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Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom
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We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and
molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling
Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multi-
photon probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-
Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delin-
eates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as
functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and
multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and
Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are
accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the
field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the
simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved
ionization probability.
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[. INTRODUCTION and numerical techniques presented in this work are nonper-
turbative and can be extended to general Rydberg atoms.

electrons have been widely studied both in experiments an]qell(;‘ g;te;ﬁtug%u%;?il\],g%ggﬁgdgrﬁ;\?zst?;egu;[tg:nat;%dI\?vt;]?gh
in different theoretical treatments, some of which are directly_ =~/ P pted,

. . are based mainly on the reduction of the problem to a two-
relateq to questions of quantum chabs3). The_ goal of this . level system(see, for instance, Ref$5,6], and references
work is to study dynamical features of multiphoton transi- ' ’ o

) . . ) . . therein. Naturally, low-order transition probability is only
tions in the three-dimensional hydrogenlike Rydberg atom in,giitied for the case of a weak field and for frequencies that

a semiclassical radiation field. The problem is studied by far from resonance, since the formulas have small de-
direct integration of the system of ordinary differential equa-pnominators for resonant frequencies. The problem of in-
tions (ODE's) resulting from expanding the time-dependentyashell dynamics has attracted attention since experiments in
sqlution in terms of a finite basis of unperturbed states. Withpef. [2] suggest that intrashell dynamics is responsible for
this approach, we describe the effect of the Goeppert-Mayegnhancement of ionization probability; in R¢T], intrashell
gauge transformatiopd], that is, we calculate the wave func- gynamics is treated as two two-level problems. For the prob-
tion for the standard vector potential coupling Hamiltonian|gm of a strong field, nonperturbative methods have been
(in the velocity gaug¢s]) and for the electric dipole Hamil- - gitempted, based on Floguet analysis introduced by Shirley
tonian (length gaugg>5]). We compute time-evolving prob- g, with this approach, the Floquet states are obtained in the
abilities and their_strong dependence on field parameters. urier domain, and the problem is reduced to an eigenvalue
are focused on field frequencies close to unperturbed resgyoplem for a time-independent infinite-dimensional matrix.
nances, v_vhich in general interfere with results obtained frong,ccessful applications of this method can be found in Refs.
perturbative methods. _ _ [9,10.. In Ref.[11], there is a comparison between one- and
A detailed analysis of the Floquet quasienergies and Flopyo-dimensional probability transitions of the Rydberg
quet states for the Rydberg Hamiltonian allows us to describ@jgmilitonian. Also for the Rydberg problem, multiphoton
their role in multiphoton probability exchange. We provide transitions are studied in Refd2,13 under the influence of
analytical expressions of the variation of Floquet states anggth a microwave and a static field. Their analysis is based
quasienergies as a function of the field paramefstrength o Floquet states obtained by Blochinzgiv]. These Flo-
and frequency This analysis provides the basis for the un-quet states, however, are obtained within rarshell of a
derstandin.g. of the effects of avoided quasi_energy CVPSSinQdeberg Hamiltonian under a microwave field, in which
on probability exchange. We show that avoided quasienergyondiagonal matrix elements between states with different
crossings are accompanied by dramatlc changes in the COMrincipal quantum numben have been neglected. We are
ponents of the Floquet states, which may feature probabilityyterested in the Floquet analysis of the fully coupled Hamil-
exchange. With this analysis we can predict transition rategonian, and we describe the dynamics of the system in the
and selection rules for multiphoton transitions. The analytiGime domain, that is, we provide the time evolution of the
transition probabilities as a consequence of the expansion of
the solution in terms of Floquet states.
*Electronic address: luzvela@cns.physics.gatech.edu The radiation wavelength under consideration in this
"Electronic address: ron.fox@physics.gatech.edu work is much larger than the spatial extent of the electron
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states even for high. Therefore, the dipole approximation sion is in Sec. VII. Finally, in Appendix A, we give heuristic
[15] applies and the field is independent of the spatial coorreasons for the existence of multiphoton resonances by
dinates. We provide examples of multiphoton transitions instudying the Laplace transform of the auxiliary equations.
two regimes: transitions from the ground state to excited

states of hydrogen and transitions between excited Rydberg

states that are close to ionization. The same approach pro- Il. THE RYDBERG-ATOM HAMILTONIAN

vided a negative proof for the existence of multiphoton tran- o ) ) ]
sitions for the periodically driven simple harmonic oscillator ~ The Hamiltonian for the Rydberg atom in an intense semi-

[16]. classical microwave radiation field is given by

We obtain analytical expressions for the variation of the 2 @27
quasienergies and Floquet states as functions of the field pa- H= _< 5 9,&(»[)> _Z= (1)
rameters. These expressions are analogs of some expressions r

obtained in Ref[17] in a different context. When the field ) . ) )
parameters vary, both crossings and avoided crossings of tHde microwave fieldA with amplitudeA, and frequency» is
quasienergies can be observed. Our analysis permits us gven by

demonstrate that, when the quasienergies feature an avoided - o

crossing, the Floquet states show dramatic changes. As a At) = Age sin(wt),

consequence, the time-dependent solution can be obtained ifSwhich  is the polarization unit vector. The electron charge

the superposition of two or more Floquet states, which 5 e e>0.

sults in probability exchange between unperturbed states ; ) :
when the radiation field is present. When a crossing occur 1 épipélylng the Goeppert-Mayer gauge - transformation

the Floquet states are not significantly affected since the so-

lution may be expanded in terms of mainly one Floquet state, . ie. -

hence there is no transition probability. The dynamics close x(F,t) = - he A, )
to avoided crossings was also studied in R&8]; however,

our analytic results are different and explain the numericathe Hamiltonian(1) is related to the electric dipole Hamil-

observations. tonian given by
For small values of the field strength, the Floquet states ~ Lo
are very close to unperturbed states. This is used to obtain H=Hp+er-E, 3)

selection rules for the avoided quasienergy crossings. For\ﬁhereHo
transition ofN photons, an avoided crossing is possible if theatom,
states involved have a difference in quantum nunhleat is
even forN even or odd folN odd. We provide an expression 3 p> €z
for the rate of transition for these cases, which is inversely Ho = m (4)
related to the difference in the quasienergies involved in the .
avoided crossing. As the field strength varies, the values cindE=-(1/c)(dA/ ) is the electric field.
the field frequency producing avoided crossings also vary ~ The Hamiltonian(1) is in the so-calledrelocity gaugg5].
consequence of the ac or dynamic Stark eff@@}). This  The dipole Hamiltonian(3) is given in the so-calledength
shows that the tuning of the field parameters should be dongauge[5]. The corresponding wave functionsof Eq. (1)
simultaneously to achieve an optimal transition. andTp of Eq. (3) are related by

