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Bloch: “Space is the field of linear operators.” Heisenberg:
“Nonsense, space is blue and birds fly through it.”
Felix Bloch, Heisenberg and the early days of quantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanović)

As we shall see, the trace formulas and spectral determinants work
well, sometimes very well. The question is: Why? And it still is. The
heuristic manipulations of Chapters 16 and 6 were naive and reckless,
as we are facing infinite-dimensional vector spaces and singular inte-
gral kernels.

We now outline the key ingredients of proofs that put the trace and
determinant formulas on solid footing. This requires taking a closer
look at the evolution operators from a mathematical point of view, since
up to now we have talked about eigenvalues without any reference to
what kind of a function space the corresponding eigenfunctions belong
to. We shall restrict our considerations to the spectral properties of the
Perron-Frobenius operator for maps, as proofs for more general evolu-
tion operators follow along the same lines. What we refer to as a “the
set of eigenvalues” acquires meaning only within a precisely specified
functional setting: this sets the stage for a discussion of the analyticity
properties of spectral determinants. In Example 21.1 we compute ex-
plicitly the eigenspectrum for the three analytically tractable piecewise
linear examples. In Section 21.3 we review the basic facts of the clas-
sical Fredholm theory of integral equations. The program is sketched
in Section 21.4, motivated by an explicit study of eigenspectrum of the
Bernoulli shift map, and in Section 21.5 generalized to piecewise real-
analytic hyperbolic maps acting on appropriate densities. We show on
a very simple example that the spectrum is quite sensitive to the regu-
larity properties of the functions considered.
For expanding and hyperbolic finite-subshift maps analyticity leads to
a very strong result; not only do the determinants have better analytic-
ity properties than the trace formulas, but the spectral determinants are
singled out as entire functions in the complex s plane.

Remark 21.4
The goal of this chapter is not to provide an exhaustive review of the
rigorous theory of the Perron-Frobenius operators and their spectral
determinants, but rather to give you a feeling for how our heuristic
considerations can be put on a firm basis. The mathematics underpin-
ning the theory is both hard and profound.

If you are primarily interested in applications of the periodic orbit
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theory, you should skip this chapter on the first reading.

fast track

Chapter 12, p. 167

21.1 Linear maps: exact spectra

We start gently; in Example 21.1 we work out the exact eigenvalues
and eigenfunctions of the Perron-Frobenius operator for the simplest
example of unstable, expanding dynamics, a linear 1-d map with one
unstable fixed point. . Ref. [6] shows that this can be carried over to
d-dimensions. Not only that, but in Example 21.5 we compute the ex-
act spectrum for the simplest example of a dynamical system with an
infinity of unstable periodic orbits, the Bernoulli shift.

Example 21.1 The simplest eigenspectrum - a single fixed point:
In order to get some feeling for the determinants defined so formally in Sec-
tion 17.2, let us work out a trivial example: a repeller with only one expand-
ing linear branch

f(x) = Λx , |Λ| > 1 ,

and only one fixed point x∗ = 0. The action of the Perron-Frobenius operator
(14.10) is

Lφ(y) =

∫
dx δ(y − Λx)φ(x) =

1

|Λ|φ(y/Λ) . (21.1)

From this one immediately gets that the monomials yk are eigenfunctions:

Lyk =
1

|Λ|Λk
yk , k = 0, 1, 2, . . . (21.2)

What are these eigenfunctions? Think of eigenfunctions of the Schrödinger
equation: k labels the kth eigenfunction xk in the same spirit in which
the number of nodes labels the kth quantum-mechanical eigenfunction.
A quantum-mechanical amplitude with more nodes has more variabil-
ity, hence a higher kinetic energy. Analogously, for a Perron-Frobenius
operator, a higher k eigenvalue 1/|Λ|Λk is getting exponentially smaller
because densities that vary more rapidly decay more rapidly under the
expanding action of the map.

Example 21.2 The trace formula for a single fixed point:
The eigenvalues Λ−k−1 fall off exponentially with k, so the trace of L is a
convergent sum

trL =
1

|Λ|

∞∑
k=0

Λ−k =
1

|Λ|(1 − Λ−1)
=

1

|f(0)′ − 1| ,

in agreement with (16.7). A similar result follows for powers of L, yielding
the single-fixed point version of the trace formula for maps (16.10):

∞∑
k=0

zesk

1 − zesk
=

∞∑
r=1

zr

|1 − Λr| , esk =
1

|Λ|Λk
. (21.3)

converg - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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The left hand side of (21.3) is a meromorphic function, with the lead-
ing zero at z = |Λ|. So what?

Example 21.3 Meromorphic functions and exponential convergence:
As an illustration of how exponential convergence of a truncated series is
related to analytic properties of functions, consider, as the simplest possible
example of a meromorphic function, the ratio

h(z) =
z − a

z − b

with a, b real and positive and a < b. Within the spectral radius |z| < b the
function h can be represented by the power series

h(z) =

∞∑
k=0

σkz
k ,

where σ0 = a/b, and the higher order coefficients are given by σj = (a −
b)/bj+1. Consider now the truncation of orderN of the power series

hN (z) =
N∑

k=0

σkz
k =

a

b
+
z(a− b)(1 − zN/bN )

b2(1 − z/b)
.

Let ẑN be the solution of the truncated series hN (ẑN) = 0. To estimate the
distance between a and ẑN it is sufficient to calculate hN (a). It is of order
(a/b)N+1, so finite order estimates converge exponentially to the asymptotic
value.

