupled Hamil-
tonian, and we describe the dynamics of the system in the
time domain, that is, we provide the time evolution of the
transition probabilities as a consequence of the expansion of
the solution in terms of Floquet states.

The radiation wavelength under consideration in this
work is much larger than the spatial extent of the electron
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states even for highn. Therefore, the dipole approximation
[15] applies and the field is independent of the spatial coor-
dinates. We provide examples of multiphoton transitions in
two regimes: transitions from the ground state to excited
states of hydrogen and transitions between excited Rydberg
states that are close to ionization. The same approach pro-
vided a negative proof for the existence of multiphoton tran-
sitions for the periodically driven simple harmonic oscillator
[16].

We obtain analytical expressions for the variation of the
quasienergies and Floquet states as functions of the field pa-
rameters. These expressions are analogs of some expressions
obtained in Ref.[17] in a different context. When the field
parameters vary, both crossings and avoided crossings of the
quasienergies can be observed. Our analysis permits us to
demonstrate that, when the quasienergies feature an avoided
crossing, the Floquet states show dramatic changes. As a
consequence, the time-dependent solution can be obtained as
the superposition of two or more Floquet states, which re-
sults in probability exchange between unperturbed states
when the radiation field is present. When a crossing occurs,
the Floquet states are not significantly affected since the so-
lution may be expanded in terms of mainly one Floquet state,
hence there is no transition probability. The dynamics close
to avoided crossings was also studied in Ref.[18]; however,
our analytic results are different and explain the numerical
observations.

For small values of the field strength, the Floquet states
are very close to unperturbed states. This is used to obtain
selection rules for the avoided quasienergy crossings. For a
transition ofN photons, an avoided crossing is possible if the
states involved have a difference in quantum numberl that is
even forN even or odd forN odd. We provide an expression
for the rate of transition for these cases, which is inversely
related to the difference in the quasienergies involved in the
avoided crossing. As the field strength varies, the values of
the field frequency producing avoided crossings also vary(a
consequence of the ac or dynamic Stark effect[6]). This
shows that the tuning of the field parameters should be done
simultaneously to achieve an optimal transition.

The paper is organized as follows. In Sec. II we review
the Hamiltonian of the Rydberg atom in a microwave field,
in both the velocity and length gauges, which are related by
the Goeppert-Mayer gauge transformation. The solution is
expanded in terms of unperturbed states; the dynamics is
then reduced to the auxiliary equations. Examples of multi-
photon transitions from the ground state are presented in Sec.
III; the time-evolving probabilities are obtained in both ve-
locity and length gauges by computing the effect of the
Goeppert-Mayer gauge transformation. Floquet analysis of
the auxiliary equations and the computation of Floquet states
and quasienergies is described in Sec. IV; through examples,
we describe long-term dynamical features that can be ob-
tained from the expansion of the initial condition in terms of
Floquet states att=0. We explore, analytically, the behavior
of quasienergies and Floquet states close to avoided cross-
ings as the parameters vary in Sec. V. The study of the Flo-
quet states as a function of the parameters allows us to iden-
tify selection rules for multiphoton transitions; this is
described in detail in Sec. VI. The conclusions and discus-

sion is in Sec. VII. Finally, in Appendix A, we give heuristic
reasons for the existence of multiphoton resonances by
studying the Laplace transform of the auxiliary equations.

II. THE RYDBERG-ATOM HAMILTONIAN

The Hamiltonian for the Rydberg atom in an intense semi-
classical microwave radiation field is given by

H =
1

2me
SpW +

e

c
AW stdD2

−
e2Z

r
. s1d

The microwave fieldAW with amplitudeA0 and frequencyv is
given by

AW std = A0«̂ sinsvtd,

in which «̂ is the polarization unit vector. The electron charge
is −e, e.0.

Applying the Goeppert-Mayer gauge transformation
[4,5,19]

xsrW,td = −
ie

"c
rW ·AW std, s2d

the Hamiltonian(1) is related to the electric dipole Hamil-
tonian given by

H̃ = H0 + erW ·EW , s3d

whereH0 is the unperturbed Hamiltonian for a hydrogenlike
atom,

H0 =
p2

2me
−

e2Z

r
, s4d

andEW =−s1/cds]AW /]td is the electric field.
The Hamiltonian(1) is in the so-calledvelocity gauge[5].

The dipole Hamiltonian(3) is given in the so-calledlength
gauge[5]. The corresponding wave functionsc of Eq. (1)
and c̃ of Eq. (3) are related by

c srW,td = expS−
ie

"c
rW ·AW stdDc̃ srW,td. s5d

Let the time-dependent solution of Eq.(3) be expanded as

uc̃ stdl = o
k

akstdufkl, s6d

whereufkl are the unperturbed states of Eq.(4), i.e.,

H0ufkl = Ekufkl. s7d

Substituting Eq.(6) in the Schrödinger equation, it can be
shown that the coefficientsakstd must satisfy auxiliary equa-
tions given by

dak

dt
= − i

Ek

"
ak + io

j

e

"c
S d

dt
AWD · kfkurW uf jlaj . s8d

The details of the derivation of the auxiliary equations can be
found in Ref. [16]. The derivation applies for any central
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force problem. For the calculations in this work, we consider
the hydrogen atom Hamiltonian, that is,Z=1 in Eq.(4). For
hydrogenlike atoms, the indicesk and j in Eq. (8) are actu-
ally triples, corresponding to the quantum numbersn, l, m.
The principal quantum numbern is a positive integer;l
=0, . . . ,n−1, and m=−l , . . . ,l. The energies are given by
Ek=−EI /n