The paper is organized as follows. In Sec. Il we review
the Hamiltonian of the Rydberg atom in a microwave field, . e, - \~
in both the velocity and length gauges, which are related by yr.y= ex;(— P 'A(t)>¢(r't)' )
the Goeppert-Mayer gauge transformation. The solution is _ )
expanded in terms of unperturbed states; the dynamics is L€t the time-dependent solution of E@) be expanded as
then reduced to the auxiliary equations. Examples of multi- ~
photon transitions from the ground state are presented in Sec. ()= > (), (6)
[II; the time-evolving probabilities are obtained in both ve- k
locity and length gauges by computing the effect of thewhere|g,) are the unperturbed states of E4), i.e.,
Goeppert-Mayer gauge transformation. Floguet analysis of
the auxiliary equations and the computation of Floquet states Hol ) = El - (7)

and quasienergies is described in Sec. IV, through examme?yubstituting Eq(6) in the Schrodinger equation, it can be

we describe long-term dynamical features that can be obshown that the coefficients(t) must satisfy auxiliary equa-
tained from the expansion of the initial condition in terms of ;5,5 given by

Floquet states at=0. We explore, analytically, the behavior

is the unperturbed Hamiltonian for a hydrogenlike

of quasienergies and Floquet states close to avoided cross- da, Ey , e(d- R

ings as the parameters vary in Sec. V. The study of the Flo- dt 'zak’F 'E %(EA) SCAAENE (8)
quet states as a function of the parameters allows us to iden- )

tify selection rules for multiphoton transitions; this is The details of the derivation of the auxiliary equations can be
described in detail in Sec. VI. The conclusions and discusfound in Ref.[16]. The derivation applies for any central
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force problem. For the calculations in this work, we consider 1 7 T™a |2
the hydrogen atom Hamiltonian, that &= 1 in Eq.(4). For () ; X 310
hydrogenlike atoms, the indicésandj in Eq. (8) are actu- // \\ N ~|a |2
ally triples, corresponding to the quantum numbers$, m. Us — 100
The principal quantum numben is a positive integer] 1 la |2
=0,...n-1, andm=-I, ... |I. The energies are given by ®) #1000,
E.=-E,/n? whereE,=¢€?/2a, (erg is the ionization energy ? \/|a320|2
andn is the principal quantum number of the corresponding 0 — '\|a300|
state. The polarization dirgction of the microwave field is - 5
taken as thaez axisi i.e.,e=k. The vector potential is ex- ) I“‘100'
pressed ad\(t)=Agk sin(wt). Normalizing coordinates and 0 : (|a310|2
constants by atomic quantities, the auxiliary equati@sre 100 200 300 400
expressed in dimensionless units as t/T

day FIG. 1. (Color onling Evolution of the squared absolute value
— = — i@ +i\ cog(wt)E <¢k|Z| ¢j>aj, (9) of some coefficientsy(t) for three different values of the driving
dt i frequency: () w=ws—wy, (b) w=(wz—wy)/2, and (c) w=(ws
—wy)/[(1+y5)/2]. In all cases, the initial condition ia;o0)=1
where w,=w,=—1/21% (n is the principal quantum number and zero for the resh=0.005 861 7. There is probability exchange
of the corresponding staten=E,/(5.1422x 10° V/cm), and ~ ©nly in the resonant cases) and (b), k_)etwegn the _grou_nd state
Eo=wA,/C. The matrix elements are known in close form (n=1) and excited states with=3. The timet (in atomic unij was

[20]. The matrix element$¢k|z|¢j> imply two selection normalized in each case by the value of the respective péfliod
=27l w).
rules:

equationgsee the Appendix we concluded that secularities
(10 ! . ) o .
arise with frequencies satisfying equations of the form
The auxiliary equation&) form a nonautonomous, linear,
time-periodic system of ODE’s. In the Appendix we study

the Laplace transform of the system to obtain driving fieldwhereN is an integer. Numerical experiments showed that
frequencies that may cause secularities, and it is immediatelyhoosingw satisfying(closely this equation is key to pro-
obvious that an analytical solution is difficult to achieve, duce multiphoton transitions between the states with fre-
even for a small number of states. Equatig8s form an  quenciesw; and wy, with N the number of photons involved
infinite-dimensional system. The analysis is done for a trunin the transition.

cated system of equations or a finite basis of unperturbed Based on Floquet analysis, we later establish that the val-
states. The selection rules0) imply that the quantum num- yes ofw producing multiphoton transitions should be chosen
berm of the interacting states is fixed by the initial condition simultaneously with the parameter, the strength of the
(initial state. The basis is formed by states in a finite set 0ff|e|d \ can be used as a tuning parameter for the rate of
principal quantum numbers the value ofm fixes the mini-  transition. However, as we show in the following section, the

mum n to |m[+1. All coupled| substategI=|m[,...,n=1)  dependence of the transition rate with respeck s rather
were included. The coupling term is larger between coefficomplicated.

cients with the same principal quantum numiperand de-

creases as the differenné—n increases. However, our com-

putations show that the probability may spread to many 1. MULTIPHOTON TRANSITIONS

states, both within the sammeand to states with different.

Even small couplings can have a long-term effect, and there- Three examples of solution of the auxiliary equati¢8

fore the integration must consider states within a large numare shown in Fig. 1. We took the ground state as the initial

ber of energy levels to avoid saturation. In our numericaicondition [a;o(0)=1 and zero for all othefsand obtained

experiments, the maximum was determined to have the Probability exchange with excited states. We fixed the value

higher states with negligible probability. lonization probabil- of A=0.005 861 7=3.01x 10" V/cm) and evolved the sys-

ity is computed as the probability above arcutoff value  tem for three different values of the coupling frequen@):

[3], which has to be smaller than the maximumin the w=wz=w;, (0) w=(w3—w1)/2, and (¢) w=(wz=wy)/[(1

simulations. However, in strict terms, ionization probability +15)/2]. For the case€a), we observed Rabi-type oscilla-

must include the probability of continuum states, which aretions between the staté$,0,0 and|3,1,0, alternating in

not considered here. Including the continuum states as wefirobability to almost100%; there is a small percentage of

as increasing the basis size to infinity may result in a densprobability spreading to other states. The first transition takes

spectrum[18]. about 125 periods of the external field. Meanwhile for the
The choice ofw, the frequency of the microwave field, case(b), two excited coefficients appear: the probability os-

provides the mechanism to effectively couple the initial statecillates between the ground state, and the st&gs, 0 and

with some excited state. From the Laplace transform of thesg8,0, 0. The first transition occurs after 250 field periods. On

m=m and |I'=1%1.

wj— wgt Nw=0,
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FIG. 2. (Color onling Time evolution of the probabilitieB(t) FIG. 3. Some matrix elements!;(t) [Eq. (12)] for w=(w;
[Eq. (11)]. The parameters are the same as in Fig(al:o=w3 —-w7)/2 and\=0.005 861 7.

