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Chapter 31

Universality in transitions to
chaos

When you come to a fork in the road, take it!
—Yogi Berra

The developments that we shall describe next are one of those pleasing de-
monstrations of the unity of physics. The key discovery was made by a
physicist not trained to work on problems of turbulence. In the fall of 1975

Mitchell J. Feigenbaum, an elementary particle theorist, discovered a universal
transition to chaos in 1-dimensional unimodal map dynamics. At the time the
physical implications of the discovery were nil. During the next few years, howe-
ver, numerical and mathematical studies established this universality in a number
of realistic models in various physical settings, and in 1980 the universality theory
passed its first experimental test.

The discovery was that large classes of nonlinear systems exhibit transitions
to chaos which are universal and quantitatively measurable. This advance was
akin to (and inspired by) earlier advances in the theory of phase transitions; for
the first time one could, predict and measure ‘critical exponents’ for turbulence.
But the breakthrough consisted not so much in discovering a new set of universal
numbers, as in developing a new way to solve strongly nonlinear physical pro-
blems. Traditionally, we use regular motions (harmonic oscillators, plane waves,
free particles, etc.) as zeroth-order approximations to physical systems, and ac-
count for weak nonlinearities perturbational. We think of a dynamical system as a
smooth system whose evolution we can follow by integrating a set of differential
equations. The universality theory tells us that the zeroth-order approximations
to strongly nonlinear systems should be quite different. They show an amazingly
rich structure which is not at all apparent in their formulation in terms of differen-
tial equations; instead, they exhibit self-similar structures which can be encoded
by universality equations of a type which we will describe here. To put it more
provocatively: junk your old equations and look for guidance in clouds’ repeating
patterns.
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Figure 31.1:

(a) (b)

Figure 31.2

In this chapter we reverse the chronology, describing first a turbulence experi-
ment, then a numerical experiment, and finally explain the observations using the
universality theory. We will try to be intuitive and concentrate on a few key ideas.
Even though we illustrate it by onset of turbulence, the universality theory is by
no means restricted to the problems of fluid dynamics.

31.1 Onset of turbulence

We start by describing schematically the 1980 experiment of Libchaber and Mau-
rer. In the experiment a liquid is contained in a small box heated from the bottom.
The salient points are:

1. There is a controllable parameter, the Rayleigh number, which is propor-
tional to the temperature difference between the bottom and the top of the
cell.

2. The system is dissipative. Whenever the Rayleigh number is increased, one
waits for the transients to die out.

3. The container, figure 31.1 (a), has a small “aspect ratio”; its width is a small
integer multiple of its height, approximately.

For small temperature gradients there is a heat flow across the cell, but the
liquid is static. At a critical temperature a convective flow sets in. The hot liquid
rises in the middle, the cool liquid flows down at the sides, and two convective
rolls appear. So far everything is as expected from standard bifurcation scenarios.
As the temperature difference is increased further, the rolls become unstable in a
very specific way - a wave starts running along the roll, figure31.1 (b).

As warm liquid is rising on one side of the roll, cool liquid is descending down
the other side, the position and the sideways velocity of the ridge can be measured
with a thermometer, figure 31.2. One observes a sinusoid, figure 31.3. The peri-
odicity of this instability suggests two other ways of displaying the measurement,
figure 31.4.
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Figure 31.3:

Figure 31.4:

Now the temperature difference is increased further. After the stabilization of
the state space trajectory, a new wave is observed superimposed on the original
sinusoidal instability. The three ways of looking at it (real time, state space, fre-
quency spectrum) are sketched in figure31.5. A coarse measurement would make
us believe that T0 is the periodicity. However, a closer look reveals that the state
space trajectory misses the starting point at T0, and closes on itself only after 2T0.
If we look at the frequency spectrum, a new wave band has appeared at half the
original frequency. Its amplitude is small, because the state space trajectory is still
approximately a circle with periodicity T0.

As one increases the temperature very slightly, a fascinating thing happens:
the state space trajectory undergoes a very fine splitting, see figure31.6. We see
that there are three scales involved here. Looking casually, we see a circle with
period T0; looking a little closer, we see a pretzel of period 2T0; and looking
very closely, we see that the trajectory closes on itself only after 4T0. The same
information can be read off the frequency spectrum; the dominant frequency is f0
(the circle), then f0/2 (the pretzel), and finally, much weaker f0/4 and 3 f0/4.

The experiment now becomes very difficult. A minute increase in the tempe-
rature gradient causes the state space trajectory to split on an even finer scale, with
the periodicity 23T0. If the noise were not killing us, we would expect these split-
tings to continue, yielding a trajectory with finer and finer detail, and a frequency
spectrum of figure 31.7, with families of ever weaker frequency components. For
a critical value of the Rayleigh number, the periodicity of the system is 2∞T0, and
the convective rolls have become turbulent. This weak turbulence is today usually
referred to as the ‘onset of chaos’. Globally, the rolls persist but are wiggling ir-
regularly. The ripples which are running along them show no periodicity, and the
spectrum of an idealized, noise-free experiment contains infinitely many subhar-
monics, figure 31.8. If one increases the temperature gradient beyond this critical
value, there are further surprises (see, for example, figure 31.16) which we will
not discuss here.