2, whereEI =e2/2a0 sergd is the ionization energy
andn is the principal quantum number of the corresponding
state. The polarization direction of the microwave field is

taken as thez axis, i.e., «̂= k̂. The vector potential is ex-

pressed asAW std=A0k̂ sinsvtd. Normalizing coordinates and
constants by atomic quantities, the auxiliary equations(8) are
expressed in dimensionless units as

dak

dt
= − ivkak + il cossvtdo

j

kfkuzuf jlaj , s9d

wherevk=vn=−1/2n2 (n is the principal quantum number
of the corresponding state), l=E0/ s5.14223109 V/cmd, and
E0=vA0/c. The matrix elements are known in close form
[20]. The matrix elementskfkuzuf jl imply two selection
rules:

m8 = m and l8 = l ± 1. s10d

The auxiliary equations(9) form a nonautonomous, linear,
time-periodic system of ODE’s. In the Appendix we study
the Laplace transform of the system to obtain driving field
frequencies that may cause secularities, and it is immediately
obvious that an analytical solution is difficult to achieve,
even for a small number of states. Equations(9) form an
infinite-dimensional system. The analysis is done for a trun-
cated system of equations or a finite basis of unperturbed
states. The selection rules(10) imply that the quantum num-
berm of the interacting states is fixed by the initial condition
(initial state). The basis is formed by states in a finite set of
principal quantum numbersn; the value ofm fixes the mini-
mum n to umu+1. All coupled l substatessl = umu , . . . ,n−1d
were included. The coupling term is larger between coeffi-
cients with the same principal quantum numbern, and de-
creases as the differencen8−n increases. However, our com-
putations show that the probability may spread to many
states, both within the samen and to states with differentn.
Even small couplings can have a long-term effect, and there-
fore the integration must consider states within a large num-
ber of energy levels to avoid saturation. In our numerical
experiments, the maximumn was determined to have the
higher states with negligible probability. Ionization probabil-
ity is computed as the probability above ann̄ cutoff value
[3], which has to be smaller than the maximumn in the
simulations. However, in strict terms, ionization probability
must include the probability of continuum states, which are
not considered here. Including the continuum states as well
as increasing the basis size to infinity may result in a dense
spectrum[18].

The choice ofv, the frequency of the microwave field,
provides the mechanism to effectively couple the initial state
with some excited state. From the Laplace transform of these

equations(see the Appendix), we concluded that secularities
arise with frequenciesv satisfying equations of the form

v j − vk ± Nv = 0,

whereN is an integer. Numerical experiments showed that
choosingv satisfying (closely) this equation is key to pro-
duce multiphoton transitions between the states with fre-
quenciesv j andvk, with N the number of photons involved
in the transition.

Based on Floquet analysis, we later establish that the val-
ues ofv producing multiphoton transitions should be chosen
simultaneously with the parameterl, the strength of the
field. l can be used as a tuning parameter for the rate of
transition. However, as we show in the following section, the
dependence of the transition rate with respect tol is rather
complicated.

III. MULTIPHOTON TRANSITIONS

Three examples of solution of the auxiliary equations(9)
are shown in Fig. 1. We took the ground state as the initial
condition [a100s0d=1 and zero for all others], and obtained
probability exchange with excited states. We fixed the value
of l=0.005 861 7s=3.013107 V/cmd and evolved the sys-
tem for three different values of the coupling frequency:(a)
v=v3−v1, (b) v=sv3−v1d /2, and (c) v=sv3−v1d / fs1
+Î5d /2g. For the case(a), we observed Rabi-type oscilla-
tions between the statesu1,0,0l and u3,1,0l, alternating in
probability to almost100%; there is a small percentage of
probability spreading to other states. The first transition takes
about 125 periods of the external field. Meanwhile for the
case(b), two excited coefficients appear: the probability os-
cillates between the ground state, and the statesu3,2,0l and
u3,0,0l. The first transition occurs after 250 field periods. On

FIG. 1. (Color online) Evolution of the squared absolute value
of some coefficientsakstd for three different values of the driving
frequency: (a) v=v3−v1, (b) v=sv3−v1d /2, and (c) v=sv3

−v1d / fs1+Î5d /2g. In all cases, the initial condition isa100s0d=1
and zero for the rest.l=0.005 861 7. There is probability exchange
only in the resonant cases(a) and (b), between the ground state
sn=1d and excited states withn=3. The timet (in atomic unit) was
normalized in each case by the value of the respective periodsT
=2p /vd.
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the other hand, in the nonresonant case(c), the probability
remains in the coefficienta100 with small oscillations around
it. There is no transition in this case.

Goeppert-Mayer gauge transformation

The solution of the auxiliary equations(9) provides the
evolution of the system in the length gauge(3) in the form
(6). In order to obtain a time-dependent solution of the vector
potential coupling Hamiltonian(1), we need to apply the
Goeppert-Mayer gauge transformation(2). Recall that the
wave functions are related by Eq.(5).

Hence, in the velocity gauge, the time-dependent solution
(in spherical dimensionless coordinates) has the form

uc stdl = expF−
il

v
r cosu sinsvtdGo

j

ajstduf jl.

The probability of finding the electron in an unperturbed
stateufkl at time t is given by

Pkstd = ukfkuc stdlu2 = Uo
j

ajstdMk,jstdU2

, s11d

where

Mk,jstd = kfkuexpF−
il

v
r cosu sinsvtdGuf jl

=2pE
0

` E
0

p

es−il/vdr cos u sinsvtdfk
*f jr

2 sin u dr du.

s12d

For the same parameters as in Fig. 1, the evolution of the
probabilities is shown in Fig. 2.

The computation of probability evolution requires the
evaluation of the matrix elements(12) for all tP f0,Tg. (Note
that the integral over the anglew has been evaluated assum-
ing thatm=m8.) For most cases, this double integral can only
be evaluated numerically. In a few cases with low quantum

numbersn and n8 the integral can be evaluated using sym-
bolic computation software such asMATHEMATICA . But even
the numerical integration is difficult due to the fast oscilla-
tions of the integrand, as we observed in some attempts to
useMATHEMATICA , which produced inaccuracies. We tried to
overcome this with our ownFORTRAN code using Gaussian
integration overu and Laguerre integration overr [21]. We
sampled time points in the intervalf0,T/4g, and by symme-
try obtained sampled values of the matrix elements over one
period f0,Tg. The evaluation for anytP f0,Tg was then ob-
tained by interpolation. For the total integration time of
400T, we can use the periodicity of the matrix elements:
Mk,jst+Td=Mk,jstd.

Examples of some matrix elements(12) corresponding to
low quantum numbers are shown in Fig. 3. In general, the
matrix element is real ifl − l8 is even, and purely imaginary if
the difference inl is odd. The parameters used in this figure
are the same as in the example of Fig. 1(b): v=sv3−v1d /2
and l=0.005 861 7. We notice that for low principal quan-
tum numbers the matrix elementsMk,j are close to 1 fork
= j and close to 0 otherwise.