—wy, (0) w=(w3—wy)/2, and(c) w=(wz—wy)/[(1+5)/2]. In all

, . .
cases\=0.005 861 7. numbersn andn’ the integral can be evaluated using sym-

bolic computation software such &THEMATICA . But even
) N the numerical integration is difficult due to the fast oscilla-
the other hand, in the nonresonant cése the probability  tions of the integrand, as we observed in some attempts to
remains in the coefficierd; oo with small oscillations around  ysemarHEMATICA , which produced inaccuracies. We tried to
it. There is no transition in this case. overcome this with our oWIFORTRAN code using Gaussian
integration overd and Laguerre integration over[21]. We
sampled time points in the interved,T/4], and by symme-
try obtained sampled values of the matrix elements over one
The solution of the auxiliary equation(®) provides the period[0,T]. The evaluation for anye[0,T] was then ob-
evolution of the system in the length gau@ in the form  tained by interpolation. For the total integration time of
(6). In order to obtain a time-dependent solution of the vecto00T, we can use the periodicity of the matrix elements:
potential coupling Hamiltoniar{1), we need to apply the My;(t+T)=M;(t).

Goeppert-Mayer gauge transformation

Goeppert-Mayer gauge transformati¢2). Recall that the Examples of some matrix elemer{ts?) corresponding to
wave functions are related by E¢). low quantum numbers are shown in Fig. 3. In general, the
Hence, in the velocity gauge, the time-dependent solutiofatrix element is real if-1" is even, and purely imaginary if
(in spherical dimensionless coordingtéss the form the difference irl is odd. The parameters used in this figure

are the same as in the example of Fih)l w=(w3-w)/2

and A=0.005 861 7. We notice that for low principal quan-

tum numbers the matrix elemenit, ; are close to 1 fok

=j and close to 0 otherwise.

The probability of finding the electron in an unperturbed Having computed the coefficiensg(t) and the matrix el-

state|¢,) at timet is given by ementsM, ;(t), we are able to obtain the time-dependent so-
2 lution and probability evolution. From Fig. 3, we observe

E. a(OM (V)| ,

J

|l (1)) = exp[— i—)\r cos 6 sin(wt)]z a(t)]¢y).
@ i

(11)  that {(¢| ¢ (1)) =a(t). Then, the evolution of probabilities

(12) for this choice of parameters and initial condition is very
where similar to the evolution of the coefficientg(t). Compare
Figs. 1 and 2.

Figure 2a) represents a 1-photon transition between the
levels 1 and 3 with almost 100% of probability exchange; the
w ro probability oscillates in time, in a similar way of a Rabi

:quf f gl IN@Ir cos 6 sinlwd g 4 12 5in @ dir de. oscillation; however, there is a small percentage of probabil-
o Jo ity going to other states, which shows the effect of the mul-
(12) tiple coupled states. Meanwhil@g) reflects a 2-photon tran-
sition between the ground state a8d0,0 with probability
For the same parameters as in Fig. 1, the evolution of thef at most 30% and3,2,0 with at most 60%. Again, the
probabilities is shown in Fig. 2. probability oscillates in time, after about 508 periods of the

The computation of probability evolution requires the field the ground state has probability close to 100%. In these
evaluation of the matrix element$2) for allt [0, T]. (Note  figures, very quick small oscillations make the lines look
that the integral over the anglehas been evaluated assum- thick, as it is depicted in the inset of Fig(c2
ing thatm=m’.) For most cases, this double integral can only  Now, we study multiphoton transitions between states in
be evaluated numerically. In a few cases with low quantunthe levelsn=1 andn=8 as a function of the field strength.

Pu(t) = el o (1)[* =

My (1) = <¢k|9Xp[_ %r cos o sin(wt)] )
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1 1 ‘
:V\f’\\ . |a100|2 0.5 Pl,o,o
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FIG. 4. Time and initial phase averaged probabilities é&gy FIG. 5. ProbabilitiesP,(t) [Eq. (11)] for wg—w;~8w=0 andx
. . . 8 1 -

-w1—8w=0 and varying\, over a fixed time interval of 400 In _ he | ide the fi detail of th ick
the lower panels we see the distribution of averaged probabili’[ies‘o'008 389. The Insets provide the fine detail of the quic

among several states with quantum numberisdicated. Darker oscillations.
areas correspond to larger probabilities.

. . ) i Fig. 6 we plot some matrix elemenid, ;(t) that are needed
We integrate the auxiliary equatio(®) for the fixed value of 4 compute the probabilitietsee Eqs(11) and(12)]. Com-

field frequencyw:(wg—wl)48 and values ok in the range  are with the case of lowers quantum numbers in Fig. 2.
0.005 and 0.02%~2.5x 10" to 1.28x 10° V/cm). The ini-

tial condition was chosen with all the probability on the
ground state, i.ea,000)=1 and all other coefficients zero.
Equationg9) were integrated over a fixed interval of time of
400T, T=27w/w and for different initial phases. For eaah ) .
we computed the time and initial phase average of the prob- N this section, we calculate quantum Floquet states and
ability in each state, that is, the averagaaft)|? over 40a0r.  quasienergies for the Rydberg Hamiltonigh. One of the
In the first panel of Fig. 4 we show the time and initial Main advantages of the. treatment d|$_cussed in .thIS work is
phase averages (o4 |agsd2 and|agq? as a function of that the Floqqet ana]yss of the au>.<|l|ary equatiqey (a
\. The graph in the second panel shows the distribution ofyStem of ordinary differential equationroduces Floquet
the averaged probability as a function)afThe gray scale is States for the quantum problem. It can be sh¢@) that the

the averaged probability for each state with quantum numEloguet exponentg of the auxiliary equations are the Flo-
bersn=1,6,7,8,9. Ineachn band, the vertical axis corre- duet quasienergies of the quantum system. Also, the Flogquet

sponds to the indet of the coefficientsa,,; this is, | Solutionsa“(t) yield quantum Floquet states defined by the
=0, ... n-1(note that the vertical size increases for lamger €Xpansion(6) in terms of unperturbed stat¢s). Note that
only because there are levels represented in each band €ach Floquet solutioa*(t) is a vector of coefficients{(t).
The darker gray zones correspond to greater values. The auxiliary equationg9) for the coefficients(t) form
We can observe in Fig. 4 that for valuesioéround 0.008 & time-periodic system, with perioi=27/ . Therefore, it is
and 0.02, the probability of the ground state averages 0.30ssible to find a basis of solutioagn(t), called the Floquet
there is an exchange of probability between the ground statgolutions, of the form
and several states with quantum numbess/,8,9, and 10.