We now turn to a numerical simulation of a simple nonlinear oscillator in order
to start understanding why the state space trajectory splits in this peculiar fashion.
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Figure 31.5:

Figure 31.6:

31.2 Onset of chaos in a numerical experiment

In the experiment that we have just described, limited experimental resolution ma-
kes it impossible to observe more than a few bifurcations. Much longer sequences
can be measured in numerical experiments. A typical example is the nonlinear
oscillator

exercise 31.2

ẍ + γ ẋ − x + 4x3 = A cos(ωt) . (31.1)

The oscillator is driven by an external force of frequency ω, with amplitude A
period T0 = 2π/ω. The dissipation is controlled by the friction coefficient γ.
(See (2.21) and example 8.1.) Given the initial displacement and velocity one
can easily follow numerically the state state space trajectory of the system. Due
to the dissipation it does not matter where one starts; for a wide range of initial
points the state space trajectory converges to an attracting limit cycle (trajectory
loops onto itself) which for some γ = γ0 looks something like figure 31.9. If it
were not for the external driving force, the oscillator would have simply come to a
stop. As it is, executing a motion forced on it externally, independent of the initial
displacement and velocity. Starting at the point marked 1, the pendulum returns
to it after the unit period T0.

However, as one decreases, the same phenomenon is observed as in the tur-
bulence experiment; the limit cycle undergoes a series of period-doublings, fi-
gure 31.10. The trajectory keeps on nearly missing the starting point, until it hits
after exactly 2nT0. The state space trajectory is getting increasingly hard to draw;
however, the sequence of points 1, 2, . . ., 2n, which corresponds to the state of
the oscillator at times T0, 2T0, . . ., 2nT0, sits in a small region of the state space,
so in figure 31.11 we enlarge it for a closer look. Globally the trajectories of the
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Figure 31.7:

Figure 31.8:

turbulence experiment and of the non-linear oscillator numerical experiment look
very different. However, the above sequence of near misses is local, and looks
roughly the same for both systems. This sequence of points lies approximately on
a straight line, figure 31.12. Let us concentrate on this line, reducing the dimen-
sionality of the state space by a Poincaré map. The Poincaré map contains all the
information we need; from it we can read off when an instability occurs, and how
large it is. One varies continuously the non-linearity parameter (friction, Rayleigh
number, etc.) and plots the location of the intersection points; in the present case,
the Poincaré surface is - for all practical purposes - a smooth 1-dimensional curve,
and the result is a bifurcation tree of figure 31.13. We already have some quali-
tative understanding of this plot. The state space trajectories we have drawn are
localized (the energy of the oscillator is bounded) so the tree has a finite span. Bi-
furcations occur simultaneously because we are cutting a single trajectory; when
it splits, it does so everywhere along its length. Finer and finer scales characterize
both the branch separations and the branch lengths.

Feigenbaum’s discovery consists of the following quantitative observations:

1. The parameter convergence is universal (i.e., independent of the particular
physical system), Δi/Δi+1 → 4.6692 . . . for i large, see figure 31.14.

2. The relative scale of successive branch splittings is universal: εi/εi+1 →
2.5029 . . . for i large, see figure 31.15.

The beauty of this discovery is that if turbulence (chaos) is arrived at through an
infinite sequence of bifurcations, we have two quantitative predictions:

1. The convergence of the critical Rayleigh numbers corresponding to the cy-
cles of length 2, 4, 8, 16, . . . is controlled by the universal convergence
parameter δ = 4.6692016 . . . .
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Figure 31.9:

Figure 31.10:

2. The splitting of the state space trajectory is controlled by the universal sca-
ling parameter α = 2.50290787 . . . . As we have indicated in our discussion
of the turbulence experiment, the relative heights of successive subharmo-
nics measure this splitting and hence α.

While this universality was derived through study of simple, few-dimensional
systems (pendulum, oscillations along a convective roll), it also applies to high- or
even infinite-dimensional systems, such as. discretizations of the Navier-Stokes
equations, and in the literature there are innumerable other examples of period-
doublings in many-dimensional systems. A wonderful thing about this universa-
lity is that it does not matter much how close our equations are to the ones chosen
by nature; as long as the model is in the same universality class (in practice this
means that it can be modeled by a mapping of form (31.2)) as the real system,
both will undergo a period-doubling sequence. That means that we can get the
right physics out of very simple models, and this is precisely what we will do
next.

Example 31.1 Period doubling tree in a flame flutter. For ν > 1, u(x, t) = 0 is the
globally attractive stable equilibrium; starting with ν = 1 the solutions go through a rich
sequence of bifurcations.

