
Chapter 18

Counting

I’m gonna close my eyes
And count to ten
I’m gonna close my eyes
And when I open them again
Everything will make sense to me then

—Tina Dico, ‘Count To Ten’

We are now in a position to apply the periodic orbit theory to the first and
the easiest problem in theory of chaotic systems: cycle counting. This
is the simplest illustration of the raison d’etre of periodic orbit theory;

we derive a duality transformation that relates local information - in this case the
next admissible symbol in a symbol sequence - to global averages, in this case
the mean rate of growth of the number of cycles with increasing cycle period. In
chapter 17 we have transformed, by means of the transition matrices / graphs, the
topological dynamics of chapter 14 into a multiplicative operation. Here we show
that the nth power of a transition matrix counts all itineraries of length n. The
asymptotic growth rate of the number of admissible itineraries is therefore given
by the leading eigenvalue of the transition matrix; the leading eigenvalue is in turn
given by the leading zero of the characteristic determinant of the transition matrix,
which is - in this context - called the topological zeta function.

For flows with finite transition graphs this determinant is a finite topological
polynomial which can be read off the graph. However, (a) even something as
humble as the quadratic map generically requires an infinite partition (sect.18.5),
but (b) the finite partition approximants converge exponentially fast.

The method goes well beyond the problem at hand, and forms the core of the
entire treatise, making tangible the abstract notion of “spectral determinants” yet
to come.
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CHAPTER 18. COUNTING 321

18.1 How many ways to get there from here?

In the 3-disk system of example 14.2 the number of admissible trajectories dou-
bles with every iterate: there are Kn = 3 ·2n distinct itineraries of length n. If disks
are too close and a subset of trajectories is pruned, this is only an upper bound and
explicit formulas might be hard to discover, but we still might be able to establish
a lower exponential bound of the form Kn ≥ Cenĥ. Bounded exponentially by
3en ln 2 ≥ Kn ≥ Cenĥ, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by the topological entropy:

h = lim
n→∞

1
n

ln Kn . (18.1)

We shall now relate this quantity to the spectrum of the transition matrix, with
the growth rate of the number of topologically distinct trajectories given by the
leading eigenvalue of the transition matrix.

The transition matrix element Ti j ∈ {0, 1} in (17.1) indicates whether the tran-
sition from the starting partition j into partition i in one step is allowed or not, and
the (i, j) element of the transition matrix iterated n times

exercise 18.1

(T n)i j =
∑

k1 ,k2,...,kn−1

Tik1 Tk1k2 . . . Tkn−1 j (18.2)

receives a contribution 1 from every admissible sequence of transitions, so (Tn)i j

is the number of admissible n symbol itineraries starting with j and ending with i.

example 18.1

p. 336

The total number of admissible itineraries of n symbols is

Kn =
∑

i j

(T n)i j =
[
1, 1, . . . , 1

]
T n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (18.3)

A finite [N × N] matrix T has eigenvalues {λ0, λ1, · · ·  , λm−1} and (right) eigen-
vectors {ϕ0, ϕ 1, · · ·  , ϕ m−1} satisfying Tϕα = λαϕα. Expressing the initial vector in 
(18.3) in this basis,

T n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = T n
m−1∑
α=0

bαϕα =
m−1∑
α=0

bαλ
n
αϕα ,

count - 8mar2015 ChaosBook.org version15.8, Oct 18 2016



CHAPTER 18. COUNTING 322

and contracting with
[
1, 1, . . . , 1

]
, we obtain

Kn =

m−1∑
α=0

cαλ
n
α .

The constants cα depend on the choice of initial and final partitions: In this ex-
exercise 18.3

ample we are sandwiching Tn between the vector
[
1, 1, . . . , 1

]
and its transpose,

but any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvector ϕ0. In an experiment the vector

[
1, 1, . . . , 1

]
would be re-

placed by a description of the initial state, and the right vector would describe the
measurement time n later.

