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Laws of attribution

(1) Arnol’d’s Law: everything that is discovered is named
after someone else (including Arnol’d’s law)

(2) Berry’s Law: sometimes, the sequence of antecedents
seems endless. So, nothing is discovered for the first
time.

(3) Whiteheads’s Law: Everything of importance has
been said before by someone who did not discover it.

M.V. Berry

A.1 Chaos is born

(R. Mainieri)
Trying to predict the motion of the Moon has preoccupied astronomers

since antiquity. Accurate understanding of its motion was important for
determining the longitude of ships while traversing open seas.

Kepler’s Rudolphine tables had been a great improvement over previ-
ous tables, and Kepler was justly proud of his achievements. He wrote in
the introduction to the announcement of Kepler’s third law, Harmonice
Mundi (Linz, 1619) in a style that would not fly with the contemporary
Physical Review Letters editors:

What I prophesied two-and-twenty years ago, as soon as I dis-
covered the five solids among the heavenly orbits–what I firmly
believed long before I had seen Ptolemy’s Harmonics–what I had
promised my friends in the title of this book, which I named be-
fore I was sure of my discovery–what sixteen years ago, I urged
as the thing to be sought–that for which I joined Tycho Brahé,
for which I settled in Prague, for which I have devoted the best
part of my life to astronomical contemplations, at length I have
brought to light, and recognized its truth beyond my most san-
guine expectations. It is not eighteen months since I got the first
glimpse of light, three months since the dawn, very few days since
the unveiled sun, most admirable to gaze upon, burst upon me.
Nothing holds me; I will indulge my sacred fury; I will triumph
over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my
God far away from the confines of Egypt. If you forgive me, I
rejoice; if you are angry, I can bear it; the die is cast, the book is
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written, to be read either now or in posterity, I care not which;
it may well wait a century for a reader, as God has waited six
thousand years for an observer.

Then came Newton. Classical mechanics has not stood still since
Newton. The formalism that we use today was developed by Euler and
Lagrange. By the end of the 1800’s the three problems that would lead
to the notion of chaotic dynamics were already known: the three-body
problem, the ergodic hypothesis, and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits
of Kepler and set an example of how equations of motion could be solved
by integrating. But the motion of the Moon is not well approximated by
an ellipse with the Earth at a focus; at least the effects of the Sun have
to be taken into account if one wants to reproduce the data the classical
Greeks already possessed. To do that one has to consider the motion of
three bodies: the Moon, the Earth, and the Sun. When the planets are
replaced by point particles of arbitrary masses, the problem to be solved
is known as the three-body problem. The three-body problem was also a
model to another concern in astronomy. In the Newtonian model of the
solar system it is possible for one of the planets to go from an elliptic orbit
around the Sun to an orbit that escaped its dominion or that plunged
right into it. Knowing if any of the planets would do so became the
problem of the stability of the solar system. A planet would not meet
this terrible end if solar system consisted of two celestial bodies, but
whether such fate could befall in the three-body case remained unclear.

After many failed attempts to solve the three-body problem, natu-
ral philosophers started to suspect that it was impossible to integrate.
The usual technique for integrating problems was to find the conserved
quantities, quantities that do not change with time and allow one to
relate the momenta and positions different times. The first sign on the
impossibility of integrating the three-body problem came from a result
of Burns that showed that there were no conserved quantities that were
polynomial in the momenta and positions. Burns’ result did not preclude
the possibility of more complicated conserved quantities. This problem
was settled by Poincaré and Sundman in two very different ways.

In an attempt to promote the journal Acta Mathematica, Mittag-
Leffler got the permission of the King Oscar II of Sweden and Norway
to establish a mathematical competition. Several questions were posed
(although the king would have preferred only one), and the prize of
2500 kroner would go to the best submission. One of the questions was
formulated by Weierstrass:

Given a system of arbitrary mass points that attract each
other according to Newton’s laws, under the assumption that no
two points ever collide, try to find a representation of the coordi-
nates of each point as a series in a variable that is some known
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function of time and for all of whose values the series converges
uniformly.

This problem, whose solution would considerably extend our
understanding of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quanti-
ties that were analytic in the momenta and positions could not exist. To
show that he introduced methods that were very geometrical in spirit:
the importance of state space flow, the role of periodic orbits and their
cross sections, the homoclinic points.

