
Chapter 21

Trace formulas

The trace formula is not a formula, it is an idea.

—Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages re-
quire global information. How can we use a local description of a flow
to learn something about the global behavior? In chapter 20 we have re-

lated global averages to the eigenvalues of appropriate evolution operators. Here
we show that the traces of evolution operators can be evaluated as integrals over
Dirac delta functions, and in this way the spectra of evolution operators become
related to periodic orbits. If there is one idea that one should learn about chaotic
dynamics, it happens in this chapter, and it is this: there is a fundamental local ↔
global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics on well-
tiled manifolds, Selberg traces and zetas; and for generic nonlinear dynamical
systems the duality is embodied in the trace formulas that we will now derive.
These objects are to dynamics what partition functions are to statistical mechanics.

The above phrasing is a bit too highfalutin, so it perhaps pays to go again
through the quick sketch of sects. 1.5 and 1.6. We have a state space that we
would like to tessellate by periodic orbits, one short orbit per neighborhood, as in
figure 21.1 (a). How big is the neighborhood of a given cycle?

Along stable directions neighbors of the periodic orbit get closer with time,
so we only have to keep track of those who are moving away along the unsta-
ble directions. The fraction of those who remain in the neighborhood for one
recurrence time Tp is given by the overlap ratio along the initial sphere and the
returning ellipsoid, figure 21.1 (b), and along the expanding eigen-direction e(i)

of Jp(x) this is given by the expanding Floquet multiplier 1/|Λp,i|. A bit more
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CHAPTER 21. TRACE FORMULAS 384

Figure 21.1: (a) Smooth dynamics tesselated by
the skeleton of periodic points, together with their
linearized neighborhoods. (b) Jacobian matrix Jp

maps spherical neighborhood of x0 → ellipsoidal
neighborhood time Tp later, with the overlap ratio
along the expanding eigdirection e(i) of Jp(x) given
by the expanding eigenvalue 1/|Λp,i |.
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thinking leads to the conclusion that one also cares about how long it takes to re-
turn (the long returns contributing less to the time averages), so the weight tp
of the p-neighborhood tp = e−sTp/|Λp| decreases exponentially both with the
shortest recurrence period and the product (5.6) of expanding Floquet multipli-
ers Λp =

∏
eΛp,e . With emphasis on expanding - the flow could be a 60,000-

dimensional dissipative flow, and still the neighborhood is defined by the handful
of expanding eigen-directions. Now the long-time average of a physical observ-
able -let us say power D dissipated by viscous friction of a fluid flowing through a
pipe- can be estimated by its mean value (20.5) Dp/Tp computed on each neigh-
borhood, and weighted by the above estimate

〈D〉 ≈
∑

p

Dp

Tp

e−sTp

|Λp|
.

Wrong in detail, this estimate is the crux of many a Phys. Rev. Letter, and in its
essence the key result of this chapter, the ‘trace formula.’ Here we redo the argu-
ment in a bit greater depth, and derive the correct formula (23.23) for a long time
average 〈D〉 as a weighted sum over periodic orbits. It will take three chapters,
but it is worth it - the reward is an exact (i.e., not heuristic) and highly convergent
and controllable formula for computing averages over chaotic flows.

21.1 A trace formula for maps

Our extraction of the spectrum of L commences with the evaluation of the trace 
formula for maps.

To compute an expectation value using (20.22) we have to integrate over all 
the values of the kernel Ln(x, y). 

trLn =

∫
dxLn(x, x) =

∫
dx δ

(
x − f n(x)

)
eβA(x,n) . (21.1)
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CHAPTER 21. TRACE FORMULAS 385

On the other hand, by its matrix motivated definition, the trace is the sum over
eigenvalues (20.28),

trLn =

∞∑
α=0

esαn . (21.2)

We assume that spectrum of L is discrete, s0, s1, s2, · · · , ordered so that Re sα ≥ 
Re sα+1.

21.1.1 Hyperbolicity assumption

We have learned in sect. 19.2 how to evaluate the delta-function integral (21.1).

