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For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.
Walt Whitman,
Leaves of Grass: Song of the Universal

We discuss first the necessity of studying the averages of observables
in chaotic dynamics, and then cast the formulas for averages in a mul-
tiplicative form that motivates the introduction of evolution operators
and further formal developments to come. The main result is that any
dynamical average measurable in a chaotic system can be extracted from
the spectrum of an appropriately constructed evolution operator. In or-
der to keep our toes closer to the ground, in Section 15.3 we try out the
formalism on the first quantitative diagnosis that a system’s got chaos,
Lyapunov exponents.

15.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely
specified initial condition, no matter how precise, will fill out the entire
accessible state space. Hence for chaotic dynamics one cannot follow
individual trajectories for a long time; what is attainable is a descrip-
tion of the geometry of the set of possible outcomes, and evaluation
of long time averages. Examples of such averages are transport coeffi-
cients for chaotic dynamical flows, such as escape rate, mean drift and
diffusion rate; power spectra; and a host of mathematical constructs
such as generalized dimensions, entropies and Lyapunov exponents.
Here we outline how such averages are evaluated within the evolution
operator framework. The key idea is to replace the expectation val-
ues of observables by the expectation values of generating functionals.
This associates an evolution operator with a given observable, and re-
lates the expectation value of the observable to the leading eigenvalue
of the evolution operator.

15.1.1 Time averages

Let a = a(x) be any observable, a function that associates to each point in
state space a number, a vector, or a tensor. The observable reports on a
property of the dynamical system. It is a device, such as a thermometer
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or laser Doppler velocitometer. The device itself does not change dur-
ing the measurement. The velocity field ai(x) = vi(x) is an example of
a vector observable; the length of this vector, or perhaps a temperature
measured in an experiment at instant τ are examples of scalar observ-
ables. We define the integrated observable At as the time integral of the
observable a evaluated along the trajectory of the initial point x0,

At(x0) =
∫ t

0

dτ a(f τ (x0)) . (15.1)

If the dynamics is given by an iterated mapping and the time is discrete,
t→ n, the integrated observable is given by

An(x0) =
n−1∑
k=0

a(fk(x0)) (15.2)

(we suppress possible vectorial indices for the time being). For ex-
ample, if the observable is the velocity, ai(x) = vi(x), its time inte-
gral At

i(x0) is the trajectory At
i(x0) = xi(t). Another familiar exam-

ple, for Hamiltonian flows, is the action associated with a trajectory
x(t) = [q(t), p(t)] passing through a phase space point x0 = [q(0), p(0)]
(this function will be the key to the semiclassical quantization of Chap-
ter ??):

At(x0) =
∫ t

0

dτ q̇(τ) · p(τ) . (15.3)

The time average of the observable along a trajectory is defined by

a(x0) = lim
t→∞

1
t
At(x0) . (15.4)

If a does not behave too wildly as a function of time – for example, if
ai(x) is the Chicago temperature, bounded between−80oF and +130oF
for all times – At(x0) is expected to grow not faster than t, and the limit
(15.4) exists. For an example of a time average - the Lyapunov exponent
- see Section 15.3.

The time average depends on the trajectory, but not on the initial
point on that trajectory: if we start at a later state space point fT (x0)
we get a couple of extra finite contributions that vanish in the t→∞
limit:

a(fT (x0)) = lim
t→∞

1
t

∫ t+T

T

dτ a(f τ (x0))

= a(x0)− lim
t→∞

1
t

(∫ T

0

dτ a(f τ (x0))−
∫ t+T

t

dτ a(f τ (x0))

)

= a(x0) .

The integrated observable At(x0) and the time average a(x0) take a
particularly simple form when evaluated on a periodic orbit. Define4.5, page 67
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(a)

x

M (b)

Fig. 15.1 (a) A typical chaotic trajectory explores the phase space with the long time visita-
tion frequency building up the natural measure ρ0(x). (b) time average evaluated along
an atypical trajectory such as a periodic orbit fails to explore the entire accessible state
space. (A. Johansen)

flows: Ap = apTp =
∫ Tp

0

dτa (f τ (x0)) , x0 ∈ p

maps: = apnp =
np−1∑
i=0

a
(
f i(x0)