Figure 31.16 is a representative plot of the period-doubling tree for the Poincaré
map P. To obtain this figure, we took a random initial point, iterated it for a some time
to let it settle on the attractor and then plotted the a6 coordinate of the next 1000 inter-
sections with the Poincaré section. Repeating this for different values of the damping
parameter ν, one can obtain a picture of the attractor as a function of ν; the dynamics
exhibits a rich variety of behaviors, such as strange attractors, stable limit cycles, and
so on.

The reason why multidimensional dissipative systems become effectively 1-
dimensional is that: for dissipative systems state space volumes shrink. They
shrink at different rates in different directions, as in figure31.17. The direction of
the slowest convergence defines a 1-dimensional line which will contain the attrac-
tor (the region of the state space to which the trajectory is confined at asymptotic
times)
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Figure 31.11:

Figure 31.12:

What we have presented so far are a few experimental facts; we now have to
convince you that they are universal.

31.3 What does all this have to do with fishing?

Looking at the state space trajectories shown earlier, we observe that the trajectory
bounces within a restricted region of the state space. How does this happen? One
way to describe this bouncing is to plot the (n+1)th intersection of the trajectory
with the Poincaré surface as a function of the preceding intersection. Referring
to figure 31.12 we find the map of figure 31.18. This is a Poincaré return map
for the limit cycle. If we start at various points in the state space (keeping the
non-linearity parameter fixed) and mark all passes as the trajectory converges to
the limit cycle, we trace an approximately continuous curve f (x) of figure31.19
which gives the location of the trajectory at time t+T0 as a function of its location
at time t:

xn+1 = f (xn) . (31.2)

The trajectory bounces within a trough in the state space, and f (x) gives a local
description of the way the trajectories converge to the limit cycle. In principle we
know f (x), as we can measure it, or compute it from the equations of motion. The
form of f (x) depends on the choice of Poincaré map, and an analytic expression
for f (x) is in general not available, but we know what f (x) should look like; it has
to fall on both sides (to confine the trajectory), so it has a maximum. Around the
maximum it looks like a parabola

f (x) = ao + a2(x − xc)2 + . . . (31.3)

like any sensible polynomial approximation to a function with a hump.

This brings us to the problem of a rational approach to fishery. By means
of a Poincaré map we have reduced a continuous trajectory in state space to 1-
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Figure 31.13:

Figure 31.14:

dimensional iteration. This 1-dimensional iteration is studied in population bio-
logy, where f (x) is interpreted as a population curve (the number of fish xn+1 in
the given year as a function of the number of fish xn the preceding year), and the
bifurcation tree figure 31.13 has been studied in considerable detail.

The first thing we need to understand is the way in which a trajectory con-
verges to a limit cycle. A numerical experiment will give us something like fi-
gure 31.21. In the Poincaré map the limit trajectory maps onto itself, xq = f (xq) .
Hence a limit trajectory corresponds to a fixed point of f (x). Take a programmable
calculator and try to determine xq. Type in a simple approximation to f (x), such
as

f (x) = λ − x2 . (31.4)

Here λ is the non-linear parameter. Enter your guess x0 and press the button. The
number x1 appears on the display. Is it a fixed point? Press the button again, and
again, until xn+1 = xn to desired accuracy. Diagrammatically, this is illustrated
by the web traced out be the trajectory in figure 31.22. Note the tremendous
simplification gained by the use of the Poincaré map. Instead of computing the
entire state space trajectory by a numerical integration of the equations of motion,
we are merely pressing a button on the calculator.

This little calculation confirms one’s intuition about fishery. Given a fishpond,
and sufficient time, one expects the number of fish to stabilize. However, no such
luck - a rational fishery manager soon discovers that anything can happen from
year to year. The reason is that the fixed point xq need not be attractive, and our
calculator computation need not converge.
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Figure 31.15:

Figure 31.16: A period-doubling tree observed in a
small size Kuramoto-Sivashinsky system, generated
under adiabatic change of the damping parameter (sy-
stem size). The choice of projection down to the coor-
dinate a6 is arbitrary; projected down to any coordi-
nate, the tree is qualitatively the same. The two upper
arrows indicate typical values: for ν = 0.029910 dy-
namics appears chaotic, and ν = 0.029924 there is a
‘golden-mean’ repelling set coexisting with attractive
period-3 window. The lower arrow indicates the value
at which upper invariant set with this merges with its
u(x) → −u(−x) symmetry partner. N = 16 Fourier
modes truncation of (30.13). Truncation to N = 17
modes yields a similar figure, with values for specific
bifurcation points shifted by ∼ 10−5 with respect to the
N = 16 values. (from ref. [79])

31.4 A universal equation

Why is the naive fishery manager wrong in concluding that the number of fish
will eventually stabilize? He is right when he says that xq = f (xq) corresponds
to the same number of fish every year. However, this is not necessarily a stable
situation. Reconsider how we got to the fixed point in figure 31.22. Starting
with a sufficiently good guess, the iterates converge to the fixed point. Now start
increasing gently the non-linearity parameter (Rayleigh number, the nutritional
value of the pond, etc.). f (x) will slowly change shape, getting steeper and steeper
at the fixed point, until the fixed point becomes unstable and gives birth to a cycle
of two points. This is precisely the first bifurcation observed in our experiments.