IV. FLOQUET ANALYSIS

This shows that although the field frequeneyis in reso- If—F/—— — ReM )
nance with statem=1 andn=8, the probability does not N 100,100
exchange only between those stati reduction to a two- P " P ,-' TeeT Im(Msoo,soo
level system does not holdout it can disperse in neighbor- Otirsgrimengte Miymabagts

ing states in same shell and othen shells. It is also notice-

able that the relation betweanand the transition probability — ImM, ) o)
is quite complicated, and by no means linear. ——— Re(Msm'sgo)

In Fig. 5, we show the time evolution of some probabili- ’

ties (11) for w=(wg—w;)/8 andA=0.008 389. We can see

that, afterz9'0 periods of the fielq, the probability.of finding —— Re(M )
the electron in the ground state is zero. At that time, several Im(Msoo,s)oo
states witm=7,n=8, andn=9 have nonzero probability; the T 800,910

state|9,2,0 is the one with largest probability at this point. -0.5———————
In all|these states, the probability is oscillating rapidly, as we 0 02 O'?/%G 08 1
can observe in the insets of Fig. 5.

We also note that the Goeppert-Mayer gauge transforma- FIG. 6. Some matrix elementd?2) for w=(wg—w;)/8 and\
tion has important effects for the case of excited states. [+0.008 389.
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arm(t) = e ki (1), 13 0
() - 9 WS s e 22990
whereu,, is called the Floquet exponent arg(t) is a vector 205! 4 |
of T-periodic functions. Any vector solutioa(t) can be ex- R Dy QP @@ gy O
pressed as a superposition of Floquet soluti@$, such as § 4l Oy g @ @ ¥
«
a(t) = >, cam(t). (14 S Oy @ @ % gy e
m 15t 3 4 5 6
Q
The Floquet solutions yield Floquet states for the Hamil- §~ O (a) 0=0,-0,
tonian (1) of the form R -2 v ®) o=(04-0,)2 |
i ., * ¥ (c) 0=.2747
” = — —75gj m - S R B
[pmit) = exp -z sinat) | 35 0], (19 e i e s 1L 13 15

Where|¢k> are the unperturbed stat€d. The Floquet expo- FIG. 7. (Color onling First 15 Floquet quasienergigs,, for
nentsu,, are called thejuasienergiesf the Hamiltonian(1). t.hree.diff.erent frequencies of the dr?ving field. The .strength of the
Therefore, any time-dependent solution of the Hamiltoniarfield is flxed,_)\:0.00S 861 7. The lines labeled with the unper-
(1) can be expressed as a superposition of Floquet states, lUrbed energies, are plotted for reference.
[ (1)) = > colth #m(t)). (16)  corresponding taw;, since w;mod w= w5 [that is, w;=w;
m —Now, with N=1 for (a) andN=2 for (b)]. On the other hand,
for the nonresonant case), with w=(wz—w;)/[(1+5)/2]
=0.2747, the Floquet quasienergy is close tow; mod w
=-0.5+0.2747=-0.2253.
Let us discuss with more detail the resonant c@gen
Fig. 7. Let the initial condition be the ground state, that is, at
t=0, a;090)=1, and the other coefficients zero. This initial
condition is expanded, almost exactly, in terms of only two
eigenvectors: the eigenvectors corresponding to the quasien-
ergiesus; andug (Fig. 7). Recall that, at=0, the components
of the eigenvectors are coefficients of the unperturbed states.
The components of these eigenvectors are illustrated in Fig.
8(a). Therefore, the evolution of the coefficieatyy can be
approximated by

The Floquet solutiong*m are obtained from the mono-
dromy matrix. Let®(t,t;) be the matrix of fundamental so-
lutions of the auxiliary equation®) with ®(ty,tp) =1, that is,
any solutiona(t) with initial condition a(ty) =a, is given by
a(t)=®d(t,tp)ay. For simplicity, letty;=0. The monodromy
matrix is®(T,0). The eigenvalues of the monodromy matrix
are the Floquet multipliers. I6,, is a Floquet multiplier, the
Floquet exponenj,, is defined byo,,=e™“m'. The Floquet
exponent u,, is obtained modulo w, that is, uny
=[-i In(o)/ TImod w. The Floquet solution is given by
a*m(t) =d(t, 0)x,(0), wherex,(0) is the eigenvector corre-
sponding to the exponepd,, Furthermorea“m has the form
(13). Note, from expressio(iL6), that the coefficients,, are
constants, which are determined by the initial condition. At
t=0, the Floquet state@l5) correspond to an expansion in

tgrms of u_nper'[ttjraidost?\tles. 1f'he coefficien_ts (1); thtiﬁ eXp"’"‘/'vherexg(t) andxg(t) are vectors off-periodic functions and
sion are given Dig ( ). Now, from expressioft )’. ese only their first componentk=1,0,0 appears. At multiples
coefficients are precisely the components of the eigenvectors

Xm(0). We compute the monodromy matriR(T,0) of the

Ago0(t) = Cae Hatx3 1) + cee X)),

auxiliary equationg9) by direct numerical integration, that N—m.5J I xg
is, we integrate Eq9) taking as initial conditions each of the ~ o0
columns of the identity matriX, over a time interval of one 5 %
period[0,T]. Then, we are able to compute eigenvalues and X oJ I
eigenvectors with which we can construct the quantum Flo- (a) 100200%{)‘;?:%%?32%’““”““
quet states.
:79-5J *3

Probability exchange from superposition of Floquet solutions = 0 ] | |

In Fig. 7, we plot the first 15 Flogquet quasienergies for the 5 I xg
same parameters previously studied in the examples in Figs. ~ 0 |
1 and 2. The labeling of the quasienergies is arbitrary; we s %
called themu,, for m=1,...,15 in increasing order. We note = 1 2 I

that for the resonant casés) and (b) all the quasienergies
are close to the unperturbed energigs=-1/(2n?). How-
ever, the quasienergies in the samghell have split and the

(b)

100 200 210 300 310 320 400 410 420 430

Components k=nl;

m

FIG. 8. Squared modulus of the components of eigenvectors

degeneracies disappeared. In the resonant cases, there @sgesponding to quasienergig@s uz and ug, With w=wz~w; and

four quasienergiegus to ug) which are close taws. This

“additional” quasienergy splitting from; is the quasienergy and 7b)]. \=0.005 861 7.

063409-6
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of the period,t=KT, the functionsxs(t) and x4(t) are pre- The previous analysis was repeated for several valugs of
cisely the eigenvectors represented in Fig).8For this case, in the range X 10 and 0.1(=5x 10* and 5x 10° V/cm).
|c5l?=0.4922 andcg?=0.5064. When evaluated at multiples The quasienergies deviate more from the unperturbed ener-
of the periodt=KT, |a;oi(KT)|? is the probability of finding gies as\ increases. This accounts for shorter period of the
the electron in the|1,0,0 state. That is,|a;ofKT)|? probability oscillationsee expressiofl7)]. For larger, the
=[(1,0,0 ¢ (KT))|? since the Goeppert-Mayer gauge trans-expansion of the ground stagimitial condition) in terms of
formation is the identity at those points. We can then findFloquet states involves more significant coefficientsAlso,

that this probability evolves as the Floquet states are expressed in terms of more unper-
_ _ turbed states. This means that the probability spreads among
|10 KT)[? = |cge 8 THaxi %0+ cqe ™ THex1092, more unperturbed states.