)
, (15.5)

where p is a prime cycle, Tp is its period, and np is its discrete time
period in the case of iterated map dynamics. Ap is a loop integral of
the observable along a single traversal of a prime cycle p, so it is an
intrinsic property of the cycle, independent of the starting point x0 ∈
p. (If the observable a is not a scalar but a vector or matrix we might
have to be more careful in defining an average which is independent of
the starting point on the cycle). If the trajectory retraces itself r times,
we just obtain Ap repeated r times. Evaluation of the asymptotic time
average (15.4) requires therefore only a single traversal of the cycle:

ap = Ap/Tp . (15.6)

However, a(x0) is in general a wild function of x0; for a hyperbolic
system ergodic with respect to a smooth measure, it takes the same
value 〈a〉 for almost all initial x0, but a different value (15.6) on any
periodic orbit, i.e., on a dense set of points (Fig. 15.1.1 (b)). For ex-
ample, for an open system such as the Sinai gas of Section ?? (an infi-

Chapter ??
nite 2-dimensional periodic array of scattering disks) the phase space is
dense with initial points that correspond to periodic runaway trajecto-
ries. The mean distance squared traversed by any such trajectory grows
as x(t)2 ∼ t2, and its contribution to the diffusion rate D ≈ x(t)2/t,
(15.4) evaluated with a(x) = x(t)2, diverges. Seemingly there is a para-
dox; even though intuition says the typical motion should be diffusive,
we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by robust
averaging, i.e., averaging also over the initial x, and worrying about
the measure of the “pathological” trajectories.
ChaosBook.org version11.9.2, Aug 21 2007 average - 13nov2006
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15.1.2 Space averages

The space average of a quantity a that may depend on the point x of state
spaceM and on the time t is given by the d-dimensional integral over
the d coordinates of the dynamical system:

〈a〉(t) =
1
|M|

∫
M

dx a()

|M| =
∫
M

dx = volume ofM . (15.7)

The space M is assumed to have finite dimension and volume (open
systems like the 3-disk game of pinball are discussed in Section 15.1.3).

What is it we really do in experiments? We cannot measure the time
average (15.4), as there is no way to prepare a single initial condition
with infinite precision. The best we can do is to prepare some initial
density ρ(x) perhaps concentrated on some small (but always finite)
neighborhood ρ(x) = ρ(x, 0), so one should abandon the uniform space
average (15.7), and consider instead

〈a〉ρ(t) =
1
|M|

∫
M

dx ρ(x)a() . (15.8)

We do not bother to lug the initial ρ(x) around, as for the ergodic
and mixing systems that we shall consider here any smooth initial den-
sity will tend to the asymptotic natural measure t→∞ limit ρ(x, t) →
ρ0(x), so we can just as well take the initial ρ(x) = const. The worst
we can do is to start out with ρ(x) = const., as in (15.7); so let us take
this case and define the expectation value 〈a〉 of an observable a to be the
asymptotic time and space average over the state spaceM

〈a〉 = lim
t→∞

1
|M|

∫
M

dx
1
t

∫ t

0

dτ a(f τ (x)) . (15.9)

We use the same 〈· · ·〉 notation as for the space average (15.7), and dis-
tinguish the two by the presence of the time variable in the argument:
if the quantity 〈a〉(t) being averaged depends on time, then it is a space
average, if it does not, it is the expectation value 〈a〉.

The expectation value is a space average of time averages, with every
x ∈ M used as a starting point of a time average. The advantage of
averaging over space is that it smears over the starting points which
were problematic for the time average (like the periodic points). While
easy to define, the expectation value 〈a〉 turns out not to be particularly
tractable in practice. Here comes a simple idea that is the basis of all that
follows: Such averages are more conveniently studied by investigating
instead of 〈a〉 the space averages of form〈

eβ·At
〉

=
1
|M|

∫
M

dx eβ·At(x). (15.10)

In the present context β is an auxiliary variable of no particular physical
significance. In most applications β is a scalar, but if the observable is
average - 13nov2006 ChaosBook.org version11.9.2, Aug 21 2007
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a d-dimensional vector ai(x) ∈ Rd, then β is a conjugate vector β ∈ Rd;
if the observable is a d × d tensor, β is also a rank-2 tensor, and so on.
Here we will mostly limit the considerations to scalar values of β.