Example 31.2 Fixed point stability.

The fixed point condition for map (31.4) x2 + x − λ = 0 yields 2 fixed points.

xpm =
−1 ±

√
1 + 4λ

what?

The fixed point x+ loses stability at λ = −1. Inserted into λ = f
′
(x) = −2x, this yields

λ = 3/4 , x+ = 1/2

as the value at which fixed point x+ loses stability.

This is the only gentle way in which our trajectory can become unstable (cy-
cles of other lengths can be created, but that requires delicate fiddling with para-
meters; such bifurcations are not generic). Now we return to the same point after
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Figure 31.17:

Figure 31.18:

every second iteration
exercise 31.1

xi = f ( f (xi)) , i = 1, 2 .

so the periodic points of f (x) are the fixed points of f ( f (x)).

To study their stability, we plot f ( f (x)) alongside f (x) in figure31.24. What
happens as we continue to increase the “Rayleigh number”? f (x) becomes steeper
at its fixed point, and so does f ( f (x)). Eventually the magnitude of the slope at the
fixed points of f ( f (x)) exceeds one, and they bifurcate. Now the cycle is of length
four, and we can study the stability of the fixed points of the fourth iterate. They
too will bifurcate, and so forth. This is why the state space trajectories keep on
splitting 2 → 4 → 8 → 16 → 32 · · · in our experiments. The argument does not
depend on the precise form of f (x), and therefore the phenomenon of successive
period-doublings is universal.

More amazingly, this universality is not only qualitative. In our analysis of
the stability of fixed points we kept on magnifying the neighborhood of the fixed
point, figure 31.25. The neighborhoods of successive fixed points look very much
the same after iteration and rescaling. After we have magnified the neighborhoods
of fixed points many times, practically all information about the global shape of
the starting function f (x) is lost, and we are left with a universal function g(x).
Denote by T the operation indicated in figure 31.25 iterate twice and rescale by
(without changing the non-linearity parameter),

T f (x) = α f ( f (x/α)), (31.5)

g(x) is self-replicating under rescaling and iteration, figure31.26. More precisely,
this can be stated as the universal equation

g(x) = αg(g(−x/α)), (31.6)

which determines both the universal function g(x) and α = −1/g(1) = 2.50290787 . . .,
with normalization convention g(0) = 1.

Example 31.3 An approximate period doubling renormalization.

As the simplest examples of period-doubling cascades. Consider the map

xn+1 = fλ(xn) = λ − x2
n , λ, xεR . (31.7)
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Figure 31.19:

Figure 31.20: Correspondence between (a) the Man-
delbrot set, shown in plane (Reλ, Imλ) for the map
zk+1 = λ − z2

k , and (b) the period-doubling bifurcation
tree, plane (λ, x), x, λ ∈ R. (from refs. [?, 31])

The two fixed points of f , x± =
1±

√
1+4λ
2 , are the roots of x∗ = λ − x2

∗. At λ = 3/4

the Floquet multiplier Λ = f ′λ(x∗) of the fixed point x∗ =
1+

√
1+4λ
2 is marginal, Λ =

−2x∗ = −1. For λ > 3/4, the fixed point loses its stability and undergoes a period-
doubling bifurcation. Values λ for subsequent bifurcations can be found by means of
the following approximate renormalization method. Apply the map (31.7) two times:

xn+2 = λ − λ2 + 2λx2
n − x4

n , (31.8)

and drop the quartic term x4
n. By the scale transformation

xn → xn/α0, α0 = −2λ , (31.9)

this can be rewritten in the original form xn+2 = λ1 − x2
n, which differs from (31.7) only

by renormalization of λ

λ1 = ϕ(λ) = −2λ(λ − λ2) . (31.10)

The map parameterized by λ, approximates two applications of the original map. Re-
peating the renormalization transformation (31.10) with scale factors αm = −2λm, one
obtains a sequence of the form

xn+2m = λm − x2
n , λm = ϕ(λm−1) . (31.11)

Fixed points of these maps correspond to the 2m-cycles of the original map. All
these cycles, as well as the fixed point of the map (31.7), become unstable at λm =

Λ1 = 3/4. Solving the chain of equations

Λ1 = ϕ(Λ2)Λ2 = ϕ(Λ3) ...Λm−1 = ϕ(Λm) , (31.12)

we get the corresponding sequence of bifurcation values of parameter λ (with λ ≈
Λm the 2m-cycle of (31.7)). From iteration diagram of figure 31.27 it is evident, that
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Figure 31.21:

Figure 31.22:
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this sequence converges with m → ∞ to a definite limit Λ∞, the fixed point of the
renormalization transformation. It satisfies the equation Λ∞ = ϕ(Λ∞), thus Λ∞ = (1 +√

3)/2 ≈ 1.37. The scaling factors also converge to the limit: αm → α, where α =
−2Λ∞ ≈ 2.74. The multipliers (Floquet multipliers of the 2m-cycles) converge to μm →
μ =

√
1 − 4Λ∞ ≈ −1.54.