According to (19.8) the trace (21.1) picks up a contribution whenever x − f n 

(x) = 0, i.e., whenever x belongs to a periodic orbit. The contribution of an 
isolated prime cycle p of period np for a map f can be evaluated by restricting the 
integration to an infinitesimal open neighborhood Mp around the cycle,

tr pLnp =

∫
Mp

dx δ
(
x − f np(x)

)
=

np∣∣∣∣det
(
1 − Mp

)∣∣∣∣ = np

d∏
i=1

1
|1 − Λp,i|

. (21.3)

For the time being we set here and in (19.9) the observable eβAp = 1. Periodic orbit
Jacobian matrix Mp is also known as the monodromy matrix, and its eigenvalues
Λp,1, Λp,2, . . . , Λp,d as the Floquet multipliers.

We sort the eigenvalues Λp,1, Λp,2, . . . , Λp,d of the p-cycle [d×d] monodromy 
matrix Mp into expanding and contracting sets {e,c} and factorize the trace (21.3) 
into a product over the expanding and the contracting eigenvalues

∣∣∣∣det
(
1 − Mp

)∣∣∣∣−1
=

1
|Λp|

∏
e

1
1 − 1/Λp,e

∏
c

1
1 − Λp,c

, (21.4)
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where Λp =
∏

eΛp,e is the product of expanding eigenvalues. Both Λp,c and
1/Λp,e are smaller than 1 in absolute value, and as they are either real or come in
complex conjugate pairs we are allowed to drop the absolute value brackets | · · · |
in the above products.

The hyperbolicity assumption requires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding |Λp,e| > 1

|Λp,c| < e−λcTp any p, any contracting |Λp,c| < 1 , (21.5)

where λe, λc > 0 are strictly positive bounds on the expanding, contracting cycle 
Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assump-
tion (for example, the well separated 3-disk system clearly does), the Lt spectrum 
will be relatively easy to control. 

It follows from (21.4) that for long times, t = rTp → ∞, only the product of

expanding eigenvalues matters,
∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ → |Λp|r. We shall use this fact to
motivate the construction of dynamical zeta functions in sect.22.3. 

21.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have
Floquet multipliers |Λp,i| � 1 strictly bounded away from unity, the trace Ln is
given by the sum over all periodic points i of period n:

trLn =

∫
dxLn(x, x) =

∑
xi∈Fix f n

eβAi

|det (1 − Mn(xi))|
. (21.6)

Here Fix f n = {x : f n(x) = x} is the set of all periodic points of period n, and
Ai is the observable (20.4) evaluated over n discrete time steps along the cycle to
which the periodic point xi belongs. The weight follows from the properties of
the Dirac delta function (19.8) by taking the determinant of ∂i(x j − f n(x) j). If a
trajectory retraces itself r times, its monodromy matrix is Mr

p, where Mp is the
[d×d] monodromy matrix (4.5) evaluated along a single traversal of the prime
cycle p. As we saw in (20.4), the integrated observable A is additive along the
cycle: If a prime cycle p trajectory retraces itself r times, n = rnp, we obtain Ap

repeated r times, Ai = A(xi, n) = rAp, xi ∈ Mp.

A prime cycle is a single traversal of the orbit, and its label is a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
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CHAPTER 21. TRACE FORMULAS 387

For example, the four periodic points 0011 = 1001 = 1100 = 0110 belong to the
chapter 14

same prime cycle p = 0011 of length 4. As both the stability of a cycle and the
weight Ap are the same everywhere along the orbit, each prime cycle of length np

contributes np terms to the sum, one for each periodic point. Hence (21.6) can be
rewritten as a sum over all prime cycles and their repeats

trLn =
∑

p

np

∞∑
r=1

erβAp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣δn,npr , (21.7)

with the Kronecker delta δn,npr projecting out the periodic contributions of total 
period n. A discrete Laplace transform rids us of the time periodicity constraint:

In the sum over all cycle periods,

∞∑
n=1

zntrLn = tr
zL

1 − zL =
∑

p

np

∞∑
r=1

znprerβAp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (21.8)

the constraint δn,npr is replaced by weight zn . Such discrete time Laplace trans-
form of trLn is usually referred to as a ‘generating function’. Why this transform?
We are actually not interested in evaluating the sum (21.7) for any particular fixed
period n; what we are interested in is the long time n → ∞ behavior. The trans-
form trades in the large time n behavior for the small z behavior. Expressing the
trace as in (21.2), in terms of the sum of the eigenvalues of L, we obtain the trace
formula for maps:

∞∑
α=0

zesα

1 − zesα
=

∑
p

np

∞∑
r=1

znpr erβAp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (21.9)

This is our second example of the duality between the spectrum of eigenvalues
and the spectrum of periodic orbits, announced in the introduction to this chapter.
(The first example was the topological trace formula (18.8).)
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Chapter 22

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don’t exactly know what they are!”

