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Chaos rules
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Qunadry: all these cycles, but what to do with them? What you have now is a
topologically invariant road map of the state space, with the chaotic region pinned
down by a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths

and self-similar structure. In chapter 18 we shall turn this topological dynamics into a
multiplicative operation on the state space partitions by means of transition matrices of
chapter 17, the simplest examples of evolution operators. This will enable us to count the
distinct orbits, and in the process touch upon all the main themes of this book, going the
whole distance from diagnosing chaotic dynamics to computing zeta functions.

1. Partition the state space and describe all allowed ways of getting from ‘here’ to
‘there’ by means of transition graphs (transition matrices). These generate the total-
ity of admissible itineraries (chapter 17)

2. Learn to count (chapter 18)

3. Learn how to measure what’s important (chapter 19)

4. Learn how to evolve the measure, compute averages (chapter20)

5. Learn what a ‘Fourier transform’ is for a nonlinear world (chapter21),

6. and how the short-time / long-time duality is encoded by spectral determinant ex-
pression for its spectrum in terms of periodic orbits (chapter22)

7. Learn how to use short period cycles to describe chaotic world at times much beyond
the Lyapunov time (chapter 23)

8. What is all this hard work good for? Deterministic diffusion and foundations of ‘far
for equilibrium’ statistical mechanics (chapter 24)



Chapter 17

Walkabout: Transition graphs

I think I’ll go on a walkabout
find out what it’s all about [...] take a ride to the other side

—Red Hot Chili Peppers, ‘Walkabout’

In chapters 14 and 15 we learned that invariant manifolds partition the state
space in invariant way, and how to name distinct orbits. We have established
and related the temporally and spatially ordered topological dynamics for a

class of ‘stretch & fold’ dynamical systems, and discussed pruning of inadmissi-
ble trajectories.

Here we shall use these results to generate the totality of admissible itineraries.
This task will be particularly easy for repellers with complete Smale horseshoes
and for subshifts of finite type, for which the admissible itineraries are generated
by finite transition matrices, and the topological dynamics can be visualized by
means of finite transition graphs. We shall then turn topological dynamics into a
linear multiplicative operation on the state space partitions by means of transition
matrices, the simplest examples of ‘evolution operators.’ They will enable us – in
chapter 18 – to count the distinct orbits.

17.1 Matrix representations of topological dynamics

The allowed transitions between the regions of a partition {M1,M2, · · · ,Mm} are
encoded in the [m×m]-dimensional transition matrix whose elements take values

Ti j =

{
1 if the transition Mj →Mi is possible
0 otherwise . (17.1)

The transition matrix is an explicit linear representation of topological dynam-
ics. If the partition is a dynamically invariant partition constructed from sta-
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CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 308

Figure 17.1: Points from the region M21 reach re-
gions {M10,M11,M12}, and no other regions, in one
time step. Labeling exemplifies the ‘shift map’ of ex-
ample 14.6 and (14.13).

ble/unstable manifolds, it encodes the topological dynamics as an invariant law
of motion, with the allowed transitions at any instant independent of the trajectory
history, requiring no memory.

 A non-negative matrix whose columns conserve probability,

i Li j = 1, is called Markov, probability or stochastic matrix.
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CHAPTER 17. WALKABOUT: TRANSITION GRAPHS 309

Figure 17.2: Topological dynamics: shrink each state
space partition region figure 17.1 to a node, and indi-
cate the possibility of reaching a region by a directed
link. The links stand for transition matrix elements
T10,21 = T11,21 = T12,21 = 1; remaining Ti j,21 = 0. 21
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A subshift (14.15) of finite type is a topological dynamical system (Σ, σ),
where the shift σ acts on the space of all admissible itineraries (sk)

Σ =
{
(sk)k∈Z : Tsk+1sk = 1 for all k

}
, sk ∈ {a, b, c, · · · , z} . (17.4)

The task of generating the totality of admissible itineraries is particularly easy for
subshifts of finite type, for which the admissible itineraries are generated by finite
transition matrices, and the topological dynamics can be visualized by means of
finite transition graphs.