From transformation (31.11) on can also describe the convergence of the bifur-
cation sequence:

Λm = ϕ(Λ∞) + ϕ′(Λ∞)(Λm+1 − Λ∞) =
= Λ∞ + δ(Λm+1 − Λ∞) , (31.13)

where the Feigenbaum δ = ϕ′(Λ∞) = 4 +
√

3 ≈ 5.73 characterizes parameter rescaling
for each successive period doubling.

The approximate values of Feigenbaum’s universal space and parameter sca-
ling constants are reasonably close to the exact values,

exact approximate
α = -2.502· · · -2.74
δ = 4.669· · · 5.73 ,

considering the crudeness of the approximation: the universal fixed-point function g(x)
is here truncated to a quadratic polynomial.

(O.B. Isaeva and S.P. Kuznetsov)

If you arrive at g(x) the way we have, by successive bifurcations and rescaling,
you can hardly doubt its existence. However, if you start with (31.6) as an equation
to solve, it is not obvious what its solutions should look like. The simplest thing to
do is to approximate g(x) by a finite polynomial and solve the universal equation
numerically, by Newton method. This way you can compute α and δ to much
higher accuracy than you can ever hope to measure them experimentally.

There is much pretty mathematics in universality theory. Despite its simpli-
city, nobody seems to have written down the universal equation before 1976, so
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Figure 31.23:

Figure 31.24:

the subject is still young. We do not have a series expansion for α, or an analytic
expression for g(x); the numbers that we have are obtained by boring numerical
methods. So far, all we know is that g(x) exists. What has been proved is that the
Newton iteration converges, so we are no wiser for the result.

To see why the universal function must be a rather crazy function, consider
high iterates of f (x) for parameter values corresponding to 2-, 4- and 8-cycles,
figure 31.28. If you start anywhere in the unit interval and iterate a very large
number of times, you end up in one of the periodic points. For the 2-cycle there
are two possible limit values, so f ( f (. . . f (x))) resembles a castle battlement. Note
the infinitely many intervals accumulating at the unstable x = 0 fixed point. In a
bifurcation of the 2-cycle into the 4-cycle each of these intervals gets replaced
by a smaller battlement. After infinitely many bifurcations this becomes a fractal
(i.e., looks the same under any enlargement), with battlements within battlements
on every scale. Our universal function g(x) does not look like that close to the
origin, because we have enlarged that region by the factor α = 2.5029 . . . after
each period-doubling, but all the wiggles are still there; you can see them in Fei-
genbaum’s (1978) plot of g(x). For example, (31.6) implies that if xq is a fixed
point of g(x), so is α(xq). Hence g(x) must cross the lines y = x and y = −x
infinitely many times. It is clear that while around the origin g(x) is roughly a
parabola and well approximated by a finite polynomial, something more clever is
needed to describe the infinity of g(x)’s wiggles further along the real axis and in
the complex plane.

All this is fun, but not essential for understanding the physics of the onset of
chaos. The main thing is that we now understand where the universality comes
from. We start with a complicated many-dimensional dynamical system. A Poin-
caré map reduces the problem from a study of differential equations to a study of
discrete iterations, and dissipation reduces this further to a study of 1-dimensional
iterations (now we finally understand why the state space trajectory in the turbu-
lence experiment undergoes a series of bifurcations as we turn the heat up!). The
successive bifurcations take place in smaller and smaller regions of the state space.
After n bifurcations the trajectory splittings are of order α−n = (0.399 . . .)−n and
practically all memory of the global structure of the original dynamical system
is lost (see figure 31.29). The asymptotic self-similarities can be encoded by
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Figure 31.25:

Figure 31.26:

universal equations. The physically interesting scaling numbers can be quickly
estimated by simple truncations of the universal equations, such as example31.3.
The full universal equations are designed for accurate determinations of universal
numbers; as they have built-in rescaling, the round-off errors do not accumulate,
and the only limit on the precision of the calculation is the machine precision of
the computer.

Anything that can be extracted from the asymptotic period-doubling regime
is universal; the trick is to identify those universal features that have a chance of
being experimentally measurable. We will discuss several such extensions of the
universality theory in the remainder of this introduction.

31.5 The unstable manifold

Feigenbaum delta

δ = lim
n→∞

rn−1 − rn

rn − rn+1

= 4.6692016 . . . (31.14)

is the universal number of the most immediate experimental import - it tells us
that in order to reach the next bifurcation we should increase the Rayleigh number
(or friction, or whatever the controllable parameter is in the given experiment) by
about one fifth of the preceding increment. Which particular parameter is being
varied is largely a question of experimental expedience; if r is replaced by another
parameter R = R(r), then the Taylor expansion

R(r) = R(r∞) + (r − r∞)R′(r∞) + (r − r∞)2R′′(r∞)/2 + · · ·

yields the same asymptotic delta
exercise 31.3

δ � R(rn−1) − R(rn)
R(rn) − R(rn+1)

=
rn−1 − rn

rn − rn+1
+ O(δn) (31.15)
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Figure 31.27: Iteration of the approximate renor-
malization transformation (31.10). Dashed line
designates the backward iterations starting at the
first period doubling bifurcation point, λ1 = 3/4,
and mapping to the further bifurcation points λm.