Having computed the coefficientsakstd and the matrix el-
ementsMk,jstd, we are able to obtain the time-dependent so-
lution and probability evolution. From Fig. 3, we observe
that kfkuc stdl<akstd. Then, the evolution of probabilities
(11) for this choice of parameters and initial condition is very
similar to the evolution of the coefficientsakstd. Compare
Figs. 1 and 2.

Figure 2(a) represents a 1-photon transition between the
levels 1 and 3 with almost 100% of probability exchange; the
probability oscillates in time, in a similar way of a Rabi
oscillation; however, there is a small percentage of probabil-
ity going to other states, which shows the effect of the mul-
tiple coupled states. Meanwhile,(b) reflects a 2-photon tran-
sition between the ground state andu3,0,0l with probability
of at most 30% andu3,2,0l with at most 60%. Again, the
probability oscillates in time, after about 508 periods of the
field the ground state has probability close to 100%. In these
figures, very quick small oscillations make the lines look
thick, as it is depicted in the inset of Fig. 2(c).

Now, we study multiphoton transitions between states in
the levelsn=1 andn=8 as a function of the field strength.

FIG. 2. (Color online) Time evolution of the probabilitiesPkstd
[Eq. (11)]. The parameters are the same as in Fig. 1:(a) v=v3

−v1, (b) v=sv3−v1d /2, and (c) v=sv3−v1d / fs1+Î5d /2g. In all
cases,l=0.005 861 7.

FIG. 3. Some matrix elementsMk,jstd [Eq. (12)] for v=sv3

−v1d /2 andl=0.005 861 7.
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We integrate the auxiliary equations(9) for the fixed value of
field frequencyv=sv8−v1d /8 and values ofl in the range
0.005 and 0.025(<2.53107 to 1.283108 V/cm). The ini-
tial condition was chosen with all the probability on the
ground state, i.e.,a100s0d=1 and all other coefficients zero.
Equations(9) were integrated over a fixed interval of time of
400T, T=2p /v and for different initial phases. For eachl
we computed the time and initial phase average of the prob-
ability in each state, that is, the average ofuakstdu2 over 400T.

In the first panel of Fig. 4 we show the time and initial
phase averages ofua100u2, ua870u2, and ua920u2 as a function of
l. The graph in the second panel shows the distribution of
the averaged probability as a function ofl. The gray scale is
the averaged probability for each state with quantum num-
bersn=1,6,7,8,9. Ineachn band, the vertical axis corre-
sponds to the indexl of the coefficientsanl0; this is, l
=0, . . . ,n−1 (note that the vertical size increases for largern,
only because there aren levels represented in each band).
The darker gray zones correspond to greater values.

We can observe in Fig. 4 that for values ofl around 0.008
and 0.02, the probability of the ground state averages 0.5;
there is an exchange of probability between the ground state
and several states with quantum numbersn=7,8,9, and 10.
This shows that although the field frequencyv is in reso-
nance with statesn=1 and n=8, the probability does not
exchange only between those states(the reduction to a two-
level system does not hold), but it can disperse in neighbor-
ing states in samen shell and othern shells. It is also notice-
able that the relation betweenl and the transition probability
is quite complicated, and by no means linear.

In Fig. 5, we show the time evolution of some probabili-
ties (11) for v=sv8−v1d /8 and l=0.008 389. We can see
that, after<90 periods of the field, the probability of finding
the electron in the ground state is zero. At that time, several
states withn=7, n=8, andn=9 have nonzero probability; the
stateu9,2,0l is the one with largest probability at this point.
In all these states, the probability is oscillating rapidly, as we
can observe in the insets of Fig. 5.

We also note that the Goeppert-Mayer gauge transforma-
tion has important effects for the case of excited states. In

Fig. 6 we plot some matrix elementsMk,jstd that are needed
to compute the probabilities[see Eqs.(11) and (12)]. Com-
pare with the case of lowern’s quantum numbers in Fig. 2.

IV. FLOQUET ANALYSIS

In this section, we calculate quantum Floquet states and
quasienergies for the Rydberg Hamiltonian(1). One of the
main advantages of the treatment discussed in this work is
that the Floquet analysis of the auxiliary equations(9) (a
system of ordinary differential equations) produces Floquet
states for the quantum problem. It can be shown[22] that the
Floquet exponentsm of the auxiliary equations are the Flo-
quet quasienergies of the quantum system. Also, the Floquet
solutionsamstd yield quantum Floquet states defined by the
expansion(6) in terms of unperturbed states(7). Note that
each Floquet solutionamstd is a vector of coefficientsak

mstd.
The auxiliary equations(9) for the coefficientsakstd form

a time-periodic system, with periodT=2p /v. Therefore, it is
possible to find a basis of solutionsammstd, called the Floquet
solutions, of the form

FIG. 4. Time and initial phase averaged probabilities forv8

−v1−8v=0 and varyingl, over a fixed time interval of 400T. In
the lower panels we see the distribution of averaged probabilities
among several states with quantum numbersn indicated. Darker
areas correspond to larger probabilities.

FIG. 5. ProbabilitiesPkstd [Eq. (11)] for v8−v1−8v=0 andl
=0.008 389. The insets provide the fine detail of the quick
oscillations.

FIG. 6. Some matrix elements(12) for v=sv8−v1d /8 and l
=0.008 389.
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ammstd = e−immtxmstd, s13d

wheremm is called the Floquet exponent andxmstd is a vector
of T-periodic functions. Any vector solutionastd can be ex-
pressed as a superposition of Floquet solutions[23], such as

astd = o
m

cmammstd. s14d

The Floquet solutions yield Floquet states for the Hamil-
tonian (1) of the form

uc mmstdl = expS−
il

v
z sinsvtdDo

k

ak
mmstdufkl, s15d

whereufkl are the unperturbed states(7). The Floquet expo-
nentsmm are called thequasienergiesof the Hamiltonian(1).
Therefore, any time-dependent solution of the Hamiltonian
(1) can be expressed as a superposition of Floquet states,