If the limit a(x0) for the time average (15.4) exists for “almost all”
initial x0 and the system is ergodic and mixing (in the sense of Sec-
tion 1.3.1), we expect the time average along almost all trajectories to
tend to the same value a, and the integrated observable At to tend to
ta. The space average (15.10) is an integral over exponentials, and such
integral also grows exponentially with time. So as t→∞we would ex-
pect the space average of 〈exp(β ·At)〉 itself to grow exponentially with
time 〈

eβ·At
〉
∝ ets(β) ,

and its rate of growth to go to a limit

s(β) = lim
t→∞

1
t

ln
〈
eβ·At

〉
. (15.11)

Now we understand one reason for why it is smarter to compute
〈exp(β ·At)〉 rather than 〈a〉: the expectation value of the observable
(15.9) and the moments of the integrated observable (15.1) can be com-
puted by evaluating the derivatives of s(β)

∂s

∂β

∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At
〉

= 〈a〉 ,

∂2s

∂β2

∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
AtAt

〉− 〈
At
〉 〈

At
〉)

= lim
t→∞

1
t

〈
(At − t 〈a〉)2〉 ,

(15.12)

and so forth. We have written out the formulas for a scalar observable;
15.2, page 230the vector case is worked out in the Exercise 15.2. If we can compute the

function s(β), we have the desired expectation value without having to
estimate any infinite time limits from finite time data.

Suppose we could evaluate s(β) and its derivatives. What are such
formulas good for? A typical application is to the problem of describing
a particle scattering elastically off a 2-dimensional triangular array of
disks. If the disks are sufficiently large to block any infinite length free
flights, the particle will diffuse chaotically, and the transport coefficient
of interest is the diffusion constant given by

〈
x(t)2

〉 ≈ 4Dt. In contrast
to D estimated numerically from trajectories x(t) for finite but large t,
the above formulas yield the asymptotic D without any extrapolations
to the t→ ∞ limit. For example, for ai = vi and zero mean drift 〈vi〉 =
0, in d dimensions the diffusion constant is given by the curvature of
s(β) at β = 0,

D = lim
t→∞

1
2dt

〈
x(t)2

〉
=

1
2d

d∑
i=1

∂2s

∂β2
i

∣∣∣∣
β=0

, (15.13)

so if we can evaluate derivatives of s(β), we can compute transport ⇒ Section ??
ChaosBook.org version11.9.2, Aug 21 2007 average - 13nov2006
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coefficients that characterize deterministic diffusion. As we shall see in
Chapter ??, periodic orbit theory yields an explicit closed form expres-
sion for D.

fast track

Section 15.2, p. 224

15.1.3 Averaging in open systems

If the M is a compact region or set of regions to which the dy-
namics is confined for all times, (15.9) is a sensible definition of the
expectation value. However, if the trajectories can exitMwithout ever
returning,∫

M
dy δ(y − f t(x0)) = 0 for t > texit , x0 ∈ M ,

we might be in trouble. In particular, for a repeller the trajectory f t(x0)
will eventually leave the regionM, unless the initial point x0 is on the
repeller, so the identity∫

M
dy δ(y − f t(x0)) = 1 , t > 0 , iff x0 ∈ non-wandering set

(15.14)
might apply only to a fractal subset of initial points a set of zero Lebesgue
measure. Clearly, for open systems we need to modify the definition of
the expectation value to restrict it to the dynamics on the non-wandering
set, the set of trajectories which are confined for all times.

Note by M a state space region that encloses all interesting initial
points, say the 3-disk Poincaré section constructed from the disk bound-
aries and all possible incidence angles, and denote by |M| the volume
ofM. The volume of the state space containing all trajectories which
start out within the state space regionM and recur within that region
at the time t

|M(t)| =
∫
M

dxdy δ
(
y − f t(x)

) ∼ |M|e−γt (15.15)

is expected to decrease exponentially, with the escape rate γ. The inte-Section 1.4.3←−
gral over x takes care of all possible initial points; the integral over y
checks whether their trajectories are still within M by the time t. ForSection ??←−
example, any trajectory that falls off the pinball table in Fig. 1.1 is gone
for good.