17.2 Transition graphs: wander from node to node

Let us abstract from a state space partition such as figure 17.1 its topological
essence: indicate a partition region Ma by a node, and indicate the possibility of
reaching the region Mb, Lba � 0 by a directed link, as in figure 17.2. Do this for
all nodes. The result is a transition graph.

A transition graph consists of a set of nodes (or vertices, o r states), one 
for each letter in the alphabet A = {a, b, c, · · ·  , z}, connected by a set of 
directed links (edges, arcs, arrows). A directed link starts out from node j and 
terminates at node i whenever the matrix element (17.3) takes value Li j  �  0. 
A link connects two nodes, or originates and terminates on the same node. For 
example, if a partition includes regions labeled { · · ·  , M101, M110, · · · } , the 
transition matrix element connecting the two is drawn
as L101,110 = 110101 , whereas L0,0 = 0 . Here a dotted link indicates that the
shift σ(x011···) = x11··· involves symbol 0, and a full one a shift σ(x110···) = x10···
that involves 1. A j → · · · → k walk (path, itinerary) traverses a connected set
of directed links, starting at node j and ending at node k. A loop (periodic orbit,
cycle) is a walk that ends at the starting node (which can be any node along the
loop), for example

t011 = L110,011L011,101L101,110 =

101

011

110

. (17.5)

Our convention for ordering indices is that the successive steps in a visitation se-
quence j → i → k are generated by matrix multiplication from the left, Tk j =∑

TkiTi j . 
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A transition graph compactly describes the ways in which the state space re-
gions map into each other, accounts for finite memory effects in dynamics, and
generates the totality of admissible trajectories as the set of all possible walks
along its links. Construction of a good transition graph is, like combinatorics,
unexplainable (check page 245). The only way to learn is by some diagrammatic
gymnastics, so we recommend that you work your way through the examples,
exercises in lieu of plethora of baffling definitions.

example 17.1

p. 314

example 17.2

p. 315

example 17.3

p. 315

The complete unrestricted symbolic dynamics is too simple to be illuminating,
so we turn next to the simplest example of pruned symbolic dynamics, the finite
subshift obtained by prohibition of repeats of one of the symbols, let us say 11 .
This situation arises, for example, in a billiard, and in studies of the circle maps,
where this kind of symbolic dynamics describes “golden mean” rotations.

exercise 18.6
exercise 18.8

example 17.4

p. 315

example 17.5

p. 316

In the complete N-ary symbolic dynamics case (see example17.2) the choice
of the next symbol requires no memory of the previous ones. However, any further
refinement of the state space partition requires finite memory.

example 17.6

p. 316

For M-step memory the only nonvanishing matrix elements are of the form
Ts1 s2...sM+1,s0s1...sM , sM+1 ∈ {0, 1}. This is a sparse matrix, as the only non van-
ishing entries in the a = s0s1 . . . sM column of Tba are in the rows b = s1 . . . sM0
and b = s1 . . . sM1. If we increase the number of remembered steps, the transition

exercise 18.1
matrix grows large quickly, as the N-ary dynamics with M-step memory requires
an [NM+1 × NM+1] matrix. Since the matrix is very sparse, it pays to find a com-
pact representation for T . Such a representation is afforded by transition graphs,
which are not only compact, but also give us an intuitive picture of the topological
dynamics.

17.3 Transition graphs: stroll from link to link

(P. Cvitanović and Matjaž Gomilšek)
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What do finite graphs have to do with infinitely long trajectories? To understand
the main idea, let us construct an infinite rooted tree graph that explicitly enumer-
ates all possible itineraries. In this construction the nodes are unlabeled, and the
links labeled (or colored, or dotted in different ways), signifying different kinds of
transitions.