—Lewis Carroll, Through the Looking Glass

The problemwith the trace formulas (21.9), (21.19) and (21.24) is that they di-
verge at z = e−s0 , respectively s = s0, i.e., precisely where one would like to
use them. While this does not prevent numerical estimation of some “ther-

modynamic” averages for iterated mappings, in the case of the Gutzwiller trace
formula this leads to a perplexing observation that crude estimates of the radius of
convergence seem to put the entire physical spectrum out of reach. We shall now
cure this problem by thinking, at no extra computational cost; while traces and
determinants are formally equivalent, determinants are the tool of choice when it
comes to computing spectra. Determinants tend to have larger analyticity domains

chapter 28
because if trL/(1 − zL) = − d

dz ln det (1 − zL) diverges at a particular value of z,
then det (1 − zL) might have an isolated zero there, and a zero of a function is
easier to determine numerically than its poles.

22.1 Spectral determinants for maps

The eigenvalues zk of a linear operator are given by the zeros of the determinant

det (1 − zL) =
∏

k

(1 − z/zk) . (22.1)

For finite matrices this is the characteristic determinant; for operators this is the
Hadamard representation of the spectral determinant (sparing the reader from
pondering possible regularization factors). Consider first the case of maps, for
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which the evolution operator advances the densities by integer steps in time. In
this case we can use the formal matrix identity

exercise 4.1

ln det (1 − M) = tr ln(1 − M) = −
∞∑

n=1

1
n

tr Mn , (22.2)

to relate the spectral determinant of an evolution operator for a map to its traces
(21.7), and hence to periodic orbits:

det (1 − zL) = exp

⎛⎜⎜⎜⎜⎜⎝− ∞∑
n

zn

n
trLn

⎞⎟⎟⎟⎟⎟⎠
= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

znprerβAp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (22.3)

Going the other way, the trace formula (21.9) can be recovered from the spec-
tral determinant by taking a derivative

tr
zL

1 − zL = −z
d
dz

ln det (1 − zL) . (22.4)

Now we are finally poised to deal with the problem posed at the beginning of
chapter 21; how do we actually evaluate the averages introduced in sect.20.1? The
eigenvalues of the dynamical averaging evolution operator are given by the values
of s for which the spectral determinant (22.5) of the evolution operator (20.24)
vanishes. If we can compute the leading eigenvalue s0(β) and its derivatives, we
are done. Unfortunately, the infinite product formula (22.8) is no more than a
shorthand notation for the periodic orbit weights contributing to the spectral det-
erminant; more work will be needed to bring such formulas into a tractable form.
This shall be accomplished in chapter 23, but here it is natural to introduce still
another variant of a determinant, the dynamical zeta function.

Résumé

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity log det = tr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functions, and in this way the spectra
of evolution operators are related to periodic orbits. The spectral problem is now
recast into a problem of determining zeros of either the spectral determinant⎛⎜⎜⎜⎝det (s −A) = exp ⎜⎜⎜⎜⎜−∑

p

∑∞
r=1

1
r

e(βAp−sTp)r∣∣∣∣det
(

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠1 − Mr
p

)∣∣∣∣ ,



CHAPTER 22. SPECTRAL DETERMINANTS 405

or the leading zeros of the dynamical zeta function

1/ζ =
∏

p

(
1 − tp

)
, tp =

1
|Λp|

eβAp−sTp .

The spectral determinant is the tool of choice in actual calculations, as it has
superior convergence properties (this will be discussed in chapter 28 and is il-
lustrated, for example, by table 23.2). In practice both spectral determinants and
dynamical zeta functions are preferable to trace formulas because they yield the
eigenvalues more readily; the main difference is that while a trace diverges at an
eigenvalue and requires extrapolation methods, determinants vanish at s corre-
sponding to an eigenvalue sα, and are analytic in s in an open neighborhood of
sα.