As n increases, the sum

is dominated by the leading eigenvalue of the transition matrix, λ0 > |Re λα|,
α = 1, 2, · · · ,m − 1, and the topological entropy (18.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1 +

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= ln λ0 + lim
n→∞

[
ln c0

n
+

1
n

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= ln λ0 . (18.4)

What have we learned? The transition matrix T is a one-step, short time operator, 
advancing the trajectory from one partition to the next admissible partition. Its 
eigenvalues describe the rate of growth of the total number of trajectories at the 
asymptotic times. Instead of painstakingly counting K1, K2, K3, . . .  and estimating 
(18.1) from a slope of a log-linear plot, we have the exact topological entropy if 
we can compute the leading eigenvalue of the transition matrix T. 

18.2 Topological trace formula

There are two standard ways of computing eigenvalues of a matrix - by evaluating
the trace tr Tn =

∑
λn
α, or by evaluating the determinant det (1 − zT ). We start by

evaluating the trace of transition matrices. The main lesson will be that the trace
receives contributions only from itineraries that return to the initial partition, i.e.,
periodic orbits.

Consider an M-step memory transition matrix, like the 1-step memory exam-
ple (17.11). The trace of the transition matrix counts the number of partitions that
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CHAPTER 18. COUNTING 323

Table 18.1: Prime cycles for the binary symbolic dynamics up to length 9. The numbers
of prime cycles are given in table 18.3.

np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

map into themselves. More generally, each closed walk through n concatenated 
entries of T contributes to tr Tn the product (18.2) of the matrix entries along the 
walk. Each step in such a walk shifts the symbolic string by one symbol; the trace 
ensures that the walk closes on a periodic string c. Define tc to be the local trace, 
the product of matrix elements along a cycle c, each term being multiplied by a 
book keeping variable z.

The quantity zntr T n is then the sum of tc for all cycles of period n. The tc
= (product of matrix elements along cycle c is manifestly cyclically invariant,
t100 = t010 = t001, so a prime cycle p of period np contributes np times, once for
each periodic point along its orbit. For the purposes of periodic orbit counting,
the local trace takes values

tp =

{
znp if p is an admissible cycle
0 otherwise, (18.5)

i.e., (setting z = 1) the local trace is tp = 1 if the cycle is admissible, and tp = 0
otherwise.

example 18.2

p. 337
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CHAPTER 18. COUNTING 324

Table 18.2: The total numbers Nn of periodic points of period n for binary symbolic dy-
namics. The numbers of contributing prime cycles illustrates the preponderance of long
prime cycles of period n over the repeats of shorter cycles of periods n p, where n = rnp.
Further enumerations of binary prime cycles are given in tables 18.1 and 18.3. (L. Ron-
doni)

n Nn # of prime cycles of period n p

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

Hence tr Tn = Nn counts the number of admissible periodic points of period
n. The nth order trace (18.28) picks up contributions from all repeats of prime
cycles, with each cycle contributing np periodic points, so Nn, the total number of
periodic points of period n is given by

znNn = zntr T n =
∑
np |n

npt
p:n/np
p =

∑
p

np

∞∑
r=1

δn,nprt
r
p . (18.6)

Here m|n means that m is a divisor of n. An example is the periodic orbit counting
in table 18.2.

In order to get rid of the awkward divisibility constraint n = npr in the above
sum, we introduce the generating function for numbers of periodic points

∞∑
n=1

znNn = tr
zT

1 − zT
. (18.7)

The right hand side is the geometric series sum of Nn = tr T n. Substituting (18.6)
into the left hand side, and replacing the right hand side by the eigenvalue sum
tr T n =

∑
λn
α, we obtain our first example of a trace formula, the topological trace

formula∑
α=0

zλα
1 − zλα

=
∑

p

nptp

1 − tp
. (18.8)

A trace formula relates the spectrum of eigenvalues of an operator - here the tran-
sition matrix - to the spectrum of periodic orbits of a dynamical system. It is a
statement of duality between the short-time, local information - in this case the
next admissible symbol in a symbol sequence - to long-time, global averages, in
this case the mean rate of growth of the number of cycles with increasing cycle
period.
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CHAPTER 18. COUNTING 325