uc stdl = o
m

cmuc mmstdl. s16d

The Floquet solutionsamm are obtained from the mono-
dromy matrix. LetFst ,t0d be the matrix of fundamental so-
lutions of the auxiliary equations(9) with Fst0,t0d=1, that is,
any solutionastd with initial condition ast0d=a0 is given by
astd=Fst ,t0da0. For simplicity, let t0=0. The monodromy
matrix isFsT,0d. The eigenvalues of the monodromy matrix
are the Floquet multipliers. Ifsm is a Floquet multiplier, the
Floquet exponentmm is defined bysm=e−immT. The Floquet
exponent mm is obtained modulo v, that is, mm
=f−i lnssmd /Tgmod v. The Floquet solution is given by
ammstd=Fst ,0dxms0d, wherexms0d is the eigenvector corre-
sponding to the exponentmm. Furthermore,amm has the form
(13). Note, from expression(16), that the coefficientscm are
constants, which are determined by the initial condition. At
t=0, the Floquet states(15) correspond to an expansion in
terms of unperturbed states. The coefficients of this expan-
sion are given byak

mms0d. Now, from expression(13), these
coefficients are precisely the components of the eigenvectors
xms0d. We compute the monodromy matrixFsT,0d of the
auxiliary equations(9) by direct numerical integration, that
is, we integrate Eq.(9) taking as initial conditions each of the
columns of the identity matrix1, over a time interval of one
periodf0,Tg. Then, we are able to compute eigenvalues and
eigenvectors with which we can construct the quantum Flo-
quet states.

Probability exchange from superposition of Floquet solutions

In Fig. 7, we plot the first 15 Floquet quasienergies for the
same parameters previously studied in the examples in Figs.
1 and 2. The labeling of the quasienergies is arbitrary; we
called themmm for m=1, . . . ,15 in increasing order. We note
that for the resonant cases(a) and (b) all the quasienergies
are close to the unperturbed energiesvn=−1/s2n2d. How-
ever, the quasienergies in the samen shell have split and the
degeneracies disappeared. In the resonant cases, there are
four quasienergies(m3 to m6) which are close tov3. This
“additional” quasienergy splitting fromv3 is the quasienergy

corresponding tov1, since v1mod v;v3 [that is, v1=v3
−Nv, with N=1 for (a) andN=2 for (b)]. On the other hand,
for the nonresonant case(c), with v=sv3−v1d / fs1+Î5d /2g
=0.2747, the Floquet quasienergym1 is close tov1 mod v
;−0.5+0.2747=−0.2253.

Let us discuss with more detail the resonant case(a) in
Fig. 7. Let the initial condition be the ground state, that is, at
t=0, a100s0d=1, and the other coefficients zero. This initial
condition is expanded, almost exactly, in terms of only two
eigenvectors: the eigenvectors corresponding to the quasien-
ergiesm3 andm6 (Fig. 7). Recall that, att=0, the components
of the eigenvectors are coefficients of the unperturbed states.
The components of these eigenvectors are illustrated in Fig.
8(a). Therefore, the evolution of the coefficienta100 can be
approximated by

a100std < c3e
−im3tx3

100std + c6e
−im6tx6

100std,

wherex3std andx6std are vectors ofT-periodic functions and
only their first componentsk=1,0,0d appears. At multiples

FIG. 7. (Color online) First 15 Floquet quasienergiesmm for
three different frequencies of the driving field. The strength of the
field is fixed, l=0.005 861 7. The lines labeled with the unper-
turbed energiesvn are plotted for reference.

FIG. 8. Squared modulus of the components of eigenvectors
corresponding to quasienergies(a) m3 andm6, with v=v3−v1 and
(b) m3, m5, and m6 with frequencyv=sv3−v1d /2 [see Figs. 7(a)
and 7(b)]. l=0.005 861 7.
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of the period,t=KT, the functionsx3std and x6std are pre-
cisely the eigenvectors represented in Fig. 8(a). For this case,
uc3u2=0.4922 anduc6u2=0.5064. When evaluated at multiples
of the periodt=KT, ua100sKTdu2 is the probability of finding
the electron in theu1,0,0l state. That is, ua100sKTdu2
= uk1,0,0uc sKTdlu2 since the Goeppert-Mayer gauge trans-
formation is the identity at those points. We can then find
that this probability evolves as

ua100sKTdu2 < uc3e
−iKTm3x3

100+ c6e
−iKTm6x6

100u2.

Expanding the previous expression, we get

ua100sKTdu2 < uc3x3
100u2 + uc6x6

100u2 + 2 cosfKTsm6 − m3dg

3Refc3c6
*x3

100sx6
100d*g.

Then, this probability evolves as a Rabi-type oscillation. The
K-dependent term has a minimum for

K =
v

2sm6 − m3d
. s17d

Evaluating, we getK=127.8. This is the number of periods
of the microwave field for which the probability will have a
maximum transition; in other words, this is half the period of
the Rabi oscillation. The approximation above gives
ua100sKTdu2=0.4984+0.4983 cosfKTsm6−m3dg, then the
maximum probability of the ground state after 1 period can
be calculated as 99.67%. The remaining fraction of probabil-
ity spreads to other coupled states. With the same argument
we can obtain the probability ua310sKTdu2=0.4902
−0.4902 cosfKTsm6−m3dg. The maximum probability for the
stateu3,1,0l is 98.04%. See Fig. 1(a).

In general, if the initial condition can be expanded in
terms of mainly two Floquet states, the probabilities evolve
as a Rabi-type flopping, and the quasienergies and Floquet
states provide a very good approximation to the rate of os-
cillation and probability exchange. Note, however, that al-
though only two quasienergies and Floquet states participate
in the expansions of probability evolution, the system is not
equivalent to a two-level system. The Floquet analysis was
done considering all the coupled states. Simplification to a
two-level system could not account for the fraction of prob-
ability that goes to other states.

On the other hand, for the resonant case(b) in Fig. 7, the
initial condition a100=1 (and the rest zero) is expanded in
terms of mainly three eigenvectors, corresponding to the
quasienergiesm3, m6, and m5. The main coefficients in the
Floquet expansion areuc3u2=0.6566, uc6u2=0.3411, uc5u2
=0.0019. In Fig. 8(b), the components of the eigenvectors
are represented. From the components of the eigenvectors,
we see that three unperturbed states participate:u1,0,0l,
u3,0,0l, and u3,2,0l. This produces the exchange of prob-
ability from the ground stateu1,0,0l and those two excited
states. Since two of the quasienergiesm3 andm6 participate
mostly in the expansion of the initial condition, we can still
use expression(17) to approximate the rate of transition of
the ground state as 254.3 field periods; this is the point at
which the ground state reaches the minimum probability of
9.95%.[See Fig. 1(b).]