The critical step in the derivation of the periodic orbit formulas for spectral
determinants and dynamical zeta functions is the hyperbolicity assumption (21.5)
that no cycle stability eigenvalue is marginal, |Λp,i| � 1. By dropping the prefac-
tors in (1.5), we have given up on any possibility of recovering the precise distri-
bution of the initial x (return to the past is rendered moot by the chaotic mixing
and the exponential growth of errors), but in exchange we gain an effective de-
scription of the asymptotic behavior of the system. The pleasant surprise (to be
demonstrated in chapter 23) is that the infinite time behavior of an unstable system
turns out to be as easy to determine as its short time behavior.



Chapter 23

Cycle expansions

Recycle... It’s the Law!
—Poster, New York City Department of Sanitation

When we set out on this journey, we had promised to teach you something
profound that your professor does not know. Well, this chapter is the
chapter. If your professor knows cycle formulas for dynamical aver-

ages, please send us her name, and we’ll feature it in ChaosBook. They look like
cumulants, but when you start to take them apart you realize how brilliant they
are - your professor would not guess their form in 1 007 Physical Review Letters.
Takes 20 some chapters of hard study to start to understand them, and who has
time for that?

The Euler product representations of spectral determinants (22.8) and dyn-
amical zeta functions (22.11) are really only a shorthand notation - the zeros of
the individual factors are not the zeros of the zeta function, and the convergence
of these objects is far from obvious. Now we shall give meaning to dynamical
zeta functions and spectral determinants by expanding them as cycle expansions,
which are series representations ordered by increasing topological cycle length,
with products in (22.8), (22.11) expanded as sums over pseudo-cycles, products
of weights tp of contributing cycles. The zeros of correctly truncated cycle expan-
sions yield the desired leading eigenvalues of evolution operators, and the expec-
tation values of observables are given by the cycle averaging formulas obtained
from the partial derivatives of dynamical zeta functions (or spectral determinants).

For reasons of pedagogy in what follows everything is first explained in terms
of dynamical zeta functions: they aid us in developing ‘shadowing’ intuition about
the geometrical meaning of cycle expansions. For actual calculations, we recom-
mend the spectral determinant cycle expansions of sects.23.2.2 and 23.5.2. While
the shadowing is less transparent, and the weights calculation is an iterative nu-
merical algorithm, these expansions use full analytic information about the flow,
and can have better convergence properties than the dynamical zeta functions. For
example, as we shall show in chapter 28, even when a spectral determinant (22.5)
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CHAPTER 23. CYCLE EXPANSIONS 413

is entire and calculations are super-exponentially convergent, cycle expansion of
the corresponding dynamical zeta function (22.28) has a finite radius of conver-
gence and captures only the leading eigenvalue, at exponentially convergent rate.

23.1 Pseudo-cycles and shadowing

How are periodic orbit formulas such as (22.11) evaluated? We start by comput-
ing the lengths and Floquet multipliers of the shortest cycles. This always requires
numerical work, such as searches for periodic solutions via Newton’s method; we

chapter 16
shall assume for the purpose of this discussion that the numerics is under con-
trol, and that all short cycles up to a given (topological) length have been found.
Examples of the data required for application of periodic orbit formulas are the
lists of cycles given in exercise 7.2 and table 33.3. Sadly, it is not enough to set
a computer to blindly troll for invariant solutions, and blithely feed those into the
formulas that will be given here. The reason that this chapter is numbered23 and
not 6, is that understanding the geometry of the non–wandering set is a prereq-
uisite to good estimation of dynamical averages: one has to identify cycles that
belong to a given ergodic component (whose symbolic dynamics and shadowing
is organized by its transition graph), and discard the isolated cycles and equilib-
ria that do not take part in the asymptotic dynamics. It is important not to miss
any short cycles, as the calculation is as accurate as the shortest cycle dropped -
including cycles longer than the shortest omitted does not improve the accuracy
(more precisely, the calculation improves, but so little as not to be worth while).