Figure 31.28:

providing, of course, that R′(r∞) is non-vanishing (the chance that a physical sy-
stem just happens to be parameterized in such a way that R′(r∞) = 0 is nil).

In deriving the universal equation (31.6) we were intentionally sloppy, be-
cause we wanted to introduce the notion of encoding self-similarity by universal
equations without getting entangled in too much detail. We obtained a universal
equation which describes the self-similarity in the x-space, under iteration and
rescaling by α. However, the bifurcation tree figure 31.13 is self-similar both in
the x-space and the parameter space: each branch looks like the entire bifurcation
tree. We will exploit this fact to construct a universal equation which determines
both α and δ.

Let T ∗ denote the operation of iterating twice, rescaling x by α, shifting the
non-linearity parameter to the corresponding value at the next bifurcation (more
precisely, the value of the nonlinearity parameter with the same stability, i.e., the
same slope at the periodic points), and rescaling it by δ:

T ∗ fRn+Δn p(x) = αn f (2)
Rn+Δn(1+p/δn)(x/αn) (31.16)

Here Rn is a value of the non-linearity parameter for which the limit cycle is of
length 2n, Δn is the distance to Rn+1, δn = Δn/Δn+1, p provides a continuous
parametrization, and we apologize that there are so many subscripts. T∗ operation
encodes the self-similarity of the bifurcation tree figure31.13, see figure 31.30.

For example, if we take the fish population curve f (x), Eq. (31.4), with R value
corresponding to a cycle of length 2n, and act with T∗, the result will be a similar
cycle of length 2n, but on a scale α times smaller. If we apply T∗ infinitely many
times, the result will be a universal function with a cycle of length 2n:

gp(x) = (T∗)∞ fR+pΔ(x) (31.17)
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Figure 31.29:

Figure 31.30:

If you can visualize a space of all functions with quadratic maximum, you will
find figure 31.31 helpful. Each transverse sheet is a manifold consisting of functi-
ons with 2n-cycle of given stability. T∗ moves us across this transverse manifold
toward gp.

gp(x) is invariant under the self-similarity operation T∗, so it satisfies a uni-
versal equation

gp(x) = αg1+p/δ(g1+p/δ(x/α)) (31.18)

p parameterizes a 1-dimensional continuum family of universal functions. Our
first universal equation (31.6) is the fixed point of the above equation:

p∗ = 1 + p∗/δ (31.19)

and corresponds to the asymptotic 2∞-cycle.

The family of universal functions parameterized by p is called the unstable
manifold because T -operation (31.5) drives p away from the fixed point value
g(x) = gp∗(x).

You have probably forgotten by now, but we started this section promising a
computation of δ. This we do by linearizing the equations (31.18) around the fixed
point p∗. Close to the fixed point gp(x) does not differ much from g(x), so one can
treat it as a small deviation from g(x):

gp(x) = g(x) + (p − p∗)h(x)
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Figure 31.31:

Substitute this into (31.18), keep the leading term in p − p∗, and use the universal
equation (31.6). This yields a universal equation for δ:

g′(g(x))h(x) + h(g(x)) = (δ/α)h(x) (31.20)

We already know g(x) and α, so this can be solved numerically by polynomial
approximations, yielding δ = 4.6692016 . . ., together with a part of the spectrum
of eigenvalues and eigenvectors h(x).

Actually, one can do better with less work; T∗-operation treats the coordi-
nate x and the parameter p on the same footing, which suggests that we should
approximate the entire unstable manifold by a double power series

gp(x) =
N∑

j=0

N∑
k=0

c jk x2 j pk (31.21)

The scale of x and p is arbitrary. We will fix it by the normalization conditions

g0(0) = 0 , (31.22)

g1(0) = 1
g1(1) = 0 , (31.23)