The non-wandering set can be very difficult object to describe; but for
any finite time we can construct a normalized measure from the finite-
time covering volume (15.15), by redefining the space average (15.10)
as 〈

eβ·At
〉

=
∫
M

dx
1

|M(t)|e
β·At(x) ∼ 1

|M|
∫
M

dx eβ·At(x)+γt . (15.16)

average - 13nov2006 ChaosBook.org version11.9.2, Aug 21 2007
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in order to compensate for the exponential decrease of the number of
surviving trajectories in an open system with the exponentially grow-
ing factor eγt. What does this mean? Once we have computed γ we can
replenish the density lost to escaping trajectories, by pumping in eγt in
such a way that the overall measure is correctly normalized at all times,
〈1〉 = 1.

Example 15.1 A piecewise-linear repeller:
(continuation of Example 14.1) What is gained by reformulating the dy-

0 0.5 1

x

0

0.5

1

f(x)

Fig. 15.2 A piecewise-linear repeller
(15.17): All trajectories that land in the
gap between the f0 and f1 branches es-
cape (Λ0 = 4, Λ1 = −2).

namics in terms of “operators?” We start by considering a simple example
in which the operator is a [2×2] matrix. Assume the expanding 1-d map
f(x) of Fig. 15.2, a piecewise-linear 2–branch repeller with slopes Λ0 > 1
and Λ1 < −1 :

f(x) =

⎧⎨
⎩

f0 = Λ0x if x ∈ M0 = [0, 1/Λ0]

f1 = Λ1(x− 1) if x ∈ M1 = [1 + 1/Λ1, 1]
. (15.17)

Both f(M0) and f(M1) map onto the entire unit interval M = [0, 1]. As-
sume a piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0

ρ1 if x ∈ M1
. (15.18)

There is no need to define ρ(x) in the gap between M0 and M1, as any point
that lands in the gap escapes.
The physical motivation for studying this kind of mapping is the pinball
game: f is the simplest model for the pinball escape, Fig. 1.8, with f0 and f1
modelling its two strips of survivors.
As can be easily checked using (14.9), the Perron-Frobenius operator acts
on this piecewise constant function as a [2×2] “transfer” matrix with matrix
elements

14.1, page 214

14.5, page 215

(
ρ0

ρ1

)
→ Lρ =

(
1

|Λ0|
1

|Λ1|
1

|Λ0|
1

|Λ1|

)(
ρ0

ρ1

)
, (15.19)

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing
the density at every iteration. In this example the density is constant after
one iteration, so L has only one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1|,
with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1 |
are, respectively, the sizes of the |M0|, |M1| intervals, so the exact escape
rate (1.3) – the log of the fraction of survivors at each iteration for this linear
repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (15.20)

Voila! Here is the rationale for introducing operators – in one time step we
have solved the problem of evaluating escape rates at infinite time. This sim-
ple explicit matrix representation of the Perron-Frobenius operator is a con-
sequence of the piecewise linearity of f , and the restriction of the densities ρ
to the space of piecewise constant functions. The example gives a flavor of
the enterprise upon which we are about to embark in this book, but the full
story is much subtler: in general, there will exist no such finite-dimensional
representation for the Perron-Frobenius operator.

We now turn to the problem of evaluating
〈
eβ·At

〉
.

ChaosBook.org version11.9.2, Aug 21 2007 average - 13nov2006
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15.2 Evolution operators

The above simple shift of focus, from studying 〈a〉 to studying 〈exp (β · At)〉
is the key to all that follows. Make the dependence on the flow explicit
by rewriting this quantity as

〈
eβ·At

〉
=

1
|M|

∫
M

dx

∫
M

dy δ
(
y − f t(x)

)
eβ·At(x) . (15.21)

Here δ(y − f t(x)) is the Dirac delta function: for a deterministic flow
an initial point x maps into a unique point y at time t. Formally, all we
have done above is to insert the identity

1 =
∫
M

dy δ
(
y − f t(x)

)
, (15.22)

into (15.10) to make explicit the fact that we are averaging only over
the trajectories that remain inM for all times. However, having made
this substitution we have replaced the study of individual trajectories
f t(x) by the study of the evolution of density of the totality of initial
conditions. Instead of trying to extract a temporal average from an ar-
bitrarily long trajectory which explores the phase space ergodically, we
can now probe the entire state space with short (and controllable) finite
time pieces of trajectories originating from every point inM.

As a matter of fact (and that is why we went to the trouble of defin-
ing the generator (14.27) of infinitesimal transformations of densities)
infinitesimally short time evolution can suffice to determine the spec-
trum and eigenvalues of Lt.