Given a set of periodic orbits, we can compute their weights tp and expand the
dynamical zeta function (22.11) as a formal power series,

1/ζ =
∏

p

(1 − tp) = 1 −
∑′

{p1 p2...pk}
(−1)k+1tp1 tp2 . . . tpk (23.1)

where the prime on the sum indicates that the sum is over all distinct non-repeating
combinations of prime cycles. As we shall frequently use such sums, let us denote
by tπ = (−1)k+1tp1 tp2 . . . tpk an element of the set of all distinct products of the
prime cycle weights tp, and label each such pseudo-cycle by

π = p1 + p2 + · · · + pk (23.2)

The formal power series (23.1) is now compactly written as

1/ζ = 1 −
∑′

π

tπ . (23.3)

For k > 1, the signed products tπ are weights of pseudo-cycles; they are sequences
of shorter cycles that shadow a cycle with the symbol sequence p1 p2 . . . pk along
the segments p1, p2, . . . , pk, as in figure 1.12. The symbol

∑′ denotes the re-
stricted sum, for which any given prime cycle p contributes at most once to a
given pseudo-cycle weight tπ.
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The pseudo-cycle weight, i.e., the product of weights (22.9) of prime cycles
comprising the pseudo-cycle,

tπ = (−1)k+1 1
|Λπ|

eβAπ−sTπ znπ , (23.4)

depends on the pseudo-cycle integrated observable Aπ, the period Tπ, the stability
Λπ,

remark 5.1

Λπ = Λp1Λp2 · · ·Λpk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , nπ = np1 + . . . + npk , (23.5)

and, when available, the topological length nπ.

23.1.1 Curvature expansions

The simplest example is the pseudo-cycle sum for a system described by a com-
plete binary symbolic dynamics. In this case the Euler product (22.11) is given
by

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011) (23.6)

× (1 − t0001)(1 − t0011)(1 − t0111)(1 − t00001)(1 − t00011)

× (1 − t00101)(1 − t00111)(1 − t01011)(1 − t01111) . . .

(see table 18.1), and the first few terms of the expansion (23.3) ordered by increas-
ing total pseudo-cycle length are:

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .
+ t0+1 + t0+01 + t01+1 + t0+001 + t0+011 + t001+1 + t011+1

− t0+01+1 − . . . (23.7)

We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudo-cycles, and ordered by increasing
cycle length and instability, as a cycle expansion.

The next step is the key step: regroup the terms into the dominant fundamental
contributions tf and the decreasing curvature corrections ĉn, each ĉn split into
prime cycles p of length np=n grouped together with pseudo-cycles whose full
itineraries build up the itinerary of p. For the binary case this regrouping is given
by

1/ζ = 1 − t0 − t1 − [(t01 − t0+1)] − [(t001 − t0+01) + (t011 − t01+1)]

−[(t0001 − t0+001) + (t0111 − t011+1)

+(t0011 − t001+1 − t0+011 + t0+01+1)] − . . .
= 1 −

∑
f

t f −
∑

n

ĉn . (23.8)
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All terms in this expansion up to length np = 6 are given in table 23.1. We refer to
such regrouped series as curvature expansions, because the shadowed combina-
tions [· · · ] vanish identically for piecewise-linear maps with nice partitions, such
as the ‘full tent map’ of figure 19.3.

The fundamental cycles t0, t1 have no shorter approximations; they are the 
“building blocks” of the dynamics in the sense that all longer orbits can be 
approx-imately pieced together from them. The fundamental part of a cycle 
expansion is given by the sum of the products of all non-intersecting loops of the 
associated transition graph, discussed in chapter17. The terms grouped in brackets 
[· · · ] are the curvature corrections; the terms grouped in parentheses (· · · ) are 
combinations of longer cycles and corresponding sequences of “shadowing” 
pseudo-cycles, as in figure 1.12. If all orbits are weighted equally (tp = znp ), such 
combinations cancel exactly, and the dynamical zeta function reduces to the 
topological poly-nomial (18.17). If the flow is continuous and smooth, orbits of 
similar symbolic dynamics will traverse the same neighborhoods and will have 
similar weights, and the weights in such combinations will almost cancel. The 
utility of cycle expansions of dynamical zeta functions and spectral 
determinants, in contrast to naive averages over periodic orbits such as the trace 
formulas discussed in sect.27.4, lies precisely in this organization into nearly 
canceling combinations: cycle expansions are dominated by short cycles, with 
longer cycles giving exponentially decaying corrections.