18.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of an [m×m]
transition matrix

det (1 − zT ) =
m−1∏
α=0

(1 − zλα) . (18.9)

We could now proceed to diagonalize T on a computer, and get this over with. It
pays, however, to dissect det (1 − zT ) with some care; understanding this compu-
tation in detail will be the key to understanding the cycle expansion computations
of chapter 23 for arbitrary dynamical averages. For T a finite matrix, (18.9) is just
the characteristic polynomial for T . However, we shall be able to compute this ob-
ject even when the dimension of T and other such operators becomes infinite, and
for that reason we prefer to refer to (18.9) loosely as the “spectral determinant.”

There are various definitions of the determinant of a matrix; we will view the
determinant as a sum over all possible permutation cycles composed of the traces
tr T k, in the spirit of the determinant–trace relation (1.16):

exercise 4.1

det (1 − zT ) = exp (tr ln(1 − zT )) = exp

⎛⎜⎜⎜⎜⎜⎝−∑
n=1

zn

n
tr T n

⎞⎟⎟⎟⎟⎟⎠
= 1 − z tr T − z2

2

(
(tr T )2 − tr T 2

)
− . . . (18.10)

Formally, the right hand is a Taylor series in z about z = 0. If T is an [m×m] finite 
matrix, then the characteristic polynomial is at most of order m. In that case the 
coefficients of zn must vanish exactly for n > m.

We now proceed to relate the determinant in (18.10) to the corresponding
transition graph of chapter 17: toward this end, we start with the usual textbook
expression for a determinant as the sum of products of all permutations

det M =
∑
{π}

(−1)πM1,π1 M2,π2 · · · Mm,πm (18.11)

where M = 1 − zT is a [m×m] matrix, {π} denotes the set of permutations of m
symbols, πk is the permutation π applied to k, and (−1)π = ±1 is the parity of
permutation π. The right hand side of (18.11) yields a polynomial in T of order m
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in z: a contribution of order n in z picks up m − n unit factors along the diagonal,
the remaining matrix elements yielding

(−z)n(−1)πTs1πs1 · · · Tsnπsn (18.12)

where π is the permutation of the subset of n distinct symbols s1 · · · sn indexing T
matrix elements. As in (18.28), we refer to any combination tc = Ts1 sk Ts3 s2 · · · Ts2s1 ,
for a given itinerary c = s1s2 · · · sk, as the local trace associated with a closed loop
c on the transition graph. Each term of the form (18.12) may be factored in terms
of local traces tc1 tc2 · · · tck , i.e., loops on the transition graph. These loops are non-
intersecting, as each node may only be reached by one link, and they are indeed
loops, as if a node is reached by a link, it has to be the starting point of another
single link, as each sj must appear exactly once as a row and column index.

So the general structure is clear, a little more thinking is only required to get
the sign of a generic contribution. We consider only the case of loops of length
1 and 2, and leave to the reader the task of generalizing the result by induction.
Consider first a term in which only loops of unit length appear in (18.12), i.e.,
only the diagonal elements of T are picked up. We have k = m loops and an even
permutation π so the sign is given by (−1)k, where k is the number of loops. Now
take the case in which we have i single loops and j loops of length n = 2 j + i.
The parity of the permutation gives (−1)j and the first factor in (18.12) gives
(−1)n = (−1)2 j+i. So once again these terms combine to (−1)k, where k = i + j is
the number of loops. Let f be the maximal number of non-intersecting loops. We

exercise 18.4
may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions π of the corresponding transi-
tion graph into products of k non-intersecting loops, with each loop
trace tp carrying a minus sign:

det (1 − zT ) =
f∑

k=0

∑′

π

(−1)ktp1 · · · tpk (18.13)

Any self-intersecting loop is shadowed by a product of two loops that share the
intersection point. As both the long loop tab and its shadow tatb in the case at hand
carry the same weight zna+nb , the cancelation is exact, and the loop expansion
(18.13) is finite. In the case that the local traces count prime cycles (18.5), tp = 0
or zn , we refer to det (1 − zT ) as the topological polynomial.