The interesting thing about Poincaré’s work was that it did not solve
the problem posed. He did not find a function that would give the coor-
dinates as a function of time for all times. He did not show that it was
impossible either, but rather that it could not be done with the Bernoulli
technique of finding a conserved quantity and trying to integrate. Inte-
gration would seem unlikely from Poincaré’s prize-winning memoir, but
it was accomplished by the Finnish-born Swedish mathematician Sund-
man. Sundman showed that to integrate the three-body problem one
had to confront the two-body collisions. He did that by making them go
away through a trick known as regularization of the collision manifold.
The trick is not to expand the coordinates as a function of time t, but
rather as a function of 3

√
t. To solve the problem for all times he used

a conformal map into a strip. This allowed Sundman to obtain a series
expansion for the coordinates valid for all times, solving the problem
that was proposed by Weirstrass in the King Oscar II’s competition.

The Sundman’s series are not used today to compute the trajectories
of any three-body system. That is more simply accomplished by numer-
ical methods or through series that, although divergent, produce better
numerical results. The conformal map and the collision regularization
mean that the series are effectively in the variable 1 − e−

3
√

t. Quite
rapidly this gets exponentially close to one, the radius of convergence of
the series. Many terms, more terms than any one has ever wanted to
compute, are needed to achieve numerical convergence. Though Sund-
man’s work deserves better credit than it gets, it did not live up to
Weirstrass’s expectations, and the series solution did not “considerably
extend our understanding of the solar system.” The work that followed
from Poincaré did.

A.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic
dynamics was the ergodic hypothesis of Boltzmann. Maxwell and Boltz-
mann had combined the mechanics of Newton with notions of probability
in order to create statistical mechanics, deriving thermodynamics from
the equations of mechanics. To evaluate the heat capacity of even a
simple system, Boltzmann had to make a great simplifying assumption
of ergodicity: that the dynamical system would visit every part of the
phase space allowed by conservation laws equally often. This hypothesis
was extended to other averages used in statistical mechanics and was
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called the ergodic hypothesis. It was reformulated by Poincaré to say
that a trajectory comes as close as desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the
end of twentieth century it has only been shown true for a few systems
and wrong for quite a few others. Early on, as a mathematical neces-
sity, the proof of the hypothesis was broken down into two parts. First
one would show that the mechanical system was ergodic (it would go
near any point) and then one would show that it would go near each
point equally often and regularly so that the computed averages made
mathematical sense. Koopman took the first step in proving the ergodic
hypothesis when he noticed that it was possible to reformulate it using
the recently developed methods of Hilbert spaces. This was an impor-
tant step that showed that it was possible to take a finite-dimensional
nonlinear problem and reformulate it as a infinite-dimensional linear
problem. This does not make the problem easier, but it does allow one
to use a different set of mathematical tools on the problem. Shortly
after Koopman started lecturing on his method, von Neumann proved a
version of the ergodic hypothesis, giving it the status of a theorem. He
proved that if the mechanical system was ergodic, then the computed
averages would make sense. Soon afterwards Birkhoff published a much
stronger version of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the
theory of chaotic dynamical systems was the work on the nonlinear os-
cillators. The problem is to construct mechanical models that would
aid our understanding of physical systems. Lord Rayleigh came to the
problem through his interest in understanding how musical instruments
generate sound. In the first approximation one can construct a model
of a musical instrument as a linear oscillator. But real instruments do
not produce a simple tone forever as the linear oscillator does, so Lord
Rayleigh modified this simple model by adding friction and more realis-
tic models for the spring. By a clever use of negative friction he created
two basic models for the musical instruments. These models have more
than a pure tone and decay with time when not stroked. In his book
The Theory of Sound Lord Rayleigh introduced a series of methods that
would prove quite general, such as the notion of a limit cycle, a periodic
motion a system goes to regardless of the initial conditions.