In the following sections, we analyze the cases when the

Expanding the previous expression, we get initial condition is an excited Rydberg state, with quantum

|a30KT)[2 = [c%%2 + |cexd®92 + 2 cO§KT (16— 1) numbern>60. In contrast with transitions involving the
. 100 100 grounq state'and other_ low levels, where the energy gaps are
X R CaCex5 (%) ] well differentiated byn, in the case ofi> 60 the energy gaps

are smaller and closer; therefore the resonances tend to over-
eIap. We observe that for excited levels, the Floquet analysis
yields a quite complicated behavior that is very sensitive to
® parameters. We present a detailed analysis of the variation of

= (17) Floquet states and quasienergies with respect to parameters
2(pe = pa) \. o.

Then, this probability evolves as a Rabi-type oscillation. Th
K-dependent term has a minimum for

Evaluating, we geK=127.8. This is the number of periods
of the microwave field for which the probability will have a V. FLOQUET ANALYSIS AS A FUNCTION
maximum transition; in other words, this is half the period of OF PARAMETERS
the Rabi oscillation. The approximation above gives
|a;0o(KT)[?=0.4984+0.4983 cOKT(ug—u3)], then the The Hamiltonians for the Rydberg atoft) and electric
maximum probability of the ground state after 1 period candipole(3) are related by the Goeppert-Mayer gauge transfor-
be calculated as 99.67%. The remaining fraction of probabilmation (2). Note that, at times multiple of the period,
ity spreads to other coupled states. With the same argumeft<T, the solutions for both Hamiltonians coincifieee ex-
we can obtain the probability |as;KT)[?=0.4902  pressiond)]. Particularly, the Floquet quasienergies also co-
~0.4902 CORKT (16— 3)]. The maximum probability for the incide, since they are computed as the eigenvalues of the
state|3,1,0 is 98.04%. See Fig.(&). monodromy.matlm@(T:O) [see Sec. Y. )

In general, if the initial condition can be expanded in  The Hamiltonian(3) is equivalent to theé=loquet Hamil-
terms of mainly two Floquet states, the probabilities evolvetonianin the extended phase space given by
as a Rabi-type flopping, and the quasienergies and Floquet ~
states provide a very good approximation to the rate of os- K=Ho=2\ cosf+wl, (18)

cillation and probability exchange. Note, however, that al-where(9,1) is an additional pair of canonical conjugate vari-

though only two quasienergies and Floquet states participaigyles, and quantum mechanically;—iz 9/ Jé.
in the expansions of probability evolution, the system is not

equivalent to a two-level system. The Floquet analysis was

done considering all the coupled states. Simplification to a k|¢ )= g e (19)

two-level system could not account for the fraction of prob- e e

ability that goes to other states. The eigenvalueg.,, coincide with the Floquet quasienergies
On the other hand, for the resonant césgin Fig. 7, the  [8]. The eigenstates are the quantum Floquet statés in

initial condition a;pp=1 (and the rest zejois expanded in the extended phase space.

terms of mainly three eigenvectors, corresponding to the

quasienergiess, ue and us. The main coefficients in the

Floguet expansion arécs?=0.6566, |cg2=0.3411, |c5|? _ o _

=0.0019. In Fig. &), the components of the eigenvectors ~We now consider variations with respect to the parameter

we see that three unperturbed states participdted, 0), with respect to\ of Eq. (19), and using the orthonormality of

13,0,0, and|3,2,0. This produces the exchange of prob- the basigyy,), we obtain(cf. Ref. [17])

ability from the ground statél,0,0 and those two excited

The Floquet HamiltonialK can be diagonalized as

A. Quasienergies and Floquet states as a function of

: ' . e d
states. Since two of the quasienergiesand ug participate —{nlz coS 0|t + pnl thnl —|
mostly in the expansion of the initial condition, we can still dA
use expressioll?) to approximate the rate of transition of hm d

the ground state as 254.3 field periods; this is the point at :K
which the ground state reaches the minimum probability of
9.95%.[See Fig. 1b).] Then, forn=m, we obtain

Omnt /~Lm<’;0n| dn |‘/’m>

063409-7
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ditm dz:um |<'r/’n|z Cos 0| ‘/’m>|2 dz:un
—_— == Z CcoSs 6 . 20 =2 ~ - .
d)\ <¢m| | ¢m> ( ) d)\z L= M d)\z
On the other hand, fon+m and un # s, This implies thatu,+ u, behaves linearly with respect o
d the avoided crossing. Close to an avoided crossing of
(tnlz cOS 6]y aroun
(el — |¢>_ ARAL bt 1L Mm and u,, we have
"d " Mm ™~ Mn

Therefore, applying completeness of thg, basis, we ob- i<¢n|2 coS 0| Y = {£<lﬂn|]2 Cos 0| iy
tain dr d\

d
d (ynlz cos 6]y + 2
_|¢m>=_ 2 |¢n>nf+c|¢m>a (21) <lﬂn|Z C050 |¢m>
n#m S (2 cos Bl
where == 2 " (yplz cos Ol ¢
p#n Mn = Mp
d
o9 (|2 cos bl
¢ = (¢ d)\|¢’m>- —(lz cosf D |¢p>M
p#m Mm ™~ Mp
However, a phase factor can be chosen suchdh& We
can see this in the following way. First, note tHak,| ¥ ~ M(— dbtm %>
=1 implies Hm ™ Hn dh o dr
In the last step, we kept only the terms form in the first
<¢m| | + <¢m| |¢m> c +c=0; sum, andp=n in the second sum, which are the most signifi-
cant contributions close to the avoided crossing= wm.
thenc is purely imaginary. Now, for smalf \, we have that Therefore, we obtain the following differential equation:
d zcosd
Wm()\"'&)\)— 'ﬁm()\)"' S\ l/’m+o(5)\2) _<¢n|z COS'9|¢m>_ M[ ( Mm Mn)]
dA d\ Mm ™ Mn d\

Since we can choose a phase factofyf(\+5\)) so that

which implies
the produc () | (A +SN)) is real[15], we conclude that P

¢ must be zero. Substituting in ER1), we obtain (4] Z COS 6]t (e = ) = CONSL. (23)
i|¢m> == |%>M- (22) The last identity shows a common behavior at avoided cross-
n#m HMm = Mn ings: if two quasienergieg,, and u,,, are very close to each

other, the matrix elemeni/;,|z cos 6|y, increases, in order

To obtain the second derivative of the quasienergigs to preserve the produq@3). As a consequence, from Eq.