We refer to the set of all non-self-intersecting loops {tp1 , tp2 , · · · tp f } as the fun-
damental cycles (for an explicit example, see the loop expansion of example18.6). 
If the graph has m nodes, no fundamental cycle is of period longer than m, as any 
longer cycle is of necessity self-intersecting.
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The above loop expansion of a determinant in terms of traces is most easily
grasped by working through a few examples. The complete binary dynamics tran-
sition graph of figure 17.5 is a little bit too simple, but let us start humbly and
consider it anyway.

example 18.3

p. 337

Similarly, for the complete symbolic dynamics of N symbols the transition graph
has one node and N links, yielding

det (1 − zT ) = 1 − Nz , (18.14)

which gives the topological entropy h = ln N.

example 18.4

p. 337

18.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the transition graph 
is infinite? If we are never sure that looking further into the future will reveal no 
further forbidden blocks? There is still a way to define the determinant, and this 
idea is central to the whole treatise: the determinant is then defined by  (18.10)

exercise 4.1

det (1 − zT ) = 1 −
∞∑

n=1

ĉnzn . (18.15)

For finite dimensional matrices the expansion is a finite polynomial, and (18.15)
is an identity; however, for infinite dimensional operators the cumulant expansion
coefficients ĉn define the determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary transi-
tion matrix. In order to obtain an expression for the spectral determinant (18.9) in
terms of cycles, substitute (18.6) into (18.15) and sum over the repeats of prime
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cycles using ln(1 − x) = −∑
r xr/r ,

det (1 − zT ) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

tr
p

r

⎞⎟⎟⎟⎟⎟⎟⎠ = exp

⎛⎜⎜⎜⎜⎜⎜⎝∑
p

ln(1 − tp)

⎞⎟⎟⎟⎟⎟⎟⎠∏
α

(1 − zλα) =
∏

p

(1 − tp) , (18.16)

where for the topological entropy the weight assigned to a prime cycle p of period
np is tp = znp if the cycle is admissible, or tp = 0 if it is pruned. This determinant
is called the topological or the Artin-Mazur zeta function, conventionally denoted
by

1/ζtop(z) =
∏

p

(1 − znp) = 1 −
∑
n=1

ĉnzn . (18.17)

Counting cycles amounts to giving each admissible prime cycle p weight tp = znp 

and expanding the Euler product (18.17) as a power series in z. The number of 
prime cycles p is infinite, but if T is an [m×m] finite matrix, then the number of 
roots λα is at most m, the characteristic polynomial is at most of order m, and the 
coefficients of zn vanish for n > m. 

The topological entropy h can now be determined from the leading zero z = 
e−h of the topological zeta function. For a finite [m × m] transition matrix, the 
number of terms in the characteristic equation (18.13) is finite, and we refer to 
this expansion as the topological polynomial of order ≤ m. 
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18.6 Shadowing

The topological zeta function is a pretty function, but the infinite product (18.16)
should make you pause. For finite transition matrices the left hand side is a deter-
minant of a finite matrix, therefore a finite polynomial; so why is the right hand
side an infinite product over the infinitely many prime periodic orbits of all peri-
ods?

The way in which this infinite product rearranges itself into a finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at the
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full cycle expansion (23.8) of chapter 23; all cycles beyond the fundamental t0
and t1 appear in the shadowing combinations such as

ts1s2···sn − ts1s2···sm tsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly, if we are
counting cycles as we do in (18.29) and (18.36), or if the dynamics is piecewise
linear, as in exercise 22.2. As we argue in sect. 1.5.4, for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shadowing combina-
tions almost cancel, and the spectral determinant is dominated by the fundamental
cycles from (18.13), with longer cycles contributing only small “curvature” cor-
rections.