Table 23.1: The binary curvature expansion (23.8) up to length 6, listed in such a way that
the sum of terms along the pth horizontal line is the curvature ĉ p associated with a prime
cycle p, or a combination of prime cycles such as the t 100101 + t100110 pair.

- t0
- t1
- t10 + t1t0
- t100 + t10+0
- t101 + t10+1
- t1000 + t100+0

+ t100+1- t1001 + t110+0 - t1+10+0
- t1011 + t101+1
- t10000 + t1000+0
- t10001 + t1001+0 + t1000+1 - t0+100+1
- t10010 + t100+10
- t10101 + t101+10
- t10011 + t1011+0 + t1001+1 - t0+101+1
- t10111 + t1011+1
- t100000 + t10000+0
- t100001 + t10001+0 + t10000+1 - t0+1000+1
- t100010 + t10010+0 + t1000+10 - t0+100+10
- t100011 + t10011+0 + t10001+1 - t0+1001+1
- t100101 - t100110 + t10010+1 + t10110+0

+ t10+1001 + t100+101 - t0+10+101 - t1+10+100
- t101110 + t10110+1 + t1011+10 - t1+101+10
- t100111 + t10011+1 + t10111+0 - t0+1011+1
- t101111 + t10111+1
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23.3 Periodic orbit averaging

The first cycle expansion calculation should always be the determination of the
leading eigenvalue of the evolution operator, calculated as follows. After the
prime cycles and the pseudo-cycles have been grouped into subsets of equal topo-
logical length, the dummy variable can be set equal to z = 1. With z = 1, the
expansion (23.15) constitutes the cycle expansion (22.5) for the spectral deter-
minant det(s − A) . We vary s in cycle weights, and determine αth eigenvalue
sα (20.28) by finding s = sα for which (23.15) vanishes. As an example, the
convergence of a leading eigenvalue for a nice hyperbolic system is illustrated in
table 23.2 by the list of pinball escape rates γ = −s0 estimates computed from
truncations of (23.8) and (23.15) to different maximal cycle lengths.

The pleasant surprise, to be explained in chapter 28, is that one can prove
that the coefficients in these cycle expansions decay exponentially or even faster,
because of the analyticity of det (s −A) or 1/ζ(s), for s values well beyond those
for which the corresponding trace formula (21.19) diverges.

Our next task will be to compute long-time averages of observables. 
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Table 23.2: The 3-disk repeller escape rates computed from cycle expansions of the spec-
tral determinant (22.5) and the dynamical zeta function (22.11), as functions of the max-
imal cycle length N. The disk-disk center separation to disk radius ratio is R:a, and the
det(s − A) is an estimate of the classical escape rate computed from the spectral det-
erminant cycle expansion in the fundamental domain. For larger disk-disk separations,
the dynamics is more uniform, as illustrated by the faster convergence. Convergence of
spectral determinant det(s−A) is super-exponential, see chapter 28. For comparison, the
1/ζ(s) column lists estimates from the fundamental domain dynamical zeta function cycle
expansion (23.8), and the 1/ζ(s)3-disk column lists estimates from the full 3-disk cycle
expansion (25.54). The convergence of the fundamental domain dynamical zeta function
is significantly slower than the convergence of the corresponding spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta function has still poorer convergence.
(P.E. Rosenqvist.)

R:a N . det(s −A) /ζ(s)1 /ζ(1 s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606
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Figure 23.2: The eigenvalue condition is satisfied on
the curve F = 0 on the (β, s) plane. The expectation
value of the observable (20.11) is given by the slope of
the curve.

s

β

__

βF(  ,s(  ))=0 curveβ

d
ds
β

23.5 Cycle formulas for dynamical averages

Want to learn some useful safety maneuvers? Or perhaps
you’d like to become a more able mechanic? Or have bike
safety questions answered? Or eat pizza? Then sign up for
Enlightened Cycling!