The first condition means that the origin of p corresponds to the superstable fixed
point. The second condition sets the scale of x and p by the superstable 2-cycle.
(Superstable cycles are the cycles which have the maximum of the map as one of
the periodic points.) Start with any simple approximation to gp(x) which satisfies
the above conditions (for example, g(x) = p− x2). Apply the T∗-operation (31.16)
to it. This involves polynomial expansions in which terms of order higher than M
and N in (31.21) are dropped. Now find by Newton method the value of δ which
satisfies normalization (31.23). This is the only numerical calculation you have to
do; the condition (31.23) automatically yields the value of α. The result is a new
approximation to gp. Keep applying T∗ until the coefficients in (31.21) repeat;
this has moved the approximate gp toward the unstable manifold along the trans-
verse sheets indicated in figure 31.31. Computationally this is straightforward,
the accuracy of the computation is limited only by computer precision, and at the
end you will have α, δ and a polynomial approximation to the unstable manifold
gp(x).
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As δ controls the convergence of the high iterates of the initial mapping toward
their universal limit g(x), it also controls the convergence of most other numbers
toward their universal limits, such as the scaling number αn = α+O(δ−n), or even
δ itself, δn = δ + O(δ−n). As 1/δ = 0.2141 . . ., the convergence is very rapid, and
already after a few bifurcations the universality theory is good to a few per cent.
This rapid convergence is both a blessing and a curse. It is a theorist’s blessing
because the asymptotic theory applies already after a few bifurcations; but it is
an experimentalist’s curse because a measurement of every successive bifurcation
requires a fivefold increase in the experimental accuracy of the determination of
the non-linearity parameter r.

Commentary

Remark 31.1 A brief history of period doubling universality. Mitchell J. Feigenbaum
discovered universality in one-dimensional iterative maps in August 1975. Following
Feigenbaum’s functional formulation of the problem, in March 1976 Cvitanović derived
collaboration with M.J. the equation (31.6) for the period doubling fixed point function
(not a big step, it is the limit of Feigenbaum functional recursion sequence), which has
since played a key role in the theory of transitions to turbulence. The first published
report on Feigenbaum’s discovery is dated August 1976 (Los Alamos Theoretical Division
Annual Report 1975-1976, pp. 98-102, read it here). By that time the work had became
widely known through many seminars Feigenbaum gave in US and Europe. His first
paper, submitted to Advances in Mathematics in Nov 1976 was rejected. The second
paper was submitted to SIAM Journal of Applied Mathematics in April 1977 and rejected
in October 1977. Finally, J. Lebowitz published both papers [ 1, 2] without further referee
pain (M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978) and 21, 6 (1979)).

A very informative review by May [3] describes what was known before Feigen-
baum’s contribution. The geometric parameter convergence was first noted by Myrberg
(1958), and independently of Feigenbaum, by Grossmann and Thomae [ 4] (without no-
ting the universality of δ). The theory of period-doubling universal equations and scaling
functions is developed in Kenway’s notes of Feigenbaum 1984 Edinburgh lectures [ 5]
(trifle hard to track down). The elegant unstable manifold formulation of universality gi-
ven in ChaosBook.org is due to Vul, Khanin, Sinai and Gol’dberg [?, 9, 4] in 1982. The
most thorough exposition available is the Collet and Eckmann [ 6] monograph. By 1978
Coullet and Tresser [7, 8] have proposed similar equations. Daido (1981a) has introduced
a different set of universal equations. Derrida, Gervois and Pomeau (1979) have extrac-
ted a great many metric universalities from the asymptotic regime. Grassberger (1981)
has computed the Hausdorff dimension of the asymptotic attractor. Lorenz (1980) and
Daido (1981b) have found a universal ratio relating bifurcations and reverse bifurcations.
If f (x) is not quadratic around the maximum, the universal numbers will be different -
see Villela Mendés (1981) and Hu and Mao (1982b) for their values. According to Ku-
ramoto and Koga (1982) such mappings can arise in chemical turbulence. Nonlinear
oscillator; quadratic potential with damping and harmonic driving force exhibit casca-
des of period-doubling bifurcations [10, 11]. Refs. [12, 13, 14] compute solutions of the
period-doubling fixed point equation using methods of Schöder and Abel, yielding what
are so far the most accurate δ and α. See also ref. [15].

Since then we have generalized the universal equations to period n-tuplings; con-
structed universal scaling functions for all winding numbers in circle maps, and establis-
hed universality of the Hausdorff dimension of the critical staircase. A nice discussion
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of circle maps and their physical applications is given in refs. [17, 4, 5]. The universality
theory for golden mean scalings is developed in refs. [ 12, 8, 10, 11]. The scaling functions
for circle maps are discussed in ref. [13].

The theory would have remained a curiosity, were it not for the beautiful experiment
by Libchaber and Maurer (1981), and many others that followed. Crucial insights came
from Collet and Eckmann (1980a) and Collet, Eckmann and Koch (1980) who explained
how the dynamics of dissipative system (such as a viscous fluid) can become becomes
1-dimensional. The experimental and theoretical developments up to 1990’s are summa-
rized in reprint collections by P. Cvitanović [5] and B.-L. Hao [26]. We also recommend
Hu (1982), Crutchfield, Farmer and Huberman (1982), Eckmann (1981) and Ott (1981).
The period-doubling route to turbulence that is by no means the only way to get there; see
Eckmann (1981) discussion of other routes to chaos.