The previous analysis was repeated for several values ofl
in the range 1310−5 and 0.1(<53104 and 53108 V/cm).
The quasienergies deviate more from the unperturbed ener-
gies asl increases. This accounts for shorter period of the
probability oscillation[see expression(17)]. For largerl, the
expansion of the ground state(initial condition) in terms of
Floquet states involves more significant coefficientscm. Also,
the Floquet states are expressed in terms of more unper-
turbed states. This means that the probability spreads among
more unperturbed states.

In the following sections, we analyze the cases when the
initial condition is an excited Rydberg state, with quantum
number n.60. In contrast with transitions involving the
ground state and other low levels, where the energy gaps are
well differentiated byn, in the case ofn.60 the energy gaps
are smaller and closer; therefore the resonances tend to over-
lap. We observe that for excited levels, the Floquet analysis
yields a quite complicated behavior that is very sensitive to
parameters. We present a detailed analysis of the variation of
Floquet states and quasienergies with respect to parameters
l, v.

V. FLOQUET ANALYSIS AS A FUNCTION
OF PARAMETERS

The Hamiltonians for the Rydberg atom(1) and electric
dipole (3) are related by the Goeppert-Mayer gauge transfor-
mation (2). Note that, at times multiple of the period,t
=KT, the solutions for both Hamiltonians coincide[see ex-
pression(5)]. Particularly, the Floquet quasienergies also co-
incide, since they are computed as the eigenvalues of the
monodromy matrixFsT,0d [see Sec. IV].

The Hamiltonian(3) is equivalent to theFloquet Hamil-
tonian in the extended phase space given by

K̂ = H0 − zl cosu + vI , s18d

wheresu ,Id is an additional pair of canonical conjugate vari-
ables, and quantum mechanically,I =−i"] /]u.

The Floquet HamiltonianK̂ can be diagonalized as

K̂ucml = mmucml. s19d

The eigenvaluesmm coincide with the Floquet quasienergies
[8]. The eigenstates are the quantum Floquet statesuc mml in
the extended phase space.

A. Quasienergies and Floquet states as a function ofl

We now consider variations with respect to the parameter
l, the strength of the microwave field. Taking the derivative
with respect tol of Eq. (19), and using the orthonormality of
the basisucml, we obtain(cf. Ref. [17])

− kcnuz cosuucml + mnkcnu
d

dl
ucml

=
dmm

dl
dmn+ mmkcnu

d

dl
ucml.

Then, forn=m, we obtain
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dmm

dl
= − kcmuz cosuucml. s20d

On the other hand, fornÞm andmnÞmm,

kcnu
d

dl
ucml = −

kcnuz cosuucml
mm − mn

.

Therefore, applying completeness of theucml basis, we ob-
tain

d

dl
ucml = − o

nÞm

ucnl
kcnuz cosuucml

mm − mn
+ cucml, s21d

where

c = kcmu
d

dl
ucml.

However, a phase factor can be chosen such thatc=0. We
can see this in the following way. First, note thatkcmucml
=1 implies

F d

dl
kcmuGucml + kcmu

d

dl
ucml = c* + c = 0;

thenc is purely imaginary. Now, for smalld l, we have that

cmsl + d ld = cmsld + d l
dcm

dl
+ Osd l2d.

Since we can choose a phase factor ofucmsl+d ldl so that
the productkcmsld ucsl+d ldl is real[15], we conclude that
c must be zero. Substituting in Eq.(21), we obtain

d

dl
ucml = − o

nÞm

ucnl
kcnuz cosuucml

mm − mn
. s22d

To obtain the second derivative of the quasienergiesmm
with respect tol, from Eqs.(20) and (22) we have

d2mm

dl2 = −
d

dl
kcmuz cosuucml

= − F d

dl
kcmuGz cosuucml − kcmuz cosu

d

dl
ucml

= o
nÞm

kcnuz cosuucml*

mm − mn
kcnuz cosuucml

+ o
nÞm

kcmuz cosuucnl
kcnuz cosuucml

mm − mn

= 2o
nÞm

kcnuz cosuucml2

mm − mn
.

In numerical explorations, we observe avoided crossings
of the quasienergies, together with dramatic changes in the
Floquet states. Consider the case where two quasienergies
mm and mn are very close; in the last derivation, we can
approximate the sum with only the two closest quasienergies:

d2mm

dl2 < 2
ukcnuz cosuucmlu2

mm − mn
< −

d2mn

dl2 .

This implies thatmn+mm behaves linearly with respect tol
around the avoided crossing. Close to an avoided crossing of
mm andmn, we have

d

dl
kcnuz cosuucml = F d

dl
kcnuGz cosuucml

+ kcnuz cosu
d

dl
ucml

= − o
pÞn

kcpuz cosuucnl*

mn − mp
kcpuz cosuucml

− kcnuz cosu o
pÞm

ucpl
kcpuz cosuucml

mm − mp

<
kcnuz cosuucml

mm − mn
S−

dmm

dl
+

dmn

dl
D .

In the last step, we kept only the terms forp=m in the first
sum, andp=n in the second sum, which are the most signifi-
cant contributions close to the avoided crossingmn<mm.

Therefore, we obtain the following differential equation:

d

dl
kcnuz cosuucml = −

kcnuz cosuucml
mm − mn

F d

dl
smm − mndG ,

which implies

kcnuz cosuucmlsmm − mnd = const. s23d

The last identity shows a common behavior at avoided cross-
ings: if two quasienergiesmn andmm are very close to each
other, the matrix elementkcnuz cosuucml increases, in order
to preserve the product(23). As a consequence, from Eq.
(22),

d

dl
ucml < − ucnl

const.

smm − mnd2 .

This implies dramatic changes in the Floquet states at
avoided crossings when the parameterl is varied.

B. Quasienergies as a function ofv

When the frequency fieldv is varied, a similar analysis
can be done. Proceeding in a similar way as for the variation
with respect tol, we can obtain an equation analog of Eq.
(20):

dmm

dv
= kcmuI ucml,

where I is the additional action variable of the Floquet
Hamiltonian(18). Also,
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d

dv
ucml = − o

nÞm

ucnl
kcnuI ucml
mm − mn

.

Furthermore, it can be shown thatkcmuI ucmlsmm−mnd
=const. These equations show that avoided crossings of the
quasienergies as a function ofv are also accompanied by
sudden changes in the Floquet states.