with respect to\, from Egs.(20) and(22) we have

(22),
dZMm
=-— zcos6
a2 d)\<¢m| | i|¢m> Iy const. y
dx (pm = )
=-| zcos6 Z cos 6
{ <‘//m|:| [ = (i |l’bm> This implies dramatic changes in the Floquet states at
avoided crossings when the parametds varied.
zCcos
Wz OS5 cos ol
n#m Mm ™~ Mn . . .
B. Quasienergies as a function oo
Zcos
+ > (Yrlz cos 4 ¢n>u When the frequency field is varied, a similar analysis
n#m Hm™ Hn can be done. Proceeding in a similar way as for the variation
7 oS )2 with respect to\, we can obtain an equation analog of Eg.
- 22 M (20):
n#m Mm ™ Mn
In numerical explorations, we observe avoided crossings YHm = (Yl [t

of the quasienergies, together with dramatic changes in the

Floguet states. Consider the case where two quasienergies

mm and w, are very close; in the last derivation, we canwhere | is the additional action variable of the Floquet
approximate the sum with only the two closest quasienergiegdamiltonian(18). Also,
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Floquet quasienergies

: s n g
FIG. 9. Floquet quasienergigs, for varying\. The frequency ' ' 6'8; é.s4 6.85 6.86
of the field is fixedw = wgs— wga. The range of the field strengthis A 107
0.5 V/cm-38.5 V/cm. The dotted lines are the values of the un-

perturbed energigsnodulow). Avoided crossings produce dramatic FIG. 10. (Color onling Floquet quasienergigs,, for varying\.

turns of the quasienergies. The frequency of the field i&=wg7— wgs. We observe that some
crossings occur as well as avoided crossings. See text for more
details.
d -3 (il ¢
_| l/’m> == |¢n> . . . . . .
do n#m Hm = Mn crossings and some avoided crossings. This can be appreci-

) ated in the second and third panel of Fig. 10. We can observe
Furthermore, it can be shown that/u|l[m)(m=#n)  that the crossings and avoided crossings alternate. The expla-
=const. These equations show that avoided crossings of theytion of this fact will be described below, from observing
quasienergies as a function ef are also accompanied by the pehavior of the eigenvectors as a function olote also

sudden changes in the Floquet states. that, for this choice ofv, we havew;,— wgs=~ 2w.
Recall that, at=0, the Floquet states are obtained as an
VI. SELECTION RULES FOR AVOIDED CROSSINGS expansion in terms of unperturbed states, with the coeffi-

cients given by the components of the eigenvecises Egs.

The behavior of the quasienergies as a function of thg13) and(15)]. We observe that for small there is one large
field strength\ is illustrated in Fig. 9. For this computation, eigenvector component close to 1, and the rest are close to 0;
we consider excited states with quantum number63. the Floguet states are very close to the unperturbed states. As
Sincemiis fixed, only states with principal quantum numbersX increases, more components of the eigenvectors increase in
n=64,65,... and=63, ... n—1 interact[see Eq(10)]. The  value; hence, the Floquet states are expanded in terms of
choice of quantum numben=63 produces 45 interacting more unperturbed states. When an avoided crossing occurs,
states for values oh=64,...,72. The field frequency is the components of the eigenvectors also feature dramatic
fixed o=wg—wg, and N varies from 110! to  changes, as we showed analytically in Sec. V.
7.5X107°(0.05 to 38.5 V/cm We observe that for small, In Fig. 11, we plot the square modulus of some compo-
the Floquet quasienergies split from the unperturbed energiagents of three eigenvectors, corresponding to the quasiener-
(appearing in the figure a®, mod w). This can be inter-
preted as the aor dynamic Stark shiff5,6]. As \ increases, . } iy — ihoun
we observe apparent crossings and avoided crossings. There P05 | | 72,67,63
is no reasora priori to rule out crossings of the quasiener- -
gies in Eqg.(19); degenerate Floquet states might exist for
some values oi. In our numerical experiments, we found 1 — 656363

h
5.%47 5,8475 0 6.84 6.86

that some selection rules apply for these degeneracies, at - | ™\ ] || i || bt

least for small\. This will be explained in the next example. =7 ol

5.847 5.8475
A. Quasienergy crossings, avoided crossings, the eigenvectors, u e -y
and selection rules, as\ varies <505 = et U
In Fig. 10, we present an example showing crossings and 0 * Gt ase

avoided crossings. For this case, the field frequency is 1L 2 &8 & % ¢ 710_98

= wg7;— wgg, AN varies. A total of 45 states were integrated, x
for principal quantum numbers=64, ...,72 anadn=63. The FIG. 11. (Color onling Squared modulus of some components

labeling of the quasienergies is arbitrary; in this case, Wef the eigenvectors, as a function of, corresponding to Floguet
plotted 11 of the 45 computed quasienergj@es: u,, ... ,M11-  quasienergiesus, ug and u, in Fig. 10. The eigenvector compo-

For small \, we observe that the quasienergies corremnents suffer dramatic changes at avoided crossings, the components
sponding ton=65 andn=72 get closer; producing some showed ar&k=65,63,63k=72,69,64, ank=72,67,63.
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gies w7, mg, and us of Fig. 10; they are associated with ;§° e e

quasienergies featuring avoided crossings. In each case, the g ol ! 0420 '

components correspond to the unperturbed stag$9, 63, § e

|65,63,63, and|72,67,63. Around the avoided crossing at 501 " o, |
A=6.84x10"° we can see that the componémt65,63,63 S 02 ]
of the eigenvectoks goes quickly to zergsee second inset ;g: : : : i :

in the first panel At that point, the same component of the d
eigenvecto, increases by the same amogsee inset in the

third pane). This behavior is reproduced in all components _g‘gzz l o

of the eigenvectors involved in avoided crossings. Exactly = 0oy e
for a value of\ for which an avoided crossing occurs, the ~0.0556¢ _oissss ]
eigenvectors have two or more important components; these ~ ~%-0%5§ L

are the coefficients for the unperturbed states, and as a result, —-0.056 1 2 3 4 5

the Floquet states are a superposition of several unperturbed d

states. This results in probability exchange between the un- g1 15 (color onling Floquet quasienergies varying the field

perturbed states involved. On the other hand, when a crosgequencyw; A=0.006 fixed. The varying frequency i8=wy/d,

ing occurs, the components of the eigenvectors do not reflegith w,=w;- w,. The states correspondiio=0 and principal quan-

any sudden change, neither do the Floquet states, and B@n numbersn=1,2, ...,5. Thedotted curves in the background

probability transition takes place. correspond to the resonances for the unperturbed energies. In the
As mentioned above, for small values f the Floquet second panel the splitting of the=3 energy level is showidy-

states are still close to unperturbed states, so they can bamic Stark shift

easily identified with then,|,m) states. This leads to the

following selection rule for this choice ab: the quasiener- Fig. 12, where a zoom of the quasienergies clos@ds

gies that have avoided crossings correspond to states fQhown. |n the inset, we can see one avoided crossing and
which the difference in quantum numides even; then prob-  gayeral crossings. The avoided crossing occursefer(ws
ability exchange is possible only whérl’ is even. If the —wy)/3. Hence, this avoided crossing reflects a 3-photon
difference inl is odd, the quasienergies cross, and there is NQansition between the ground state1 and a state im=3.