These exact or nearly exact cancelations depend on the flow being smooth and
the symbolic dynamics being a subshift of finite type. If the dynamics requires
an infinite state space partition, with pruning rules for blocks of increasing length,
most of the shadowing combinations still cancel, but the few corresponding to new
forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant, as depicted in figure 18.2.
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18.7 Counting cycles

Chaos is merely order waiting to be deciphered
— José Saramago, The Double

In what follows, we shall occasionally need to compute all cycles up to
topological period n, so it is important to know their exact number. The formulas
are fun to derive, but a bit technical for plumber on the street, and probably best
skipped on the first reading.

18.7.1 Counting periodic points

The number of periodic points of period n is denoted Nn. It can be computed from
(18.15) and (18.7) as a logarithmic derivative of the topological zeta function

∑
n=1

Nnzn = tr

(
−z

d
dz

ln(1 − zT )

)
= −z

d
dz

ln det (1 − zT )

=
−z d

dz (1/ζtop)

1/ζtop
. (18.24)

Observe that the trace formula (18.8) diverges at z → e−h, because the denomina-
tor has a simple zero there.

18.7.2 Counting prime cycles
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Table 18.3: Number of prime cycles for various alphabets and grammars up to period
10. The first column gives the cycle period, the second gives the formula ( 18.26) for the
number of prime cycles for complete N-symbol dynamics, and columns three through five
give the numbers of prime cycles for N = 2, 3 and 4.

n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

We list the number of prime cycles up to period 10 for 2-, 3- and 4-letter
complete symbolic dynamics in table 18.3, obtained by Möbius inversion (18.26).

example 18.10

p. 340

example 18.11

p. 340

example 18.12

p. 341

Résumé

The main result of this chapter is the cycle expansion (18.17) of the topological
zeta function (i.e., the spectral determinant of the transition matrix):

1/ζtop(z) = 1 −
∑
k=1

ĉkzk .
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Table 18.4: List of 3-disk prime cycles up to period 10. Here n is the cycle period, M n is
the number of prime cycles, Nn is the number of periodic points, and S n the number of
distinct prime cycles under D3 symmetry (see chapter 25 for further details). Column 3
also indicates the splitting of Nn into contributions from orbits of periods that divide n.
The prefactors in the fifth column indicate the degeneracy m p of the cycle; for example,
3·12 stands for the three prime cycles 12, 13 and 23 related by 2π/3 rotations. Among
symmetry-related cycles, a representative p̂ which is lexically lowest is listed. The cycles
of period 9 grouped with parentheses are related by time reversal symmetry, but not by
any D3 transformation.

n Mn Nn S n mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123+ 121213213) + 6·121231323
+ 6·(121231213+ 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 18.5: The 4-disk prime cycles up to period 8. The symbols is the same as shown
in table 18.4. Orbits related by time reversal symmetry (but no C 4v symmetry) already
appear at cycle period 5. Cycles of period 7 and 8 have been omitted.

n Mn Nn S n mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108
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For subshifts of finite type, the transition matrix is finite, and the topological zeta
function is a finite polynomial evaluated by the loop expansion (18.13) of det (1−
zT ). For infinite grammars the topological zeta function is defined by its cycle
expansion. The topological entropy h is given by the leading zero z = e−h. This
expression for the entropy is exact; in contrast to the initial definition (18.1), no
n → ∞ extrapolations of ln Kn/n are required.

What have we accomplished? We have related the number of topologically
distinct paths from one state space region to another region to the leading eigen-
value of the transition matrix T . The spectrum of T is given by topological zeta
function, a certain sum over traces tr Tn, and in this way the periodic orbit theory
has entered the arena through the trace formula (18.8), already at the level of the
topological dynamics.