A.2 Chaos grows up

(R. Mainieri)
The theorems of von Neumann and Birkhoff on the ergodic hypothe-

sis were published in 1912 and 1913. This line of enquiry developed in
two directions. One direction took an abstract approach and considered
dynamical systems as transformations of measurable spaces into them-
selves. Could we classify these transformations in a meaningful way?
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This lead Kolmogorov to the introduction of the concept of entropy for
dynamical systems. With entropy as a dynamical invariant it became
possible to classify a set of abstract dynamical systems known as the
Bernoulli systems. The other line that developed from the ergodic
hypothesis was in trying to find mechanical systems that are ergodic.
An ergodic system could not have stable orbits, as these would break
ergodicity. So in 1898 Hadamard published a paper with a playful title
of “... billiards ...,” where he showed that the motion of balls on surfaces
of constant negative curvature is everywhere unstable. This dynamical
system was to prove very useful and it was taken up by Birkhoff. Morse
in 1923 showed that it was possible to enumerate the orbits of a ball
on a surface of constant negative curvature. He did this by introducing
a symbolic code to each orbit and showed that the number of possible
codes grew exponentially with the length of the code. With contribu-
tions by Artin, Hedlund, and H. Hopf it was eventually proven that the
motion of a ball on a surface of constant negative curvature was ergodic.
The importance of this result escaped most physicists, one exception
being Krylov, who understood that a physical billiard was a dynamical
system on a surface of negative curvature, but with the curvature con-
centrated along the lines of collision. Sinai, who was the first to show
that a physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It
prompted many experiments and some theoretical development by van
der Pol, Duffing, and Hayashi. They found other systems in which the
nonlinear oscillator played a role and classified the possible motions of
these systems. This concreteness of experiments, and the possibility of
analysis was too much of temptation for Mary Lucy Cartwright and J.E.
Littlewood, who set out to prove that many of the structures conjectured
by the experimentalists and theoretical physicists did indeed follow from
the equations of motion. Birkhoff had found a “remarkable curve” in a
two dimensional map; it appeared to be non-differentiable and it would
be nice to see if a smooth flow could generate such a curve. The work of
Cartwright and Littlewood lead to the work of Levinson, which in turn
provided the basis for the horseshoe construction of S. Smale.

In Russia, Lyapunov paralleled the methods of Poincaré and initiated
the strong Russian dynamical systems school. Andronov carried on with
the study of nonlinear oscillators and in 1937 introduced together with
Pontryagin the notion of coarse systems. They were formalizing the
understanding garnered from the study of nonlinear oscillators, the un-
derstanding that many of the details on how these oscillators work do
not affect the overall picture of the state space: there will still be limit
cycles if one changes the dissipation or spring force function by a little
bit. And changing the system a little bit has the great advantage of
eliminating exceptional cases in the mathematical analysis. Coarse sys-
tems were the concept that caught Smale’s attention and enticed him to
study dynamical systems.
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A.3 Chaos with us

(R. Mainieri)
In the fall of 1961 Steven Smale was invited to Kiev where he met

Arnol’d, Anosov, Sinai, and Novikov. He lectured there, and spent a lot
of time with Anosov. He suggested a series of conjectures, most of which
Anosov proved within a year. It was Anosov who showed that there are
dynamical systems for which all points (as opposed to a non-wandering
set) admit the hyperbolic structure, and it was in honor of this result
that Smale named these systems Axiom-A. In Kiev Smale found a re-
ceptive audience that had been thinking about these problems. Smale’s
result catalyzed their thoughts and initiated a chain of developments
that persisted into the 1970’s.

Smale collected his results and their development in the 1967 review
article on dynamical systems, entitled “Differentiable dynamical sys-
tems”. There are many great ideas in this paper: the global foliation
of invariant sets of the map into disjoint stable and unstable parts; the
existence of a horseshoe and enumeration and ordering of all its orbits;
the use of zeta functions to study dynamical systems. The emphasis of
the paper is on the global properties of the dynamical system, on how to
understand the topology of the orbits. Smale’s account takes you from
a local differential equation (in the form of vector fields) to the global
topological description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confus-
ing. The general character of entropy was understood by Weiner, who
seemed to have spoken to Shannon. In 1948 Shannon published his re-
sults on information theory, where he discusses the entropy of the shift
transformation. Kolmogorov went far beyond and suggested a definition
of the metric entropy of an area preserving transformation in order to
classify Bernoulli shifts. The suggestion was taken by his student Sinai
and the results published in 1959. In 1960 Rohlin connected these results
to measure-theoretical notions of entropy. The next step was published
in 1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these
papers showed that one could define the notion of topological entropy
and use it as an invariant to classify continuous maps. In 1967 Anosov
and Sinai applied the notion of entropy to the study of dynamical sys-
tems. It was in the context of studying the entropy associated to a
dynamical system that Sinai introduced Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems and statis-
tical mechanics; this has been a very fruitful relationship. It adds mea-
sure notions to the topological framework laid down in Smale’s paper.
Markov partitions divide the state space of the dynamical system into
nice little boxes that map into each other. Each box is labeled by a code
and the dynamics on the state space maps the codes around, inducing
a symbolic dynamics. From the number of boxes needed to cover all
the space, Sinai was able to define the notion of entropy of a dynamical
system. In 1970 Bowen came up independently with the same ideas,
although there was presumably some flow of information back and forth
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before these papers got published. Bowen also introduced the important
concept of shadowing of chaotic orbits. We do not know whether at this
point the relations with statistical mechanics were clear to every one.
They became explicit in the work of Ruelle. Ruelle understood that the
topology of the orbits could be specified by a symbolic code, and that
one could associate an “energy” to each orbit. The energies could be
formally combined in a “partition function” to generate the invariant
measure of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of
the statistical mechanics approach to chaotic systems, research turned
to studying particular cases. The simplest case to consider is one-
dimensional maps. The topology of the orbits for parabola-like maps was
worked out in 1973 by Metropolis, Stein, and Stein. The more general
one-dimensional case was worked out in 1976 by Milnor and Thurston
in a widely circulated preprint, whose extended version eventually got
published in 1988.

