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chaos course - week 13

Divide & count

Georgia Tech PHYS-4267
Homework HW13 due Thursday, December 1, 2016

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 13.1 Full tent map periodic points 4 points + 3 points
Exercise 13.2 “Golden mean” pruned map 4 points + 1 point
Exercise 13.3 Transition matrix and cycle counting 4 points
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CHAOS COURSE - WEEK 13. DIVIDE & COUNT

13.1 Is the geometry of nature fractal?

Christopher Marcotte (Nov 15, 2016) writes: Box-counting is dumb but it’s a very
intuitive way to show numerically that you can generate fractal sets from simple laws.
Grassberger–Procaccia [3] is who comes to mind. It also gives them a chance to “build”
and “see” and “check” fractals using their own methods.

Predrag response: Why would one teach this in a physics course? It’s misleadingly
easy to explain, and then it turns out to be good for nothing. It is totally useless in
dynamical systems theory –unless you miraculously come back to me with Grassberger
& Procaccia dimension of your cardiac system, and even then– which cardiologist
would want to to know that number? For what purpose? We do care about the physical
dimensions of inertial manifolds [2] but those calculations are dynamically informed,
painstaking calculations, in no sense mindless algorithm crunching through a set of
points.

Avnir, Biham, Lidar, and Malcai [1] write: “the majority of the data that was in-
terpreted in terms of fractality in the surveyed Physical Review journals does not seem
to be linked (at least in an obvious way) to existing models and, in fact, does not have
theoretical backing. Most of the data represent results from nonequilibrium processes.
The common situation is this: An experimentalist performs a resolution analysis and
finds a limited-range power law with a value of D smaller than the embedding dimen-
sion. Without necessarily resorting to special underlying mechanistic arguments, the
experimentalist then often chooses to label the object for which she or he finds this
power law a ‘fractal.’ This is the fractal geometry of nature”.

In Deterministic chaos: the science and the fiction Ruelle [4] writes: “In conclu-
sion, one should not believe dimension estimates that are not well below 2 log10N .
[...] claim to find a dimension 3.1 for a ‘climatic attractor’ with N = 500 data points.
[...] The ‘dimensions’ of the order 6 that are obtained are very close to the upper bound
2 log10N permitted by the Grassberger-Procaccia algorithm (N is the length of the
time series used, of the order of 103 ). The ‘proof’ that one has low dimensional dy-
namics is therefore inconclusive, and the suspicion is that the time evolutions under
discussion do not correspond to low-dimensional dynamics. It is possible that interest-
ing information can nevertheless be extracted from the time series examined, but this
would probably require new ideas”.

“Readers of The hitchhiker’s guide to the galaxy, that masterpiece of British liter-
ature by D. Adams, know that a huge supercomputer has answered ‘the great problem
of life, the universe, and everything’. The answer obtained after many years of com-
putation is 42. Unfortunately, one does not know to what precise question this is the
answer, and what to make of it. It think that what happened is this. The supercom-
puter took a very long time series describing all it knew about ‘life, the universe, and
everything’ and proceeded to compute the correlation dimension of the corresponding
dynamics, using the Grassberger–Procaccia algorithm. This time series had a length N
somewhat larger than 1021. And you can imagine what happened. After many years of
computation the answer came: dimension is approximately 2 log10 ≈ 42.”
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CHAOS COURSE - WEEK 13. DIVIDE & COUNT

13.2 Temporal ordering: Itineraries

Copied here are a few snippets from this week’s lecture notes, needed here just because
exercises refer to them - do read the full lecture notes.

For 1d maps the critical value denotes either the maximum or the minimum value
of f (x) on the defining interval; we assume here that it is a maximum, f(xc) ≥ f (x)
for all x ∈ M. The critical point xc that yields the critical value f(xc) belongs to
neither the left nor the right partition Mi and is instead denoted by its own symbol
s = C. As we shall see, its images and preimages serve as partition boundary points.

The trajectory x1, x2, x3, . . . of the initial point x0 is given by the iteration xn+1 =
f (xn) . Iterating f and checking whether the point lands to the left or to the right of xc
generates a temporally ordered topological itinerary for a given trajectory,

sn =

 1 if xn > xc
C if xn = xc
0 if xn < xc

. (13.1)

We refer to S+(x0) = .s1s2s3 · · · as the future itinerary. Our next task is to answer the
reverse problem: given an itinerary, what is the spatial ordering of points that belong
to the corresponding state space trajectory?

13.3 Spatial ordering

A well-known theorem states that combinatorial factors are im-
possible to explain.