Contrary to claims one all too often encounters in the literature, “exponential 
proliferation of trajectories” is not the problem; what limits the convergence of 
cycle expansions is the proliferation of the grammar rules, or the “algorithmic 
complexity,” as illustrated by sect. 18.5, and figure 18.2 in particular. 
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18.8 Examples

Example 18.1 3-disk itinerary counting. The (T 2)13 = T12T23 = 1 element of T 2 for
the 3-disk transition matrix (17.9)⎡⎢⎢⎢⎢⎢⎢⎣0 1 1

1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
2

=

⎡⎢⎢⎢⎢⎢⎢⎣2 1 1
1 2 1
1 1 2

⎤⎥⎥⎥⎥⎥⎥⎦ . (18.27)

corresponds to path 3 → 2 → 1, the only 2-step path from 3 to 1, while (T 2)33 = T31T13+

T32T23 = 2 counts the two returning, periodic paths 31 and 32. Note that the trace
tr T 2 = (T 2)11 + (T 2)22 + (T 2)33 = 2T13T31 + 2T21T12 + 2T32T23 has a contribution from
each 2-cycle 12, 13, 23 twice, one contribution from each periodic point.

click to return: p. 321
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Example 18.2 Traces for binary symbolic dynamics. For example, for the [8×8]
transition matrix Ts1 s2 s3,s0 s1 s2 version of (17.11), or any refined partition [2n×2n] transition
matrix, n arbitrarily large, the periodic point 100 contributes t100 = z3T100,010T010,001T001,100

to z3tr T 3. This product is manifestly cyclically invariant, t100 = t010 = t001, so a prime
cycle p = 001 of period 3 contributes 3 times, once for each periodic point along its
orbit.

exercise 14.7
For the binary labeled non–wandering set the first few traces are given by (con-

sult tables 18.1 and 18.2)

z tr T = t0 + t1,

z2tr T 2 = t2
0 + t2

1 + 2t10,

z3tr T 3 = t3
0 + t3

1 + 3t100 + 3t101,

z4tr T 4 = t4
0 + t4

1 + 2t2
10 + 4t1000 + 4t1001 + 4t1011. (18.28)

In the binary case the trace picks up only two contributions on the diagonal, T0···0,0···0 +

T1···1,1···1, no matter how much memory we assume. We can even take infinite memory
M → ∞, in which case the contributing partitions are shrunk to the fixed points, tr T =
T0,0 + T1,1.

If there are no restrictions on symbols, the symbolic dynamics is complete, and
all binary sequences are admissible (or allowable) itineraries. As this type of symbolic
dynamics pops up frequently, we list the shortest binary prime cycles in table 18.1.

exercise 14.2
click to return: p. 323

Example 18.3 Topological polynomial for complete binary dynamics: (continu-
ation of example 17.1) There are only two non-intersecting loops, yielding

det (1 − zT ) = 1 − t0 − t1 − (t01 − t0t1) = 1 − 2z (18.29)

0 1 = 1 − 0 − 1 −
(

0 1 − 1 0

)
.

Due to the symmetry under 0 ↔ 1 interchange, this is a redundant graph (the 2-cycle
t01 is exactly shadowed by the 1-cycles). Another way to see is that itineraries are
labeled by the {0, 1} links, node labels can be omitted. As both nodes have 2 in-links
and 2 out-links, they can be identified, and a more economical presentation is in terms
of the [1×1] adjacency matrix (17.12)

det (1 − zA) = 1 − t0 − t1 = 1 − 2z (18.30)

A=B=CA=B=C

= 1 − 0 − 1 .

The leading (and only) zero of this characteristic polynomial yields the topological en-
tropy eh = 2. As there are Kn = 2n binary strings of length N, this comes as no surprise.

click to return: p. 327

Example 18.4 Golden mean pruning: The “golden mean” pruning of example 17.5
has one grammar rule: the substring 11 is forbidden. The corresponding transition

exercise 18.5
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graph non-intersecting loops are of length 1 and 2, so the topological polynomial is
given by

det (1 − zT ) = 1 − t0 − t01 = 1 − z − z2 (18.31)

0 1 = 1 − 0 − 0 1 .

The leading root of this polynomial is the golden mean, so the entropy (18.4) is the

logarithm of the golden mean, h = ln 1+
√

5
2 .

click to return: p. 327
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Exercises

18.1. A transition matrix for 3-disk pinball.

a) Draw the transition graph corresponding to the 3-
disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transi-
tion matrix results in two coupled linear differ-
ence equations, - one for the diagonal and one for
the off diagonal elements. (Hint: relate tr T n to
tr T n−1 + . . . .)

b) Solve the above difference equation and obtain the
number of periodic orbits of length n. Compare
your result with table 18.4.

c) Find the eigenvalues of the transition matrix T for
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamics {0, 1}.