We shall refer to the kernel of the operation (15.21) as Lt(y, x).

Lt(y, x) = δ
(
y − f t(x)

)
eβ·At(x) . (15.23)

The evolution operator acts on scalar functions φ(x) as

(y) =
∫
M

dx δ
(
y − f t(x)

)
eβ·At(x)φ(x) . (15.24)

In terms of the evolution operator, the expectation value of the gener-
ating function (15.21) is given by〈

eβ·At
〉

=
〈Ltι

〉
,

where the initial density ι(x) is the constant function that always re-
turns 1.

M M

Fig. 15.3 Space averaging pieces together
the time average computed along the
t → ∞ trajectory of Fig. 15.1.1 by a
space average over infinitely many short
t trajectory segments starting at all initial
points at once. (A. Johansen)

The evolution operator is different for different observables, as its
definition depends on the choice of the integrated observable At in the
exponential. Its job is deliver to us the expectation value of a, but before
showing that it accomplishes that, we need to verify the semigroup
property of evolution operators.
average - 13nov2006 ChaosBook.org version11.9.2, Aug 21 2007
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By its definition, the integral over the observable a is additive along
the trajectory

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

At1+t2(x0) =
∫ t1

0

dτ +
∫ t1+t2

t1

dτ

= At1(x0) + At2(f t1(x0)) .

If At(x) is additive along the trajectory, the evolution operator gener-
14.3, page 214ates a semigroup

⇒ Section 14.5
Lt1+t2(y, x) =

∫
M

dz Lt2(y, z)Lt1(z, x) , (15.25)

as is easily checked by substitution

Lt2Lt1a(y) =
∫
M

dx δ(y − f t2(x))eβ·At2 (x)(Lt1a)(x) = Lt1+t2a(y) .

This semigroup property is the main reason why (15.21) is preferable to
(15.9) as a starting point for evaluation of dynamical averages: it recasts
averaging in form of operators multiplicative along the flow.

15.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

Let us apply the newly acquired tools to the fundamental diagnostics
in this subject: Is a given system “chaotic”? And if so, how chaotic? If
all points in a neighborhood of a trajectory converge toward the same
trajectory, the attractor is a fixed point or a limit cycle. However, if the ⇒ Section 1.3.1attractor is strange, two trajectories

x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx(0)) (15.26)

that start out very close to each other separate exponentially with time,
and in a finite time their separation attains the size of the accessible
state space. This sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)| (15.27)

where λ, the mean rate of separation of trajectories of the system, is
called the Lyapunov exponent.

15.3.1 Lyapunov exponent as a time average

We can start out with a small δx and try to estimate λ from (15.27), but
now that we have quantified the notion of linear stability in Chapter 4
and defined the dynamical time averages in Section 15.1.1, we can do
ChaosBook.org version11.9.2, Aug 21 2007 average - 13nov2006
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better. The problem with measuring the growth rate of the distance
between two points is that as the points separate, the measurement is
less and less a local measurement. In study of experimental time series
this might be the only option, but if we have the equations of motion,
a better way is to measure the growth rate of vectors transverse to a
given orbit.

The mean growth rate of the distance |δx(t)|/|δx(0)| between neigh-
boring trajectories (15.27) is given by the Lyapunov exponent

λ = lim
t→∞

1
t

ln |δx(t)|/|δx(0)| (15.28)

(For notational brevity we shall often suppress the dependence of quan-
tities such as λ = λ(x0), δx(t) = δx(x0, t) on the initial point x0 and the
time t). For infinitesimal δx we know the δxi(t)/δxj(0) ratio exactly, as
this is by definition the fundamental matrix (4.32)

lim
δx→0

δxi(t)
δxj(0)

=
∂xi(t)
∂xj(0)

= M t
ij(x0) ,

so the leading Lyapunov exponent can be computed from the linear
approximation (4.25)

λ = lim
t→∞

1
t

ln
|M t(x0)δx(0)|
|δx(0)| = lim

t→∞
1
2t

ln
∣∣∣n̂T

(
M t

)T
M tn̂

∣∣∣ . (15.29)

In this formula the scale of the initial separation drops out, only its ori-
entation given by the unit vector n̂ = δx/|δx|matters. The eigenvalues
of M are either real or come in complex conjugate pairs. As M is in
general not symmetric and not diagonalizable, it is more convenient to
work with the symmetric and diagonalizable matrix M =