probability exchange. This selection rule is related to the’To study this transition, we compute the eigenvectors corre-

part|cula}r resonance. In. th|_s case, we have mﬁ_w@?. sponding to the quasienergies in the avoided crossing, as a
=~ 2w, this av0|d¢d crossing involves a two—photon tranSIt!Onfunction ofd. Only two eigenvector components have high
between states |n:_65 andn:72._We hote that this transi- values, they are the coefficients of the unperturbed states
tion is slow, the period of the Rabi oscillation, from Eg7), |1,0,0 and|3,1,0. Our computations show that these ei-
is o/ (17~ us) ~ 66,188 field periods. genvector components change quickly around the avoided
crossing. Therefore, for this value af, there is a 3-photon
transition between the statés, 0,0 and|3,1,0. The tran-
sition is of the Rabi type. As beforsee Eq.(17)], we can

The selection rules also appear when we study probabilitgg|culate the period of the Rabi oscillation, @#(uq— g)
transitions as a function of the field frequensyTo illustrate  —1g02T.
this, first we study transitions from the ground state to low  gejection rulesThese computations confirm the selection
levels (smalln). We show that crossings and avoided crossyyles obtained in the preceding section. For these small val-
ings of the quasienergies occur for valueswfsatisfying  yes of \, the Floquet states are close to the unperturbed
closely a resonance equation of the foap-w,=No. states. Therefore, only one component of the eigenvectors is

When o varies, keeping\ fixed, crossings and avoided ¢jose to 1 and the rest are close to zero; this permits us to
crossings of the quasienergies are observed, as we show JRsocijate a labed, |, m to the Floguet states. Avoided cross-
Fig. 12 for low quantum numbens=1,...,5 andn=0. In g occur only when the difference Inquantum number
this example, the varying frequency cs:mol_d, with g (I-1") is even forN even(in the equationw;-w=Nw) or
=wz—wy, and the denominatod varies continuously be- \yhen|-|" is odd forN odd. And, since avoided crossings
tween 0.1 and 5. The field frequency is fixedas0.006.  roquce dramatic exchange between the components of the
The quasienergies are represented in the figure as a functi¢flyquet states, probability exchange is possible only between
of d. We plotted, with dotted lines, the curveg+Nw as  giates for which there is an avoided crossing. Therefore,

well as the lines for the unperturbed energigs. .. ,ws. The  thege are the selection rules for probability transitions be-
points where these lines and curves intersect, represent afiaan unperturbed states.

unperturbed resonancee., a resonance for the unperturbed
energie$ of the form wy—w;=Nw. As we can expect, the
crossings and avoided crossings of the quasienergies occ
for values ofw close to an unperturbed resonance, ie., When considering excited state, the situation is more
=~ (wy—w1)/N. complicated due to the small separation of the unperturbed
We observe that the quasienergies have split from the urenergies. The resonant frequencies of the farmw; - wy are
perturbed energies, this is clearly seen in the second panel siall, then the quasienergies are very close together since

B. Transitions from the ground state asw varies

Lﬁ‘ Transitions between excited states: The tuning ok and w
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d FIG. 15. (Color onling In the first panel, the quasienergy dif-

ference u,—uq is plotted as a function ofv. Each curve corre-

FIG. 13. Floquet quasienergies varying the field frequency. sponds to a different value of The minimum in each curve is an
=2X 109_is fixed (=10.3 V/cm. The varying frequency isv avoided crossing related to the 1-photon transition betweed4
=wo/d, With wo=wg7~wes The states correspond =63 and 434 n=65. The avoided crossing for eaahoccurs at a different
principal quantum numberns=64, 65, ..., 80. value of w. These values ob are depicted in the second panel.

they are obtai_ned module. '_I'herefore, more crqssings and (14) have quick changes. In the first panel, we mark in
avoided crossings occur. This can be observed in Fig. 13. Fofircles, squares, and diamonds the three main quasienergies
this case, we considered states with quantum numbers (in that ordey involved in the evolution of the initial state
=64,...,80;m=63; and|=63,... p-1. The varying fre- |64 63,63. The corresponding coefficients, of the Floquet
quency is w=wo/d, With wy=we;~ws,=1.068<10°, and  states are shown in the second panel. Exactly at an avoided
the denoml_nat0|d is dimensionless, taken betvyeen 1 a”dcrossing, there are twr at most thregsignificant coeffi-
3.2. The field strength parameter=2x10° is fixed  gientsc,, Then, for the choice of» producing an avoided
(=10.3 V/cm. The quasienergies are plotted as a functionyrossing, the evolution of the initial state is a superposition
of the denominatod. In dotted lines, some unperturbed fre- of two or three Floquet states only.
quencies are showfright vertical axig. For this kind of Our calculations show that the values ®fthat produce
computation, some extra work is necessary in order to obtaigyoided crossings depend on the valuevoin Fig. 15 the
a good representation of the quasienergies. Since thgifference between two quasienergjesand w,, related to a
quasienergies are obtained modulpit is common to obtain 1-photon transition betweem=64 andn=65, is plotted as a
discontinuous curves that seem senseless. However, we Cfifhction of w, and for different values of. As \ increases,
add multiples ofw as needed to obtain continuous curves.the differencew,- i, also increases. For each fixed value of
When this is done, we observe both crossings and avoidegd we computed the value @f producing the minimum, i.e.,
crossings, corresponding to all kinds of resonance relationghe avoided crossing. As we can expect, the values afe

The values ofw and A can be both tuned to achieve the close to wgs—wg,=3.7271x 10°6. But, as\ increases, the
desired transition and the rate of the Rabi oscillation. In Figvalue ofw producing the avoided Crossing also increasesi as
14, we observe that asvaries, and the quasienergies featurecan be observed in the second panel of Fig. 15. This compu-
an avoided crossing, also the coefficiegitsn the expansion  tation also allows us to determine the implications of the

choice of parameters in probability transitions. For the pa-

8 _11e% 107 rametersk, w in Fig. 15, and for|64,63,63 as the initial
L ' ‘ ' condition, the main Floquet states are expanded in terms of
S -1.182 the unperturbed state64,63,63 and|65,64,63; but as\
z T e increases, also the stat@,65,63, |67,66,63, etc., have
B significant coefficients. That is, if a new lewelis involved,
$-1186f only the state witH=n-1 gains probability. Notice that this
§_1 188 is the probability of a multiphoton transition to that state. As
R X higher n levels have nonzero probability, there is higher
[0Oee0eaeg ! H ) ili i i i i
N:s M%%ig@ﬁfew%fw probability of multiphoton ionization.
T 0lea888s 00068200000 VII. CONCLUSIONS
0.95 1 1.05