VI. SELECTION RULES FOR AVOIDED CROSSINGS

The behavior of the quasienergies as a function of the
field strengthl is illustrated in Fig. 9. For this computation,
we consider excited states with quantum numberm=63.
Sincem is fixed, only states with principal quantum numbers
n=64,65, . . . andl =63, . . . ,n−1 interact[see Eq.(10)]. The
choice of quantum numberm=63 produces 45 interacting
states for values ofn=64, . . . ,72. The field frequency is
fixed v=v65−v64, and l varies from 1310−11 to
7.5310−9 (0.05 to 38.5 V/cm). We observe that for smalll,
the Floquet quasienergies split from the unperturbed energies
(appearing in the figure asvn mod v). This can be inter-
preted as the acor dynamic Stark shift[5,6]. As l increases,
we observe apparent crossings and avoided crossings. There
is no reasona priori to rule out crossings of the quasiener-
gies in Eq.(19); degenerate Floquet states might exist for
some values ofl. In our numerical experiments, we found
that some selection rules apply for these degeneracies, at
least for smalll. This will be explained in the next example.

A. Quasienergy crossings, avoided crossings, the eigenvectors,
and selection rules, asl varies

In Fig. 10, we present an example showing crossings and
avoided crossings. For this case, the field frequency isv
=v67−v64, andl varies. A total of 45 states were integrated,
for principal quantum numbersn=64, . . . ,72 andm=63. The
labeling of the quasienergies is arbitrary; in this case, we
plotted 11 of the 45 computed quasienergies:m1, m2, . . . ,m11.

For small l, we observe that the quasienergies corre-
sponding ton=65 and n=72 get closer; producing some

crossings and some avoided crossings. This can be appreci-
ated in the second and third panel of Fig. 10. We can observe
that the crossings and avoided crossings alternate. The expla-
nation of this fact will be described below, from observing
the behavior of the eigenvectors as a function ofl. Note also
that, for this choice ofv, we havev72−v65<2v.

Recall that, att=0, the Floquet states are obtained as an
expansion in terms of unperturbed states, with the coeffi-
cients given by the components of the eigenvectors[see Eqs.
(13) and(15)]. We observe that for smalll there is one large
eigenvector component close to 1, and the rest are close to 0;
the Floquet states are very close to the unperturbed states. As
l increases, more components of the eigenvectors increase in
value; hence, the Floquet states are expanded in terms of
more unperturbed states. When an avoided crossing occurs,
the components of the eigenvectors also feature dramatic
changes, as we showed analytically in Sec. V.

In Fig. 11, we plot the square modulus of some compo-
nents of three eigenvectors, corresponding to the quasiener-

FIG. 9. Floquet quasienergiesmm for varying l. The frequency
of the field is fixedv=v65−v64. The range of the field strengthl is
0.5 V/cm–38.5 V/cm. The dotted lines are the values of the un-
perturbed energies(modulov). Avoided crossings produce dramatic
turns of the quasienergies.

FIG. 10. (Color online) Floquet quasienergiesmm for varyingl.
The frequency of the field isv=v67−v64. We observe that some
crossings occur as well as avoided crossings. See text for more
details.

FIG. 11. (Color online) Squared modulus of some components
of the eigenvectorsxm

k as a function ofl, corresponding to Floquet
quasienergiesm5, m6, and m7 in Fig. 10. The eigenvector compo-
nents suffer dramatic changes at avoided crossings, the components
showed arek=65,63,63,k=72,69,64, andk=72,67,63.
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gies m7, m3, and m5 of Fig. 10; they are associated with
quasienergies featuring avoided crossings. In each case, the
components correspond to the unperturbed statesu72,69,63l,
u65,63,63l, andu72,67,63l. Around the avoided crossing at
l=6.84310−9, we can see that the componentk=65,63,63
of the eigenvectorx5 goes quickly to zero(see second inset
in the first panel). At that point, the same component of the
eigenvectorx7 increases by the same amount(see inset in the
third panel). This behavior is reproduced in all components
of the eigenvectors involved in avoided crossings. Exactly
for a value ofl for which an avoided crossing occurs, the
eigenvectors have two or more important components; these
are the coefficients for the unperturbed states, and as a result,
the Floquet states are a superposition of several unperturbed
states. This results in probability exchange between the un-
perturbed states involved. On the other hand, when a cross-
ing occurs, the components of the eigenvectors do not reflect
any sudden change, neither do the Floquet states, and no
probability transition takes place.

As mentioned above, for small values ofl, the Floquet
states are still close to unperturbed states, so they can be
easily identified with theun, l ,ml states. This leads to the
following selection rule for this choice ofv: the quasiener-
gies that have avoided crossings correspond to states for
which the difference in quantum numberl is even; then prob-
ability exchange is possible only whenl − l8 is even. If the
difference inl is odd, the quasienergies cross, and there is no
probability exchange. This selection rule is related to the
particular resonance. In this case, we have thatv72−v65
<2v; this avoided crossing involves a two-photon transition
between states inn=65 andn=72. We note that this transi-
tion is slow, the period of the Rabi oscillation, from Eq.(17),
is v / sm7−m5d<66,188 field periods.

B. Transitions from the ground state asv varies

The selection rules also appear when we study probability
transitions as a function of the field frequencyv. To illustrate
this, first we study transitions from the ground state to low
levels (small n). We show that crossings and avoided cross-
ings of the quasienergies occur for values ofv satisfying
closely a resonance equation of the formvk−v1=Nv.

When v varies, keepingl fixed, crossings and avoided
crossings of the quasienergies are observed, as we show in
Fig. 12 for low quantum numbersn=1, . . . ,5 andm=0. In
this example, the varying frequency isv=v0/d, with v0
=v3−v1, and the denominatord varies continuously be-
tween 0.1 and 5. The field frequency is fixed asl=0.006.
The quasienergies are represented in the figure as a function
of d. We plotted, with dotted lines, the curvesv1+Nv as
well as the lines for the unperturbed energiesv2, . . . ,v5. The
points where these lines and curves intersect, represent an
unperturbed resonance(i.e., a resonance for the unperturbed
energies) of the form vk−v1=Nv. As we can expect, the
crossings and avoided crossings of the quasienergies occur
for values ofv close to an unperturbed resonance, i.e.,v
<svk−v1d /N.