— Bike GT: Cycling around Georgia Tech

The eigenvalue conditions for the dynamical zeta function (23.3) and the spectral
determinant (23.15),

0 = 1 −
∑′

π

tπ , tπ = tπ(β, s(β)) (23.18)

0 = 1 −
∞∑

n=1

Qn , Qn = Qn(β, s(β)) , (23.19)

are implicit equations for an eigenvalue s = s(β) of the form 0 = F(β, s(β)). The
eigenvalue s = s(β) as a function of β is sketched in figure 23.2; this condition
is satisfied on the curve F = 0. The cycle averaging formulas for the slope and
curvature of s(β) are obtained as in (20.11) by taking derivatives of the eigenvalue
condition. Evaluated along F = 0, by the chain rule the first derivative yields

0 =
d

dβ
F(β, s(β))

=
∂F
∂β
+

ds
dβ

∂F
∂s

∣∣∣∣∣
s=s(β)

=⇒ ds
dβ
= −∂F

∂β

/ ∂F
∂s

, (23.20)

and the second derivative of F(β, s(β)) = 0 yields

d2s

dβ2
= −

⎡⎢⎢⎢⎢⎢⎣∂2F

∂β2
+ 2

ds
dβ

∂2F
∂β∂s

+

(
ds
dβ

)2
∂2F

∂s2

⎤⎥⎥⎥⎥⎥⎦ / ∂F
∂s

. (23.21)
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Denoting expectations as in (20.14) by

〈A〉F = − ∂F
∂β

∣∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F
∂s

∣∣∣∣∣
β,s=s(β)

,

〈A2〉F = − ∂2F

∂β2

∣∣∣∣∣∣
β,s=s(β)

, 〈TA〉F =
∂2F
∂s∂β

∣∣∣∣∣∣
β,s=s(β)

, (23.22)

the mean cycle expectation value of A, the mean cycle period, and second deriva-
tives of F computed for F(β, s(β)) = 0, we obtain the cycle averaging formulas
for the expectation of the observable (20.11) and for its (generalized) diffusion
constant (or, more generally, diffusion tensor):

〈a〉 = 〈A〉F

〈T〉F
(23.23)

Δ =
1

〈T〉F
〈(A − T 〈a〉)2〉F , (23.24)

and so forth for higher cumulants. These formulas are the central result of periodic
section 20.2

orbit theory. We now show that for each choice of the function F(β, s) in (23.3)
and (23.15) (also the trace, or ‘level sum’ of (27.15)), the above quantities have
explicit cycle expansions.

23.5.1 Dynamical zeta function cycle averaging formulas

For the dynamical zeta function condition (23.18), the cycle averaging formulas
(23.20), (23.24) require one to evaluate derivatives of dynamical zeta functions at
a given eigenvalue. Substituting the cycle expansion (23.3) for the dynamical zeta
function we obtain

〈A〉ζ := − ∂

∂β

1
ζ
=

∑′
Aπtπ (23.25)

〈T〉ζ :=
∂

∂s
1
ζ
=

∑′
Tπtπ , 〈n〉ζ := −z

∂

∂z
1
ζ
=

∑′
nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function average over
prime cycles, Aπ, Tπ, and nπ given by (23.4) are evaluated on pseudo-cycles (23.5),
and pseudo-cycle weights tπ = tπ(z, β, s(β)) are evaluated at the eigenvalue s(β).
In most applications β = 0, and s(β) of interest is typically the leading eigenvalue
s0 = s0(0) of the evolution generator A.

For bounded flows the leading eigenvalue (the escape rate) vanishes, s(0) = 0,
the exponent βAπ − sTπ in (23.4) vanishes, so the cycle expansions take a simple
form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (23.26)
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23.6 Cycle expansions for finite alphabets

A finite transition graph like the one given in figure 17.3 (d) is a compact encod-
ing of the transition matrix for a given subshift. It is a sparse matrix, and the
associated determinant (18.32) can be written by inspection: it is the sum of all
possible partitions of the graph into products of non-intersecting loops, with each
loop carrying a minus sign:

det (1 − T ) = 1 − t0 − t0011 − t0001 − t00011 + t0+0011 + t0011+0001 (23.30)

The simplest application of this determinant is the evaluation of the topological
entropy; if we set tp = znp , where np is the length of the p-cycle, the determinant
reduces to the topological polynomial (18.33).