d The problem of multiphoton transition of the Rydberg

FIG. 14. (Color onling Above, the three main Floguet quasien- &0m in a strong, long-wavelength microwave field is de-
ergies in the evolution of the stalé4,63,63 are marked with  SCribed with a nonperturbative approach, providing a time-
circles, squares, and diamongds that ordey. At the bottom, the ~dependent solution of the Schrddinger equation. Using the
coefficientsc,, of the Floquet statef@s in expansionl4)]. Thiswas ~ Goeppert-Mayer gauge transformation, the time-dependent
calculated for varying field frequenay=wy/d, with wg=wes—wg,.  SOIlUtiON is obtained in both the length gaugéectric dipole
A=3x 10710 fixed (=1.6 V/cm). The states correspond tn=63  Hamiltoniar) and the velocity gaugéstandard vector poten-
and principal quantum numbens=64,65, ..., 80. tial coupling Hamiltonian
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The dynamics is reduced to a system of ordinary differ- The value ofw that produces an avoided crossing depends
ential equations for the coefficienag(t) of the expansion of on the field strengtix. As \ increases, the value of at the
the time-dependent solution in terms of the unperturbecoided crossing also increases. For laxgéhe choice ofw
states(that is, the atomic states, when no radiation field isproducing an avoided crossing results in Floquet states that
present Coupling between states in different levels, and be-e not close anymore to unperturbed states: they have many
tween substates within an level, results in spreading of -omnonents corresponding to unperturbed states with higher
probability, for which many states need to be included in then and 1=n-1. This means that the probability spreads to

analysis. )
o . . states of the form{n,n—1,m), with largern. As a conse-
: The _auxmar)_/ equatlons for the coef_f|C|e_rm§(t) fo.rm a guence, there is an increase in multiphoton ionization prob-
linear, time-periodic system. The numerical integration of theabilit
auxiliary equations, together with the Goeppert-Mayer gauge Foyr' large values of. more avoided quasieneray crossinas
transformation, provide exact time evolution of the transition 9 ' q 9y 9
pear and they may even overlap. Also, most Floquet states

probabilities between unperturbed states in the presence i :
the radiation field. The choice of field strengthand fre- &€ €xpanded in terms of many unperturbed states. The mix-

quency w determine the extent and rate of the transition."d Of unperturbed states results in large diffusion of prob-
Multiphoton transitions can be observed, fas~(w, ability among many states. In this process, it is hard to dif-
—w))/N, but the choice of» depends on the value af Note ferentiate the exchange of probability in arshell from the
that, in previous wor16], the same approach was used to€Xchange between different levels. In R}, some intrigu-
show that there are no multiphoton transitions of the simpldnd experiments showed that intrashell dynamics was respon-
harmonic oscillator in a radiation field. sible for enhancement of ionization probability. Some nu-

The introduction of Floquet analysis of the auxiliary equa-merical and analytic work7,12,13 has been done to study
tions (a system of time-periodic ODB'sproved to be an the effect of intrashell dynamics. However, our analysis
excellent tool to analyze transition probabilities. From theshows that the intrashell dynamics cannot be isolated from
Floguet solutions and multipliers of the auxiliary equations,transitions between different levels, since these two pro-
we obtain Floquet states and quasienergies of the quantunesses occur together and for all neighboring states for strong
system. The expansion of the initial condition in terms ofenough fields.

Floquet stategat t=0) is enough to know exactly the time

evolution of probabilities. For cases when the initial condi-

tion is expanded in terms of mainly two Floquet states, the ACKNOWLEDGMENT
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ability, therefore the strict reduction to a two-level system is
not justified.

The Floquet analysis of transitions between excited Ryd-
berg stategn>60) showed that the probability transitions
are very sensitive to changes in the parameteasd w. We
show, analytically and numerically, that the probability tran-
sitions are associated with multiple crossings and avoided
crossings of the quasienergies, as the parameters vary. The
expressions for the derivatives of the Floquet states and .
quasienergies with respect to the parameterand v are d i\ (oot + it
derived analytically from the Floquet Hamiltonian, which d—tbk—E%ij(e'( ot dlacerep,
permit us to show that avoided crossings are accompanied by =
sudden changes of the Floquet states. Therefore, avoided
crossings produce probability transitions between the states _
involved. When a quasienergy crossing occwp to the WhereZy;=(¢r cos |¢). R
numerical accuragythe Floquet states do not show any sud-  Denoting the Laplace transform &f(t) as L(b)=by(s),
den change, and no probability transition takes place. and noting that £((d/dt)b,)=sh(s)—b(0), the previous

We observe that the quasienergy crossings and avoideshuation can be transformed to
crossings are determined by the unperturbed states involved,
obeying selection rules for probability transitions. For small
\, if the difference in quantum numbé&has the same parity o
as theN-multiphoton process, then there is an avoided cross- bi(s) = lbk(O) + EE Zk,-{f)j[s— (0~ )+ ©)]
ing. That is, for a choice ofw= (w—wj)/N, an avoided S 2sj5
quasienergy crossing is produced only when the correspond- -
ing Flogquet states are expanded in terms of states Iwith +bi[s—i(wg— 0 - )]}
odd forN odd orl-1" even forN even. Therefore, probabil-
ity transition is only possible between unperturbed states that
satisfy this selection rule. The first iterate of this formula produces

APPENDIX: SECULARITIES OF THE AUXILIARY
EQUATION

Note that by definind,=a, €, we can write Eq(9) as

063409-12
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. 1 i 1 b;,(0) b;,(0)
b(9) = ~by(0) + ~ X zkj1—< — e
S 27 S S—I(wk—wjl+w) S—I(wk—wjl—w)
in)\2 1/ by [s=i(ax— @, + 20)]+ by [s— i(wy— w})]
o) 22 24,2,,- .
2) 90, S S—I(a)k—wjl+a))

by [s—i(wy— w )] +b; [s—i(wy— 0}, — 20)]
+

s—i(w— wj, = )

We can continue to iterate this formula to obtain an asymptotic solution of the form

A 1 = /i \n 1 1 1 n
bk(s):;bk(owE('E) 2222z, g ) 2 2 2

1 b; (0)
n=1 i1 in S) p=0p,=0  p,=0r=1

r

s—i wk—wjr+2 (1_ 2p|)w
=1

This equation has secularities wheneuweis in resonance:
Om~ @) = * Now,

N a positive integer. Therefore, the choice of resonantill result in probability transition. Although computing the inverse
Laplace transform is very complicated, the asymptotic formula gives heuristic ideas of how the solution will behave up to a
certain order. For instance, up to first ordeninonly frequencies of the driving force satisfying—w,=+w will produce a
secularity. Therefore a multiphoton process of the fasfr w,=+Nw will require higher order in\ (field strength to be
observed.
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