A lecture of Smale and the results of Metropolis, Stein, and Stein in-
spired Feigenbaum to study simple maps. This lead him to the discovery
of the universality in quadratic maps and the application of ideas from
field-theory to dynamical systems. Feigenbaum’s work was the culmina-
tion in the study of one-dimensional systems; a complete analysis of a
nontrivial transition to chaos. Feigenbaum introduced many new ideas
into the field: the use of the renormalization group which lead him to
introduce functional equations in the study of dynamical systems, the
scaling function which completed the link between dynamical systems
and statistical mechanics, and the use of presentation functions as the
dynamics of scaling functions.

The work in more than one dimension progressed very slowly and is
still far from completed. The first result in trying to understand the
topology of the orbits in two dimensions (the equivalent of Metropo-
lis, Stein, and Stein, or Milnor and Thurston’s work) was obtained by
Thurston. Around 1975 Thurston was giving lectures “On the geometry
and dynamics of diffeomorphisms of surfaces”. Thurston’s techniques
exposed in that lecture have not been applied in physics, but much of
the classification that Thurston developed can be obtained from the no-
tion of a “pruning front” developed independently by Cvitanović.

Once one develops an understanding for the topology of the orbits of a
dynamical system, one needs to be able to compute its properties. Ruelle
had already generalized the zeta function introduced by Artin and Mazur
so that it could be used to compute the average value of observables. The
difficulty with Ruelle’s zeta function is that it does not converge very
well. Starting out from Smale’s observation that a chaotic dynamical
system is dense with a set of periodic orbits, Cvitanović used these
orbits as a skeleton on which to evaluate the averages of observables,
and organized such calculations in terms of rapidly converging cycle
expansions. This convergence is attained by using the shorter orbits
used as a basis for shadowing the longer orbits.

This account is far from complete, but we hope that it will help get
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a sense of perspective on the field. It is not a fad and it will not die
anytime soon.

Further reading

Notion of global foliations. For each paper cited in dy-
namical systems literature, there are many results that
went into its development. As an example, take the no-
tion of global foliations that we attribute to Smale. As
far as we can trace the idea, it goes back to René Thom;
local foliations were already used by Hadamard. Smale
attended a seminar of Thom in 1958 or 1959. In that
seminar Thom was explaining his notion of transversal-
ity. One of Thom’s disciples introduced Smale to Brazil-
ian mathematician Peixoto. Peixoto (who had learned
the results of the Andronov-Pontryagin school from Lef-
schetz) was the closest Smale had ever come until then
to the Andronov-Pontryagin school. It was from Peixoto
that Smale learned about structural stability, a notion
that got him enthusiastic about dynamical systems, as
it blended well with his topological background. It was
from discussions with Peixoto that Smale got the prob-
lems in dynamical systems that lead him to his 1960 pa-
per on Morse inequalities. The next year Smale published
his result on the hyperbolic structure of the nonwander-
ing set. Smale was not the first to consider a hyperbolic
point, Poincaré had already done that; but Smale was
the first to introduce a global hyperbolic structure. By
1960 Smale was already lecturing on the horseshoe as a
structurally stable dynamical system with an infinity of
periodic points and promoting his global viewpoint.