By 1979 mathematicians also understood that the numerical methods used by Feigen-
baum and Cvitanović to solve the universal equations were in fact convergent. Mathema-
ticians did what they do; they attached various names to the equations, and they changed
letters around to make the equations unintelligible to physicists. The re-lettering did not
stick, but the renamings did. (This chapter is based on a Nordita lecture prepared toget-
her with Mogens Høgh Jensen (Cvitanović and Høgh Jensen 1982). Ulla Selmer prepared
the drawings, Oblivia Kaypro stood for the initial execution.)

Exercises

31.1. Period doubling in your pocket: Take a programma-
ble pocket calculator or Matlab or whatever makes you
feel good and program the function

f (x) = λ − x2 .

The game consists in staring at the display, and looking
for regularities in the sequences of iterates.

(a) (no thinking) Try to determine fixed point x ∗ =

f (x∗) by blind iteration. Chose some value of λ a
bit bigger than 0, and initial x between -1 and 1.
Enter the initial x0 and read off the next x1. Start
again, with x1 as input. The number x2 appears
on the display. Is it a fixed point? Press the button
again, and again, until xn = x∗ to desired accuracy.

(f) (no thinking) Increase λ in small steps, as long
as the trajectory does not blow up, let transients
die, and then plot few hundred consecutive x n.
Generate a figure to replace the hand drawn fi-
gure 31.14.

(c) (thinking) Determine the smallest positive λ for
which almost any initial x0 iterates to −∞.

(b) (no thinking) Try λ = 3/4. How’s the convergence
now?

(c) (thinking) Determine λ for which the fixed point
x∗ goes unstable.

(d) (no thinking) Try also λ: 1, 1.31070274134,
1.38154748443, 1.3979453597.

(e) (thinking) Compute the next number in this series.
Estimate Feigenbaum δ.

(g) (thinking) Determine numerically scaling factors
αm which overlay (approximately) neighborhood
of x = 0 for superstable f 2(m−1)(x) over the neig-
hborhood for αm f 2m

( f 2m
(x/αm)) for 4, 8, 16, · · ·

superstable cycles. Draw a figure to replace the
hand drawn figure 31.26.

(P. Cvitanović)

31.2. Period doubling in a 3-dimensional flow: This is
a more time consuming problem, but it gives you a feel
for how numerical experiments in nonlinear dynamics
are really done, and sets you up for doing real-life pro-
blems later on.
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Consider the nonlinear oscillator

d2

dt2
x + k

d
dt

x − x + 4x3 = A cos(ωt) . (31.24)

The oscillator is driven by an external force of fre-
quency ω, with amplitude A and the natural time unit
T0 = 2π/ω. The dissipation is controlled by the friction
coefficient k.

Given the initial displacement and velocity one can ea-
sily follow numerically (by the Runge-Kutta method, for
example) the state space trajectories of the system. Due
to the dissipation it does not matter where one starts in
the state space. For a strong friction or a weak forcing
a wide range of initial points converge to a fixed point
or a limit cycle (trajectory loops onto itself). However,
as one decreases the friction, bifurcations and chaos are
observed.

(a) Rewrite as a nonautonomous system of 2 first or-
der ODEs.

(b) Rewrite as an autonomous system of 3 first or-
der ODEs (add an equation whose solution is
cos(ωt)).

(c) Observe long-time trajectories for k = 0.154, ω =
1.2199778 and A in some range like A = 0.05 to
0.2. Anything interessting happening? [Helpful
tips: let the system run for sufficiently long time
that the transients have had time to die out. Whe-
never changing the parameter (in this case, para-
meter A), increase parameter in small steps (adia-
batically), and then restart the trajectory from the
last point of the preceeding simulation. This mi-
nimizes the transients.]

(d) Construct a stroboscopic Poincaré section by re-
cording values of (xn, ẋn) at times separated T0,
2T0, · · · , 2nTn, · · ·

(e) Play a bit with plotting various combinations of
xn, xn+1, ẋn, and ẋn+1. Often a Poincaré return
map - such as (xn, xn+1) - is more informative than
a Poincaré section, such as (xn, ẋn).

(f) Increase A in small steps, as long as the trajectory
does not blow up, let transients die, and then plot a
few hundred consecutive xn (or whatever variable
you like best). Plot a (A, xn) period-doubling tree
to replace the hand drawn figure 31.14.

(g) Observe long-time trajectories for (k, ω) =

(0.154, 1.2199778) and A = 0.1, 0.11, 0.114,
0.11437, . . . . Do you observe bifurcations?

There is nothing special about these parameter values;
we give them just to help you with finding your first bi-
furcation sequence in a realistic nonlinear flow.

(P. Cvitanović)

31.3. Renormalization in a 3-dimensional flow:

Consider the nonlinear oscillator (31.24).

(a) For (k, ω) = (0.154, 1.2199778) determine accu-
rately amplitude values A1, A2, · · · , An, · · · , for
which 2n-cycle bifurcates into 2n+1-cycle. [Tip:
use the Newton method on the Poincaré section.
You’ll need to also integrate the linearized stabi-
lity matrix.]

(b) Estimate Feigenbaum δ.

(g) Estimate Feigenbaum α.

(P. Cvitanović)
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