(
M t

)T
M t,

with real positive eigenvalues {|Λ1|2 ≥ . . . ≥ |Λd|2}, and a complete
orthonormal set of eigenvectors of {u1, . . . , ud}. Expanding the initial
orientation n̂ =

∑
(n̂ · ui)ui in the Mui = ui eigenbasis, we have

n̂TMn̂ =
d∑

i=1

(n̂ · ui)2|Λi|2 = (n̂ · u1)2e2λ1t
(
1 + O(e−2(λ1−λ2)t)

)
,

(15.30)
where tλi = ln |Λi(x0, t)|, and we assume that λ1 > λ2 ≥ λ3 · · ·. For
long times the largest Lyapunov exponent dominates exponentially (15.29),
provided the orientation n̂ of the initial separation was not chosen per-
pendicular to the dominant expanding eigendirection u1. The Lya-
punov exponent is the time average

λ(x0) = lim
t→∞

1
t

{
ln |n̂ · u1|+ ln |Λ1(x0, t)|+ O(e−2(λ1−λ2)t)

}
= lim

t→∞
1
t

ln |Λ1(x0, t)| , (15.31)

where Λ1(x0, t) is the leading eigenvalue of M t(x0). By choosing the
initial displacement such that n̂ is normal to the first (i-1) eigendirec-
tions we can define not only the leading, but all Lyapunov exponents
average - 13nov2006 ChaosBook.org version11.9.2, Aug 21 2007
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as well:

λi(x0) = lim
t→∞

1
t

ln |Λi(x0, t)| , i = 1, 2, · · · , d . (15.32)

The leading Lyapunov exponent now follows from the fundamen-
tal matrix by numerical integration of (4.9). The equations can be
integrated accurately for a finite time, hence the infinite time limit of
(15.29) can be only estimated from plots of 1

2 ln |n̂TMn̂| as function of
time, such as the Fig. 15.4 for the Rössler system (2.15).

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

t

Fig. 15.4 A numerical estimate of
the leading Lyapunov exponent for the
Rössler system (2.15) from the dominant
expanding eigenvalue formula (15.29).
The leading Lyapunov exponent λ ≈
0.09 is positive, so numerics supports the
hypothesis that the Rössler attractor is
strange. (J. Mathiesen)

As the local expansion and contraction rates vary along the flow, the
temporal dependence exhibits small and large humps. The sudden fall
to a low level is caused by a close passage to a folding point of the at-
tractor, an illustration of why numerical evaluation of the Lyapunov ex-
ponents, and proving the very existence of a strange attractor is a very
difficult problem. The approximately monotone part of the curve can
be used (at your own peril) to estimate the leading Lyapunov exponent
by a straight line fit.

As we can already see, we are courting difficulties if we try to cal-
culate the Lyapunov exponent by using the definition (15.31) directly.
First of all, the state space is dense with atypical trajectories; for ex-
ample, if x0 happened to lie on a periodic orbit p, λ would be simply
ln |Λp|/Tp, a local property of cycle p, not a global property of the dy-
namical system. Furthermore, even if x0 happens to be a “generic” state
space point, it is still not obvious that ln |Λ(x0, t)|/t should be converg-
ing to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectory gets every so of-
ten captured in the neighborhood of an elliptic island and can stay there
for arbitrarily long time; as there the orbit is nearly stable, during such
episode ln |Λ(x0, t)|/t can dip arbitrarily close to 0+. For state space
volume non-preserving flows the trajectory can traverse locally con-
tracting regions, and ln |Λ(x0, t)|/t can occasionally go negative; even
worse, one never knows whether the asymptotic attractor is periodic
or “strange”, so any finite estimate of λ might be dead wrong.