We observe that the quasienergies have split from the un-
perturbed energies, this is clearly seen in the second panel of

Fig. 12, where a zoom of the quasienergies close tov3 is
shown. In the inset, we can see one avoided crossing and
several crossings. The avoided crossing occurs forv<sv3

−v1d /3. Hence, this avoided crossing reflects a 3-photon
transition between the ground staten=1 and a state inn=3.
To study this transition, we compute the eigenvectors corre-
sponding to the quasienergies in the avoided crossing, as a
function of d. Only two eigenvector components have high
values, they are the coefficients of the unperturbed states
u1,0,0l and u3,1,0l. Our computations show that these ei-
genvector components change quickly around the avoided
crossing. Therefore, for this value ofv, there is a 3-photon
transition between the statesu1,0,0l and u3,1,0l. The tran-
sition is of the Rabi type. As before[see Eq.(17)], we can
calculate the period of the Rabi oscillation, asv / sm9−m8d
=1602T.

Selection rules. These computations confirm the selection
rules obtained in the preceding section. For these small val-
ues of l, the Floquet states are close to the unperturbed
states. Therefore, only one component of the eigenvectors is
close to 1 and the rest are close to zero; this permits us to
associate a labeln, l ,m to the Floquet states. Avoided cross-
ings occur only when the difference inl quantum number
sl − l8d is even forN even (in the equationv j −vk=Nv) or
when l − l8 is odd for N odd. And, since avoided crossings
produce dramatic exchange between the components of the
Floquet states, probability exchange is possible only between
states for which there is an avoided crossing. Therefore,
these are the selection rules for probability transitions be-
tween unperturbed states.

C. Transitions between excited states: The tuning ofl and v

When considering excited state, the situation is more
complicated due to the small separation of the unperturbed
energies. The resonant frequencies of the formv=v j −vk are
small, then the quasienergies are very close together since

FIG. 12. (Color online) Floquet quasienergies varying the field
frequencyv; l=0.006 fixed. The varying frequency isv=v0/d,
with v0=v3−v1. The states correspond tom=0 and principal quan-
tum numbersn=1,2, . . . ,5. Thedotted curves in the background
correspond to the resonances for the unperturbed energies. In the
second panel the splitting of then=3 energy level is shown(dy-
namic Stark shift).
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they are obtained modulov. Therefore, more crossings and
avoided crossings occur. This can be observed in Fig. 13. For
this case, we considered states with quantum numbersn
=64, . . . ,80; m=63; and l =63, . . . ,n−1. The varying fre-
quency is v=v0/d, with v0=v67−v64=1.068310−5, and
the denominatord is dimensionless, taken between 1 and
3.2. The field strength parameterl=2310−9 is fixed
s<10.3 V/cmd. The quasienergies are plotted as a function
of the denominatord. In dotted lines, some unperturbed fre-
quencies are shown(right vertical axis). For this kind of
computation, some extra work is necessary in order to obtain
a good representation of the quasienergies. Since the
quasienergies are obtained modulov, it is common to obtain
discontinuous curves that seem senseless. However, we can
add multiples ofv as needed to obtain continuous curves.
When this is done, we observe both crossings and avoided
crossings, corresponding to all kinds of resonance relations.

The values ofv and l can be both tuned to achieve the
desired transition and the rate of the Rabi oscillation. In Fig.
14, we observe that asv varies, and the quasienergies feature
an avoided crossing, also the coefficientscm in the expansion

(14) have quick changes. In the first panel, we mark in
circles, squares, and diamonds the three main quasienergies
(in that order) involved in the evolution of the initial state
u64,63,63l. The corresponding coefficientscm of the Floquet
states are shown in the second panel. Exactly at an avoided
crossing, there are two(or at most three) significant coeffi-
cientscm. Then, for the choice ofv producing an avoided
crossing, the evolution of the initial state is a superposition
of two or three Floquet states only.

Our calculations show that the values ofv that produce
avoided crossings depend on the value ofl. In Fig. 15 the
difference between two quasienergiesm1 andm2, related to a
1-photon transition betweenn=64 andn=65, is plotted as a
function of v, and for different values ofl. As l increases,
the differencem2−m1 also increases. For each fixed value of
l, we computed the value ofv producing the minimum, i.e.,
the avoided crossing. As we can expect, the values ofv are
close to v65−v64=3.7271310−6. But, as l increases, the
value ofv producing the avoided crossing also increases, as
can be observed in the second panel of Fig. 15. This compu-
tation also allows us to determine the implications of the
choice of parameters in probability transitions. For the pa-
rametersl, v in Fig. 15, and foru64,63,63l as the initial
condition, the main Floquet states are expanded in terms of
the unperturbed statesu64,63,63l and u65,64,63l; but asl
increases, also the statesu66,65,63l, u67,66,63l, etc., have
significant coefficients. That is, if a new leveln is involved,
only the state withl =n−1 gains probability. Notice that this
is the probability of a multiphoton transition to that state. As
higher n levels have nonzero probability, there is higher
probability of multiphoton ionization.

VII. CONCLUSIONS

The problem of multiphoton transition of the Rydberg
atom in a strong, long-wavelength microwave field is de-
scribed with a nonperturbative approach, providing a time-
dependent solution of the Schrödinger equation. Using the
Goeppert-Mayer gauge transformation, the time-dependent
solution is obtained in both the length gauge(electric dipole
Hamiltonian) and the velocity gauge(standard vector poten-
tial coupling Hamiltonian).

FIG. 13. Floquet quasienergies varying the field frequency.l
=2310−9 is fixed s<10.3 V/cmd. The varying frequency isv
=v0/d, with v0=v67−v64. The states correspond tom=63 and
principal quantum numbersn=64,65, . . . ,80.

FIG. 14. (Color online) Above, the three main Floquet quasien-
ergies in the evolution of the stateu64,63,63l are marked with
circles, squares, and diamonds(in that order). At the bottom, the
coefficientscm of the Floquet states[as in expansion(14)]. This was
calculated for varying field frequencyv=v0/d, with v0=v65−v64.
l=3310−10 fixed s<1.6 V/cmd. The states correspond tom=63
and principal quantum numbersn=64,65, . . . ,80.

FIG. 15. (Color online) In the first panel, the quasienergy dif-
ferencem2−m1 is plotted as a function ofv. Each curve corre-
sponds to a different value ofl. The minimum in each curve is an
avoided crossing related to the 1-photon transition betweenn=64
and n=65. The avoided crossing for eachl occurs at a different
value ofv. These values ofv are depicted in the second panel.
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The dynamics is reduced to a system of ordinary differ-
ential equations for the coefficientsakstd of the expansion of
the time-dependent solution in terms of the unperturbed
states(that is, the atomic states, when no radiation field is
present). Coupling between states in different levels, and be-
tween substates within ann level, results in spreading of
probability, for which many states need to be included in the
analysis.