A tree graph 

contains no loops, i.e., it is not possible to return to any of its nodes by a walk 
along a sequence of distinct links. A rooted tree graph is a directed graph (its 
links are directed, j → i), obtained from an undirected tree graph by picking a 
distinguished node, called the root, and orienting all links in the tree so that they 
point away from the root.

In a rooted tree graph, all nodes have exactly one parent (in-degree = 1), 
except for the root, which is the single “parentless” node (in-degree = 0), with all 
links pointing away from it. An external node (leaf ) is a “childless” node, with 
in-degree ≥ 1, out-degree = 0. 

example 17.7

p. 316

We illustrate how trees are related to transition graphs by first working out 
the simplest example of pruned symbolic dynamics, the finite subshift obtained 
by prohibition of repeats of one of the symbols, let us say 00 . As we shall 
see, for finite grammars a rooted tree (and, by extension, but less obviously, the 
associated transition graph) is the precise statement of what is meant topologically 
by a “self-similar” fractal; supplemented by scaling information, such a rooted 
tree generates a self-similar fractal. 

example 17.8

p. 317
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17.4 Examples

Example 17.1 Full binary shift. Consider a full shift on two-state partition A =
{0, 1}, with no pruning restrictions. The transition matrix and the corresponding transi-
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tion graph are

T =

[
1 1
1 1

]
= 0 1 . (17.6)

Dotted links correspond to shifts originating in region 0, and the full ones to shifts origi-
nating in 1. The admissible itineraries are generated as walks on this transition graph.
(continued in example 17.7)

click to return: p. 310

Example 17.2 Complete N-ary dynamics: If all transition matrix entries equal
unity (one can reach any region from any other region in one step),

Tc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (17.7)

the symbolic dynamics is called complete, or a full shift. The corresponding transition
graph is obvious, but a bit tedious to draw for arbitrary N.

click to return: p. 310

Example 17.4 Pruning rules for a 3-disk alphabet: As the disks are convex, there
can be no two consecutive reflections off the same disk, hence the covering symbolic
dynamics consists of all sequences which include no symbol repetitions 11, 22, 33.
This is a finite set of finite length pruning rules, hence, the dynamics is a subshift of
finite type (see (14.16) for definition), with the transition matrix / graph given by

exercise 18.1

T =

⎡⎢⎢⎢⎢⎢⎢⎣0 1 1
1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ = 3 1

2

. (17.9)

click to return: p. 310
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Figure 17.5: The self-similarity of the complete bi-
nary symbolic dynamics represented by a rooted bi-
nary tree: trees originating in nodes B, C, · · · (actually
- any node) are the same as the tree originating in the
root node A. Level m = 4 partition is labeled by 16 bi-
nary strings, coded by dotted (0) and full (1) links read
down the tree, starting from A. See also figure 14.12.
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Example 17.5 ‘Golden mean’ pruning. Consider a subshift on two-state partition
A = {0, 1}, with the simplest grammar G possible, a single pruned block b = 11
(consecutive repeat of symbol 1 is inadmissible): the state M0 maps both onto M0 and
M1, but the state M1 maps only onto M0. The transition matrix and the corresponding
transition graph are

T =

[
1 1
1 0

]
= 0 1 . (17.10)

Admissible itineraries correspond to walks on this finite transition graph. (continued in
example 17.8)

click to return: p. 310

Example 17.6 Finite memory transition graphs. For the binary labeled repeller with
complete binary symbolic dynamics, we might chose to partition the state space into
four regions {M00,M01,M10,M11}, a 1-step refinement of the initial partition {M0,M1}.
Such partitions are drawn in figure 15.3, as well as figure 1.9. Topologically f acts as a
left shift (15.7), and its action on the rectangle [.01] is to move the decimal point to the
right, to [0.1], forget the past, [.1], and land in either of the two rectangles {[.10], [.11]}.
Filling in the matrix elements for the other three initial states we obtain the 1-step mem-
ory transition matrix/graph acting on the 4-regions partition

exercise 14.7

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11
0 T11,01 0 T11,11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
01

10

1100 . (17.11)