15.1, page 230

15.3.2 Evolution operator evaluation of Lyapunov
exponents

A cure to these problems was offered in Section 15.2. We shall now
replace time averaging along a single trajectory by action of a multi-
plicative evolution operator on the entire state space, and extract the
Lyapunov exponent from its leading eigenvalue. If the chaotic motion
fills the whole state space, we are indeed computing the asymptotic
Lyapunov exponent. If the chaotic motion is transient, leading eventu-
ally to some long attractive cycle, our Lyapunov exponent, computed
on nonwandering set, will characterize the chaotic transient; this is ac-
tually what any experiment would measure, as even very small amount
of external noise will suffice to destabilize a long stable cycle with a
minute immediate basin of attraction.
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Due to the chain rule (4.39) for the derivative of an iterated map,
the stability of a 1-d mapping is multiplicative along the flow, so the
integral (15.1) of the observable a(x) = ln |f ′(x)|, the local trajectory
divergence rate, evaluated along the trajectory of x0 is additive:

An(x0) = ln
∣∣fn′(x0)

∣∣ =
n−1∑
k=0

ln |f ′(xk)| . (15.33)

The Lyapunov exponent is then the expectation value (15.9) given by a
spatial integral (15.8) weighted by the natural measure

λ = 〈ln |f ′(x)|〉 =
∫
M

dx ρ0(x) ln |f ′(x)| . (15.34)

The associated (discrete time) evolution operator (15.23) is

L(y, x) = δ(y − f (x)) eβ ln |f ′(x)| . (15.35)

Here we have restricted our considerations to 1−d maps, as for higher-Appendix ??

dimensional flows only the fundamental matrices are multiplicative,
not the individual eigenvalues. Construction of the evolution oper-
ator for evaluation of the Lyapunov spectra in the general case requires
more cleverness than warranted at this stage in the narrative: an exten-
sion of the evolution equations to a flow in the tangent space.

in depth:

Appendix ??, p. ??
All that remains is to determine the value of the Lyapunov exponent

λ = 〈ln |f ′(x)|〉 = ∂s(β)
∂β

∣∣∣∣
β=1

= s′(1) (15.36)

from (15.12), the derivative of the leading eigenvalue s0(β) of the evo-
lution operator (15.35).Example 18.1

The only question is: how?

Summary

The expectation value 〈a〉 of an observable a(x) measured At(x) =∫ t

0 dτa(x(τ)) and averaged along the flow x → f t(x) is given by the
derivative ∂s/∂β of the leading eigenvalue ets(β) of the corresponding
evolution operator Lt.

Using the Perron-Frobenius operator (14.10) whose leading eigen-
function, the natural measure, once computed, yields expectation value
(14.20) of any observable a(x) a separate evolution operator L has to be
constructed for each and every observable. However, by the time theChapter 18

scaffolding is removed both L’s and their eigenfunctions will be gone,
and only the formulas for expectation value of observables will remain.
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The next question is: how do we evaluate the eigenvalues of L? We
saw in Example 15.1, in the case of piecewise-linear dynamical systems,
that these operators reduce to finite matrices, but for generic smooth
flows, they are infinite-dimensional linear operators, and finding smart
ways of computing their eigenvalues requires some thought. In Chap-
ter 10 we take the first step, and replace the ad hoc partitioning (14.14)
by the intrinsic, topologically invariant partitioning. In Chapter 13 we
apply this information to our first application of the evolution operator
formalism, evaluation of the topological entropy, the growth rate of the
number of topologically distinct orbits. This small victory will then be
refashioned in Chapters 16 and 17 into a systematic method for com-
puting eigenvalues of evolution operators in terms of periodic orbits.

Further reading
pressure!thermodynamic “Pressure”. The quantity〈
exp(β · At)

〉
is called a “partition function” by Ruelle [1].

Mathematicians decorate it with considerably more Greek
and Gothic letters than is the case in this treatise. Ru-
elle [2] and Bowen [1] had given name “pressure” P (a)
to s(β) (where a is the observable introduced here in Sec-
tion 15.1.1), defined by the “large system” limit (15.11). As
we shall apply the theory also to computation of the phys-
ical gas pressure exerted on the walls of a container by a
bouncing particle, we prefer to refer to s(β) as simply the
leading eigenvalue of the evolution operator introduced
in Section 14.5. The “convexity” properties such as P (a) ≤
P (|a|) will be pretty obvious consequence of the definition
(15.11). In the case that L is the Perron-Frobenius oper-
ator (14.10), the eigenvalues {s0(β), s1(β), · · ·} are called
the Ruelle-Pollicott resonances [2–4], with the leading one,
s(β) = s0(β) being the one of main physical interest. In
order to aid the reader in digesting the mathematics liter-
ature, we shall try to point out the notational correspon-
dences whenever appropriate. The rigorous formalism is
replete with lims, sups, infs, Ω-sets which are not really
essential to understanding the physical applications of the
theory, and are avoided in this presentation.