The determinant (23.30) is exact for the finite graph figure 17.3 (e), as well
as for the associated finite-dimensional transfer operator of example 20.4. For
the associated (infinite dimensional) evolution operator, it is the beginning of the
cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1 − t0 − t0011 − t0001 + t0001+0011

−(t00011 − t0+0011 + . . . curvatures) . . . (23.31)
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The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (23.8); they
are not shadowed by any combinations of shorter cycles. All other cycles appear
together with their shadows (for example, the t00011 − t0+0011 combination, see
figure 1.12) and yield exponentially small corrections for hyperbolic systems. For
cycle counting purposes, both tab and the pseudo-cycle combination ta+b = tatb in
(23.3) have the same weight zna+nb , so all curvature combinations tab − ta+b vanish
exactly, and the topological polynomial (18.17) offers a quick way of checking
the fundamental part of a cycle expansion.

The splitting of cycles into the fundamental cycles and the curvature correc-
tions depends on balancing long cycles tab against their pseudo-trajectory shadows
tatb. If the ab cycle or either of the shadows a, b do not to exist, such curvature
cancelation is unbalanced.

The most important lesson of the pruning of the cycle expansions is that pro-
hibition of a finite subsequence imbalances the head of a cycle expansion and
increases the number of the fundamental cycles in (23.8). Hence the pruned ex-
pansions are expected to start converging only after all fundamental cycles have
been incorporated - in the last example, the cycles 1, 10, 10100, 1011100. With-
out cycle expansions, no such crisp and clear cut definition of the fundamental set
of scales is available.

Because topological zeta functions reduce to polynomials for finite grammars,
only a few fundamental cycles exist and long cycles can be grouped into curvature
combinations. For example, the fundamental cycles in exercise11.1 are the three
2-cycles that bounce back and forth between two disks and the two 3-cycles that
visit every disk. Of all cycles, the 2-cycles have the smallest Floquet exponent,
and the 3-cycles the largest. It is only after these fundamental cycles have been
included that a cycle expansion is expected to start converging smoothly, i.e., only
for n larger than the lengths of the fundamental cycles are the curvatures ĉn (in
expansion (23.8)), a measure of the deviations between long orbits and their short
cycle approximations, expected to fall off rapidly with n.
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regrouped into dominant fundamental contributions tf and decreasing curvature
corrections ĉn. The fundamental cycles tf have no shorter approximations; they
are the ‘building blocks’ of the dynamics in the sense that all longer orbits can be
approximately pieced together from them. A typical curvature contribution to ĉn
is the difference of a long cycle {ab} and its shadowing approximation by shorter
cycles {a} and {b}, as in figure 1.12:

tab − tatb = tab(1 − tatb/tab)

Orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo-cycle’
{a}{b}, lie close to each other, have similar weights, and for increasingly long
orbits the curvature corrections fall off rapidly. Indeed, for systems that satisfy the
‘axiom A’ requirements, such as the 3-disk billiard, curvature expansions converge
very well.

Once a set of the shortest cycles has been found, and the cycle periods, stabili-
ties, and integrated observable have been computed, the cycle averaging formulas
such as (23.25) for the dynamical zeta function

〈a〉 = 〈A〉ζ/〈T〉ζ , where for the zeta function expansions:

〈A〉ζ = − ∂

∂β

1
ζ
=

∑′
Aπtπ , 〈T〉ζ =

∂

∂s
1
ζ
=

∑′
Tπtπ

yield the expectation value of the observable a(x), i.e., the long time average over
the chaotic non–wandering set).

Résumé

A cycle expansion is a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (22.11) expanded as sums
over pseudo-cycles, which are products of the prime cycle weights tp.

If a flow is hyperbolic and has the topology of the Smale horseshoe (a sub-
shift of finite type), dynamical zeta functions are holomorphic (have only poles
in the complex s plane), the spectral determinants are entire, and the spectrum of
the evolution operator is discrete. The situation is considerably more reassuring
than what practitioners of quantum chaos fear; there is no ‘abscissa of absolute
convergence’ and no ‘entropy barrier’, the exponential proliferation of cycles is
no problem, spectral determinants are entire and converge everywhere, and the
topology dictates the choice of cycles to be used in cycle expansion truncations.

In this case, the basic observation is that the motion in low-dimensional dy-
namical systems is organized around a few fundamental cycles, with the cycle
expansion of the Euler product

1/ζ = 1 −
f

t f −
∑ ∑

n

ĉn,