18.2. 3-disk prime cycle counting. A prime cycle p
of length np is a single traversal of the orbit; its label is
a non-repeating symbol string of n p symbols. For ex-
ample, 12 is prime, but 2121 is not, since it is 21 = 12
repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime
cycles of length 2, 3, 4, 5, 6, · · · .

18.3. Sum of Ai j is like a trace. Let A be a matrix with
eigenvalues λk. Show that

Γn :=
∑
i, j

[An]i j =
∑

k

ckλ
n
k .

(a) Under what conditions do ln |tr An| and ln |Γn| have
the same asymptotic behavior as n → ∞, i.e., their
ratio converges to one?

(b) Do eigenvalues λk need to be distinct, λk � λl for
k � l? How would a degeneracy λk = λl affect
your argument for (a)?

18.4. Loop expansions. Prove by induction the sign rule in
the determinant expansion (18.13):

det (1 − zT) =
∑
k≥0

∑
p1+···+pk

(−1)ktp1 tp2 · · · tpk .

18.5. Transition matrix and cycle counting. Suppose you
are given the transition graph
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0 1a b
c

This diagram can be encoded by a matrix T , where the
entry Ti j means that there is a link connecting node i to
node j. The value of the entry is the weight of the link.

a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

T =

[
a b
c 0

]
.

b) Enumerate all the walks of length three on the
transition graph. Now compute T 3 and look at the
entries. Is there any relation between the terms in
T 3 and all the walks?

c) Show that T n
i j is the number of walks from point

i to point j in n steps. (Hint: one might use the
method of induction.)

d) Estimate the number Kn of walks of length n for
this simple transition graph.

e) The topological entropy h measures the rate of ex-
ponential growth of the total number of walks Kn

as a function of n. What is the topological entropy
for this transition graph?

18.6. Alphabet {0,1}, prune 00 . The transition graph ex-
ample 17.8 implements this pruning rule which implies
that “0” must always be bracketed by “1”s; in terms of a
new symbol 2 := 10, the dynamics becomes unrestricted
symbolic dynamics with with binary alphabet {1,2}. The
cycle expansion (18.13) becomes

1/ζ = (1 − t1)(1 − t2)(1 − t12)(1 − t112) . . .

= 1 − t1 − t2 − (t12 − t1t2) (18.41)

−(t112 − t12t1) − (t122 − t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1 − t1 − t10 − (t110 − t1t10) (18.42)

−(t1110 − t110t1) − (t11010 − t110t10) . . .

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For uni-
modal maps this symbolic dynamics is realized by the
tent map of exercise 14.6.

18.7. “Golden mean” pruned map. (continuation of exer-
cise 14.6) Show that the total number of periodic orbits
of length n for the “golden mean” tent map is

(1 +
√

5)n + (1 −
√

5)n

2n
.

Continued in exercise 22.1. See also exercise 18.8.

18.8. A unimodal map with golden mean pruning. Con-
sider the unimodal map

for which the critical point maps into the right hand fixed
point in three iterations, S + = 1001. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood of 0 fixed point, and
00 pruned from the recurrent set. (K.T. Hansen)

exerCount - 13jun2008 ChaosBook.org version15.8, Oct 18 2016



REFERENCES 344

References

[18.1] V.I. Arnold and A. Avez, “Ergodic Problems of Classical Mechanics,”
Addison-Wesley, Redwood City (1989).

[18.2] J. Zinn-Justin, “Quantum Field Theory and Critical Phenomena,” Claren-
don Press, Oxford (1996).

[18.3] A. Salomaa, “Formal Languages,” Academic Press, San Diego (1973).

[18.4] J.E. Hopcroft and J.D. Ullman, “Introduction to Automata Theory, Lan-
guages and Computation,” Addison-Wesley, Reading Ma (1979).
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