(R. Mainieri)
Levels of ergodicity. In the mid 1970’s A. Ka-

tok and Ya.B. Pesin tried to use geometry to establish
positive Lyapunov exponents. A. Katok and J.-M. Strel-
cyn carried out the program and developed a theory of
general dynamical systems with singularities. They stud-
ied uniformly hyperbolic systems (as strong as Anosov’s),
but with sets of singularities. Under iterations a dense set
of points hits the singularities. Even more important are
the points that never hit the singularity set. In order to
establish some control over how they approach the set,
one looks at trajectories that apporach the set by some
given ǫn, or faster.

Ya.G. Sinai, L. Bunimovich and Chernov studied the
geometry of billiards in a very detailed way. A. Katok
and Ya.B. Pesin’s idea was much more robust. Look
at the discontinuity set (geometry of it matters not at
all), take an ǫ neighborhood around it. Given that the
Lebesgue measure is ǫα and the stability grows not faster
than (distance)n, A. Katok and J.-M. Strelcyn prove that
the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case.
Now the problem has no invariant Lebesgue measure. As-
suming uniform hyperbolicity, with singularities, and ty-
ing together Lebesgue measure and discontinutities, and
given that the stability grows not faster than (distance)n,
Ya.B. Pesin proved that the Lyapunov exponent is non-
zero, and that SRB measure exists. He also proved that
the Lorenz, Lozi and Byelikh attractors satisfy these con-
ditions.

In the the systems were uniformly hyperbolic, all trou-
ble was in differentials. For the Hénon attractor, already
the differentials are nonhyperbolic. The points do not
separate uniformly, but the analogue of the singularity
set can be obtained by excizing the regions that do not
separate. Hence there are 3 levels of ergodic systems:

(1) Anosov flow

(2) Anosov flow + singularity set

• the Hamiltonian systems: general case A. Ka-
tok and J.-M. Strelcyn, billiards Ya.G. Sinai
and L. Bunimovich.

• the dissipative case: Ya.B. Pesin

(3) Hénon

• The first proof was given by M. Benedicks and
L. Carleson [?].

• A more readable proof is given in
M. Benedicks and L.-S. Young [12]

(based on Ya.B. Pesin’s comments)
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A.4 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.

Joe Keller, after being asked to define applied mathematics

The history of the periodic orbit theory is rich and curious, and the
recent advances are to equal degree inspired by a century of separate
development of three disparate subjects; 1. classical chaotic dynamics,
initiated by Poincaré and put on its modern footing by Smale, Ruelle,
and many others; 2. quantum theory initiated by Bohr, with the mod-
ern “chaotic” formulation by Gutzwiller; and 3. analytic number theory
initiated by Riemann and formulated as a spectral problem by Selberg.
Following totally different lines of reasoning and driven by very differ-
ent motivations, the three separate roads all arrive at formally nearly
identical trace formulas, zeta functions and spectral determinants.

That these topics should be related is far from obvious. Connection
between dynamics and number theory arises from Selberg’s observation
that description of geodesic motion and wave mechanics on spaces of
constant negative curvature is essentially a number-theoretic problem.
A posteriori, one can say that zeta functions arise in both classical and
quantum mechanics because in both the dynamical evolution can be
described by the action of linear evolution (or transfer) operators on
infinite-dimensional vector spaces. The spectra of these operators are
given by the zeros of appropriate determinants. One way to evaluate
determinants is to expand them in terms of traces, log det = tr log, and
in this way the spectrum of an evolution operator becames related to its
traces, i.e., periodic orbits. A perhaps deeper way of restating this is to
observe that the trace formulas perform the same service in all of the
above problems; they relate the spectrum of lengths (local dynamics) to
the spectrum of eigenvalues (global averages), and for nonlinear geome-
tries they play a role analogous to that the Fourier transform plays for
the circle.

A.5 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went up
for a walk up the Uetliberg. On the top they sat down and
talked about physics. In particular they talked about the new
atom model of Bohr. There and then they made the “Uetli
Schwur”: If that crazy model of Bohr turned out to be right,
then they would leave physics. It did and they didn’t.
A. Pais, Inward Bound: of Matter and Forces in the Physical

World

In an afternoon of May 1991 Dieter Wintgen is sitting in his office at
the Niels Bohr Institute beaming with the unparalleled glee of a boy
who has just committed a major mischief. The starting words of the
manuscript he has just penned are
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The failure of the Copenhagen School to obtain a reasonable
. . .