The auxiliary equations for the coefficientsakstd form a
linear, time-periodic system. The numerical integration of the
auxiliary equations, together with the Goeppert-Mayer gauge
transformation, provide exact time evolution of the transition
probabilities between unperturbed states in the presence of
the radiation field. The choice of field strengthl and fre-
quency v determine the extent and rate of the transition.
Multiphoton transitions can be observed, forv<svk
−v jd /N, but the choice ofv depends on the value ofl. Note
that, in previous work[16], the same approach was used to
show that there are no multiphoton transitions of the simple
harmonic oscillator in a radiation field.

The introduction of Floquet analysis of the auxiliary equa-
tions (a system of time-periodic ODE’s) proved to be an
excellent tool to analyze transition probabilities. From the
Floquet solutions and multipliers of the auxiliary equations,
we obtain Floquet states and quasienergies of the quantum
system. The expansion of the initial condition in terms of
Floquet states(at t=0) is enough to know exactly the time
evolution of probabilities. For cases when the initial condi-
tion is expanded in terms of mainly two Floquet states, the
probability transition is of Rabi type between two unper-
turbed states, and it is possible to obtain the rate of transition.
We show, however, that other coupled states also gain prob-
ability, therefore the strict reduction to a two-level system is
not justified.

The Floquet analysis of transitions between excited Ryd-
berg statessn.60d showed that the probability transitions
are very sensitive to changes in the parametersl andv. We
show, analytically and numerically, that the probability tran-
sitions are associated with multiple crossings and avoided
crossings of the quasienergies, as the parameters vary. The
expressions for the derivatives of the Floquet states and
quasienergies with respect to the parametersl and v are
derived analytically from the Floquet Hamiltonian, which
permit us to show that avoided crossings are accompanied by
sudden changes of the Floquet states. Therefore, avoided
crossings produce probability transitions between the states
involved. When a quasienergy crossing occurs(up to the
numerical accuracy), the Floquet states do not show any sud-
den change, and no probability transition takes place.

We observe that the quasienergy crossings and avoided
crossings are determined by the unperturbed states involved,
obeying selection rules for probability transitions. For small
l, if the difference in quantum numberl has the same parity
as theN-multiphoton process, then there is an avoided cross-
ing. That is, for a choice ofv<svk−v jd /N, an avoided
quasienergy crossing is produced only when the correspond-
ing Floquet states are expanded in terms of states withl − l8
odd for N odd or l − l8 even forN even. Therefore, probabil-
ity transition is only possible between unperturbed states that
satisfy this selection rule.

The value ofv that produces an avoided crossing depends
on the field strengthl. As l increases, the value ofv at the
avoided crossing also increases. For largel, the choice ofv
producing an avoided crossing results in Floquet states that
are not close anymore to unperturbed states; they have many
components corresponding to unperturbed states with higher
n and l =n−1. This means that the probability spreads to
states of the formun,n−1,ml, with larger n. As a conse-
quence, there is an increase in multiphoton ionization prob-
ability.

For large values ofl, more avoided quasienergy crossings
appear and they may even overlap. Also, most Floquet states
are expanded in terms of many unperturbed states. The mix-
ing of unperturbed states results in large diffusion of prob-
ability among many states. In this process, it is hard to dif-
ferentiate the exchange of probability in ann shell from the
exchange between different levels. In Ref.[2], some intrigu-
ing experiments showed that intrashell dynamics was respon-
sible for enhancement of ionization probability. Some nu-
merical and analytic work[7,12,13] has been done to study
the effect of intrashell dynamics. However, our analysis
shows that the intrashell dynamics cannot be isolated from
transitions between different levels, since these two pro-
cesses occur together and for all neighboring states for strong
enough fields.
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APPENDIX: SECULARITIES OF THE AUXILIARY
EQUATION

Note that by definingbk=ak eivkt, we can write Eq.(9) as

d

dt
bk =

il

2 o
j=1

`

Zkjseisvk−v j+vdt + eisvk−v j−vdtdbj ,

whereZkj=kfkur cosuuf jl.
Denoting the Laplace transform ofbkstd as Lsbkd= b̂kssd,

and noting thatL(sd/dtdbk)=sb̂kssd−bks0d, the previous
equation can be transformed to

b̂kssd =
1

s
bks0d +

il

2s
o
j=1

`

Zkjhb̂jfs− isvk − v j + vdg

+ b̂jfs− isvk − v j − vdgj.

The first iterate of this formula produces
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b̂kssd =
1

s
bks0d +

il

2
o
j1

Zkj1

1

s
S bj1

s0d

s− isvk − v j1
+ vd

+
bj1

s0d

s− isvk − v j1
− vdD

+ S il

2
D2

o
j1

o
j2

Zkj1
Zj1j2

1

s
S b̂j2

fs− isvk − v j2
+ 2vdg + b̂j2

fs− isvk − v j2
dg

s− isvk − v j1
+ vd

+
b̂j2

fs− isvk − v j2
dg + b̂j2

fs− isvk − v j2
− 2vdg

s− isvk − v j1
− vd

D .

We can continue to iterate this formula to obtain an asymptotic solution of the form

b̂kssd =
1

s
bks0d + o

n=1

` S il

2
Dn

o
j1

o
j2

¯ o
jn

Zkj1
Zj1j2

¯ Zjn−1jn

1

s5 o
p1=0

1

o
p2=0

1

¯ o
pn=0

1

p
r=1

n bjn
s0d

s− iFvk − v j r
+ o

l=1

r

s1 − 2pldvG6 .

This equation has secularities wheneverv is in resonance:

vm − v j r
= ± Nv,

N a positive integer. Therefore, the choice of resonantv will result in probability transition. Although computing the inverse
Laplace transform is very complicated, the asymptotic formula gives heuristic ideas of how the solution will behave up to a
certain order. For instance, up to first order inl, only frequencies of the driving force satisfyingv j −vk= ±v will produce a
secularity. Therefore a multiphoton process of the formv j −vk= ±Nv will require higher order inl (field strength) to be
observed.
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