(continued in example 18.7)
click to return: p. 310

Example 17.7 Complete binary topological dynamics. Mark a dot ‘·’ on a piece of
paper. That will be the root of our tree. Draw two short directed lines out of the dot, end
each with a dot. The full line will signify that the first symbol in an itinerary is ‘1,’ and the
dotted line will signifying ‘0.’ Repeat the procedure for each of the two new dots, and
then for the four dots, and so on. The result is the binary tree of figure 17.5. Starting
at the top node, the tree enumerates exhaustively all distinct finite itineraries of lengths
n = 1, 2, 3, · · ·

{0, 1} {00, 01, 10, 11}
{000, 001, 010, 011, 100, 101, 111, 110} · · · .

The n = 4 nodes in figure 17.5 correspond to the 16 distinct binary strings of length
4, and so on. By habit we have drawn the tree as the alternating binary tree of fig-
ure 14.12, but that has no significance as far as enumeration of itineraries is concerned
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Figure 17.6: The self-similarity of the 00 pruned bi-
nary tree: trees originating from nodes C and E are the
same as the entire tree. 0110

0111

0101

1101

1111

1110

1010

1011

A

E

B C

- a binary tree with labels in the natural order, as increasing binary ‘decimals’ would
serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of paper. On
the other hand, we are not doing much - at each node we are turning either left or
right. Hence all nodes are equivalent. In other words, the tree is self-similar; the trees
originating in nodes B and C are themselves copies of the entire tree. The result of
identifying B = A, C = A is a single node, 2-link transition graph with adjacency matrix
(17.2)

A =
[
2
]
= A=B=CA=B=C . (17.12)

An itinerary generated by the binary tree figure 17.5, no matter how long, corresponds
to a walk on this graph. This is the most compact encoding of the complete binary
symbolic dynamics. Any number of more complicated transition graphs such as the
2-node (17.6) and the 4-node (17.11) graphs generate all itineraries as well, and might
sometimes be preferable.

exercise 18.6
exercise 18.5
click to return: p. 311

Example 17.8 ‘Golden mean’ pruning. (a link-to-link version of example 17.5) Now
the admissible itineraries are enumerated by the pruned binary tree of figure 17.6.
Identification of nodes A = C = E leads to the finite 2-node, 3-links transition graph

T =

[
0 1
1 1

]
= A=C=EA=C=EB . (17.13)

As 0 is always followed by 1, the walks on this graph generate only the admissible
itineraries. This is the same graph as the 2-node graph (17.10), with full and dotted
lines interchanged. (continued in example 18.4)

click to return: p. 311
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Exercises

17.1. Time reversibility. Hamiltonian flows
are time reversible. Does that mean that their transi-
tion graphs are symmetric in all node → node links,
their transition matrices are adjacency matrices, sym-
metric and diagonalizable, and that they have only real
eigenvalues?

17.2. Alphabet {0,1}, prune 1000 , 00100 , 01100 .
This example is motivated by the pruning front descrip-
tion of the symbolic dynamics for the Hénon-type map-
sremark 15.3.

step 1. 1000 prunes all cycles with a 000 subse-
quence with the exception of the fixed point 0; hence we
factor out (1 − t0) explicitly, and prune 000 from the
rest. This means that x0 is an isolated fixed point - no
cycle stays in its vicinity for more than 2 iterations. In

the notation of sect. 17.3.1, the alphabet is {1, 2, 3; 0},
and the remaining pruning rules have to be rewritten in
terms of symbols 2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 .
This means that the 3-cycle 3 = 100 is pruned and no
long cycles stay close enough to it for a single 100
repeat. Prohibition of 33 is implemented by drop-
ping the symbol “3” and extending the alphabet by the
allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 ,
13 13 , where 13 = 13, 23 = 23 are now used as single

letters. Pruning of the repetitions 13 13 (the 4-cycle
13 = 1100 is pruned) yields the

result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary
dynamics. The other remaining possible blocks 213 ,
2313 are forbidden by the rules of step 3.
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