34 years old at the time, Dieter was a scruffy kind of guy, always in san-
dals and holed out jeans, a left winger and a mountain climber, working
around the clock with his students Gregor and Klaus to complete the
work that Bohr himself would have loved to see done back in 1916: a
“planetary” calculation of the helium spectrum.

Never mind that the “Copenhagen School” refers not to the old quan-
tum theory, but to something else. The old quantum theory was no
theory at all; it was a set of rules bringing some order to a set of phenom-
ena which defied logic of classical theory. The electrons were supposed
to describe planetary orbits around the nucleus; their wave aspects were
yet to be discovered. The foundations seemed obscure, but Bohr’s an-
swer for the once-ionized helium to hydrogen ratio was correct to five
significant figures and hard to ignore. The old quantum theory marched
on, until by 1924 it reached an impasse: the helium spectrum and the
Zeeman effect were its death knell.

Since the late 1890’s it had been known that the helium spectrum
consists of the orthohelium and parahelium lines. In 1915 Bohr sug-
gested that the two kinds of helium lines might be associated with two
distinct shapes of orbits (a suggestion that turned out to be wrong). In
1916 he got Kramers to work on the problem, and wrote to Rutherford:
“I have used all my spare time in the last months to make a serious
attempt to solve the problem of ordinary helium spectrum . . . I think
really that at last I have a clue to the problem.” To other colleagues he
wrote that “the theory was worked out in the fall of 1916” and of having
obtained a “partial agreement with the measurements.” Nevertheless,
the Bohr-Sommerfeld theory, while by and large successful for hydrogen,
was a disaster for neutral helium. Heroic efforts of the young generation,
including Kramers and Heisenberg, were of no avail.

For a while Heisenberg thought that he had the ionization potential
for helium, which he had obtained by a simple perturbative scheme.
He wrote enthusiastic letters to Sommerfeld and was drawn into a col-
laboration with Max Born to compute the spectrum of helium using
Born’s systematic perturbative scheme. In first approximation, they re-
produced the earlier calculations. The next level of corrections turned
out to be larger than the computed effect. The concluding paragraph of
Max Born’s classic “Vorlesungen über Atommechanik” from 1925 sums
it up in a somber tone:

(. . . ) the systematic application of the principles of the quantum
theory (. . . ) gives results in agreement with experiment only in
those cases where the motion of a single electron is considered; it
fails even in the treatment of the motion of the two electrons in
the helium atom.

This is not surprising, for the principles used are not really
consistent. (. . . ) A complete systematic transformation of the
classical mechanics into a discontinuous mechanics is the goal to-
wards which the quantum theory strives.
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That year Heisenberg suffered a bout of hay fever, and the old quan-
tum theory was dead. In 1926 he gave the first quantitative explanation
of the helium spectrum. He used wave mechanics, electron spin and the
Pauli exclusion principle, none of which belonged to the old quantum
theory, and planetary orbits of electrons were cast away for nearly half
a century.

Why did Pauli and Heisenberg fail with the helium atom? It was not
the fault of the old quantum mechanics, but rather it reflected their lack
of understanding of the subtleties of classical mechanics. Today we know
what they missed in 1913-24: the role of conjugate points (topological
indices) along classical trajectories was not accounted for, and they had
no idea of the importance of periodic orbits in nonintegrable systems.

Since then the calculation for helium using the methods of the old
quantum mechanics has been fixed. Leopold and Percival added the
topological indices in 1980, and in 1991 Wintgen and collaborators or-
bits. Dieter had good reasons to gloat; while the rest of us were prepar-
ing to sharpen our pencils and supercomputers in order to approach
the dreaded 3-body problem, they just went ahead and did it. What it
took–and much else–is described in this book. One is also free to ponder
what quantum theory would look like today if all this was worked out
in 1917.

Further reading

Sources. This tale, aside from a few personal recollec-
tions, is in large part lifted from Abraham Pais’ accounts
of the demise of the old quantum theory [7,8], as well as

Jammer’s account [3]. The helium spectrum is taken up
in Chapter ??. In August 1994 Dieter Wintgen died in a
climbing accident in the Swiss Alps.
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