Microcanonical ensemble. In statistical mechan-

ics the space average (15.7) performed over the Hamil-
tonian system constant energy surface invariant mea-
sure ρ(x)dx = dqdp δ(H(q, p) − E) of volume |M| =∫
Mdqdp δ(H(q, p) − E)

〈a(t)〉 =
1

|M|

∫
M
dqdp δ(H(q, p) − E)a(q, p, t) (15.37)

is called the microcanonical ensemble average.
Lyapunov exponents. The Multiplicative Ergodic

Theorem of Oseledec [5] states that the limit (15.32) exists
for almost all points x0 and all tangent vectors n̂. There
are at most d distinct values of λ as we let n̂ range over
the tangent space. These are the Lyapunov exponents [6]
λi(x0).

There is much literature on numerical computation of
the Lyapunov exponents, see for example Refs. [4,12–14].

State space discretization. Ref. [15] discusses nu-
merical discretizatons of state space, and construction of
Perron-Frobenius operators as stochastic matrices, or di-
rected weighted graphs, as coarse-grained models of the
global dynamics, with transport rates between state space
partitions computed using this matrix of transition proba-
bilities.

Exercises
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230 Exercises

(15.1) How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent
λ by iterating the Hénon map[

x′

y′

]
=

[
1 − ax2 + y
bx

]
for a = 1.4, b = 0.3.

(b) Now check how robust is the Lyapunov expo-
nent for the Hénon attractor? Evaluate numer-
ically the Lyapunov exponent by iterating the
Hénon map for a = 1.39945219, b = 0.3. How
much do you trust now your result for the part
(a) of this exercise?

(15.2) Expectation value of a vector observable and its moments.
Check and extend the expectation value formulas
(15.12) by evaluating the derivatives of s(β) up to
4-th order for the space average

〈
exp(β · At)

〉
with

ai a vector quantity:

(a)

∂s

∂βi

∣∣∣∣
β=0

= lim
t→∞

1

t

〈
At

i

〉
= 〈ai〉 ,(15.38)

(b)

∂2s

∂βi∂βj

∣∣∣∣
β=0

= lim
t→∞

1

t

(〈
At

iA
t
j

〉
−
〈
At

i

〉 〈
At

j

〉)
= lim

t→∞
1

t

〈
(At

i − t 〈ai〉)(At
j − t 〈aj〉)

〉
.(15.39)

Note that the formalism is cmart: it automati-
cally yields the variance from the mean, rather
than simply the 2nd moment

〈
a2
〉
.

(c) compute the third derivative of s(β).
(d) compute the fourth derivative assuming that

the mean in (15.38) vanishes, 〈ai〉 = 0. The
4-th order moment formula

K(t) =

〈
x4(t)

〉
〈x2(t)〉2

− 3 (15.40)

that you have derived is known as kurtosis: it
measures a deviation from what the 4-th or-
der moment would be were the distribution a
pure Gaussian (see (??) for a concrete exam-
ple). If the observable is a vector, the kurtosis
is given by

K(t) =

∑
ij [〈AiAiAjAj〉 + 2 (〈AiAj〉 〈AjAi〉 − 〈AiAi〉 〈AjAj〉)](∑

i 〈AiAi〉
)2

(15.41)

(15.3) Pinball escape rate from numerical simulation∗.
Estimate the escape rate for R : a = 6 3-disk pin-
ball by shooting 100,000 randomly initiated pinballs
into the 3-disk system and plotting the logarithm of
the number of trapped orbits as function of time.
For comparison, a numerical simulation of ref. [2]
yields γ = .410 . . ..

(15.4) Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lya-
punov exponent λe of the Rössler attractor
(2.15).

(b) Plot your own version of Fig. 15.4. Do not
worry if it looks different, as long as you
understand why your plot looks the way it
does. (Remember the nonuniform contrac-
tion/expansion of Fig. 4.3.)

(c) Give your best estimate of λe. The literature
gives surprisingly inaccurate estimates - see
whether you can do better.

(d) Estimate the contracting Lyapunov exponent
λc. Even though it is much smaller than λe,
a glance at the stability matrix (4.4) suggests
that you can probably get it by integrating the
infinitesimal volume along a long-time trajec-
tory, as in (4.36).
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