—G. ’t Hooft and M. Veltman, DIAGRAMMAR

The tent map point γ(S+) with future itinerary S+ is given by converting the itinerary
of sn’s into a binary number γ by the following algorithm:

wn+1 =

{
wn if sn+1 = 0
1− wn if sn+1 = 1

, w1 = s1

γ(S+) = 0.w1w2w3 . . . =

∞∑
n=1

wn/2
n . (13.2)

This follows by inspection from the the way a unimodal map partitions its 1-dimensional
state space (the unit interval) Once you figure this out, feel free to complain that the
way the rule is stated here is incomprehensible, and show us how you did it better.

We refer to γ(S+) as the (future) topological coordinate. The wt’s are the digits in
the binary expansion of the starting point γ for the full tent map. In the left half-interval
the map f (x) acts by multiplication by 2, while in the right half-interval the map acts
as a flip as well as multiplication by 2, reversing the ordering, and generating in the
process the sequence of sn’s from the binary digits wn.
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CHAOS COURSE - WEEK 13. DIVIDE & COUNT

13.4 Full tent map
The simplest example of unimodal maps with complete binary symbolic dynamics is
the full tent map,

f (γ) = 1− 2|γ − 1/2| , γ ∈M = [0, 1] . (13.3)

For unimodal maps the Markov partition of the unit intervalM is given by intervals
{M0,M1}. We refer to (13.3) as the complete tent map because its symbolic dynamics
is completely binary: as both f (M0) and f (M1) fully coverM = {M0,M1}, all
binary sequences are realized as admissible itineraries.

Periodic points of the full tent map.

Each cycle p is a set of np rational-valued full tent map periodic points γ. It follows
from (13.2) that if the repeating string s1s2 . . . sn contains an odd number of ‘1’s, the
string of well ordered symbols w1w2 . . . w2n has to be of the double length before it
repeats itself. The cycle-point γ is a geometrical sum which we can rewrite as the
odd-denominator fraction

γ(s1s2 . . . sn) =

2n∑
t=1

wt

2t
+

1

2−2n

2n∑
t=1

wt

2t
+ · · ·

=
22n

22n − 1

2n∑
t=1

wt

2t
(13.4)
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EXERCISES

Exercises
13.1. Full tent map periodic points. This exercise is easy: just making sure you know how

to go back and forth between spatial and temporal ordering of trajectory points.

(a) compute the two periodic points of cycle 01 “by hand,” by solving the fixed-point
condition for the second iterate f1 ◦ f0

(b) compute the periodic points of two 3-cycles 001 and 011 by solving the fixed-point
condition for the third iterates

(c) compute the five periodic points of cycle 10011 using (13.4)

(d) compute the five periodic points of cycle 10000

(e) derive (13.4)

(f) plot the above two 5-cycles on the graph of the full tent map, and as many others
as you find interesting. Why? Because you can start appreciating the power of
kneading theory–while the state space orbits get more and more complicated and
impenetrable, the kneading sequence pruning rule is as simple and as sharp as a
knife.

13.2. “Golden mean” pruned map. Consider a symmetric tent map on the unit interval such
that its highest point belongs to a 3-cycle:
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0.2

0.4

0.6

0.8

1

B

C

A D| |

(a) Find the value |Λ| for the slope (the two different slopes ±Λ just differ by a sign)
where the maximum at 1/2 is a periodic point in a 3-cycle, as depicted in the figure.
Partition the state spaceM (i.e., the unit interval) into four intervals
MA = [0, (

√
5− 1)/4) MB = ((

√
5− 1)/4, 1/2)

MC = (1/2, (
√

5 + 1)/4) MD = ((
√

5 + 1)/4, 1].

(b) Show that no orbit of this map can visit the intervalMD more than once. Verify
also that once an orbit is outside the intervalMA, it cannot reenter it.

(c) If an orbit is in the intervalMB , where will it be on the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2 we use the symbol 0, for x = 1/2
we use the symbol C, and for x > 1/2 we use the symbol 1, show that no periodic
orbit will contain the substring _00_.

(e) On a second thought, are there periodic orbits that violate the _00_ pruning rule?

13.3. Transition matrix and cycle counting. Suppose you are given the transition graph
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EXERCISES

0 1a b
c

This diagram can be encoded by a matrix T , where the entry Tij means that there is a link
connecting node i to node j. The value of the entry is the weight of the link.

(a) Walks on the graph are given a weight that is the product of the weights of all links
crossed by the walk. Check that the transition matrix for this graph is:

T =

[
a b
c 0

]
.

(b) Enumerate all the walks of length three on the transition graph. Now compute T 3

and look at the entries. Is there any relation between the terms in T 3 and all the
walks?

(c) Show that Tn
ij is the number of walks from point i to point j in n steps. (Hint: one

might use the method of induction.)

(d) Estimate the number Kn of walks of length n for this simple transition graph.

(e) The topological entropy hmeasures the rate of exponential growth of the total num-
ber of walks Kn as a function of n. What is the topological entropy for this transi-
tion graph?
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