This example shows that: (1) an estimate of the leading pole (the
leading eigenvalue of L) from a finite truncation of a trace formula con-
verges exponentially, and (2) the non-leading eigenvalues of L lie out-
side of the radius of convergence of the trace formula and cannot be
computed by means of such cycle expansion. However, as we shall
now see, the whole spectrum is reachable at no extra effort, by comput-
ing it from a determinant rather than a trace.

Example 21.4 The spectral determinant for a single fixed point:
The spectral determinant (17.3) follows from the trace formulas of Exam-
ple 21.2:

det (1 − zL) =
∞∏

k=0

(
1 − z

|Λ|Λk

)
=

∞∑
n=0

(−t)nQn , t =
z

|Λ| , (21.4)

where the cummulants Qn are given explicitly by the Euler formula
21.3, page 342

Qn =
1

1 − Λ−1

Λ−1

1 − Λ−2
· · · Λ−n+1

1 − Λ−n
. (21.5)

(If you cannot figure out how to derive this formula, the solutions on p. ??
offer several proofs.)

The main lesson to glean from this simple example is that the cum-
mulantsQn decay asymptotically faster than exponentially, as Λ−n(n−1)/2.
For example, if we approximate series such as (21.4) by the first 10
terms, the error in the estimate of the leading zero is ≈ 1/Λ50!
ChaosBook.org version11.9.2, Aug 21 2007 converg - 15aug2006
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So far all is well for a rather boring example, a dynamical system with
a single repelling fixed point. What about chaos? Systems where the
number of unstable cycles increases exponentially with their length?
We now turn to the simplest example of a dynamical system with an
infinity of unstable periodic orbits.

Example 21.5 Bernoulli shift:
Consider next the Bernoulli shift map

x �→ 2x (mod 1) , x ∈ [0, 1] . (21.6)

The associated Perron-Frobenius operator (14.9) assambles ρ(y) from its two
preimages

Lρ(y) =
1

2
ρ
( y

2

)
+

1

2
ρ

(
y + 1

2

)
. (21.7)

For this simple example the eigenfunctions can be written down explicitly:
they coincide, up to constant prefactors, with the Bernoulli polynomialsBn(x).
These polynomials are generated by the Taylor expansion of the generating
function

G(x, t) =
text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
, B0(x) = 1 , B1(x) = x− 1

2
, . . .

The Perron-Frobenius operator (21.7) acts on the generating function G as

LG(x, t) =
1

2

(
text/2

et − 1
+
tet/2ext/2

et − 1

)
=

t

2

ext/2

et/2 − 1
=

∞∑
k=1

Bk(x)
(t/2)k

k!
,

hence each Bk(x) is an eigenfunction of L with eigenvalue 1/2k .
The full operator has two components corresponding to the two branches.
For the n times iterated operator we have a full binary shift, and for each
of the 2n branches the above calculations carry over, yielding the same trace
(2n − 1)−1 for every cycle on length n. Without further ado we substitute
everything back and obtain the determinant,

det (1 − zL) = exp

(
−
∑
n=1

zn

n

2n

2n − 1

)
=
∏
k=0

(
1 − z

2k

)
, (21.8)

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues
1, 1/2, . . ., 1/2n , . . . .

The Bernoulli map spectrum looks reminiscent of the single fixed-
point spectrum (21.2), with the difference that the leading eigenvalue
here is 1, rather than 1/|Λ|. The difference is significant: the single
fixed-point map is a repeller, with escape rate (1.6) given by the L lead-
ing eigenvalue γ = ln |Λ|, while there is no escape in the case of the
Bernoulli map. As already noted in discussion of the relation (17.23),
for bound systems the local expansion rate (here ln |Λ| = ln 2) is bal-
anced by the entropy (here ln 2, the log of the number of preimages Fs ),
yielding zero escape rate.

So far we have demonstrated that our periodic orbit formulas are
correct for two piecewise linear maps in 1 dimension, one with a single
fixed point, and one with a full binary shift chaotic dynamics. For a
converg - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007



21.1. LINEAR MAPS: EXACT SPECTRA 325

single fixed point, eigenfunctions are monomials in x. For the chaotic
example, they are orthogonal polynomials on the unit interval. What
about higher dimensions? We check our formulas on a 2-d hyperbolic
map next.

Example 21.6 The simplest of 2-d maps - a single hyperbolic fixed
point:
We start by considering a very simple linear hyperbolic map with a single
hyperbolic fixed point,

f(x) = (f1(x1, x2), f2(x1, x2)) = (Λsx1,Λux2) , 0 < |Λs| < 1 , |Λu| > 1 .

The Perron-Frobenius operator (14.10) acts on the 2-d density functions as

Lρ(x1, x2) =
1

|ΛsΛu|
ρ(x1/Λs, x2/Λu) (21.9)

What are good eigenfunctions? Cribbing the 1-d eigenfunctions for the sta-
ble, contracting x1 direction from Example 21.1 is not a good idea, as under
the iteration of L the high terms in a Taylor expansion of ρ(x1, x2) in the
x1 variable would get multiplied by exponentially exploding eigenvalues
1/Λk

s . This makes sense, as in the contracting directions hyperbolic dynam-
ics crunches up initial densities, instead of smoothing them. So we guess
instead that the eigenfunctions are of form

ϕk1k2(x1, x2) = xk2
2 /xk1+1

1 , k1, k2 = 0, 1, 2, . . . , (21.10)

a mixture of the Laurent series in the contraction x1 direction, and the Tay-
lor series in the expanding direction, the x2 variable. The action of Perron-
Frobenius operator on this set of basis functions

Lϕk1k2(x1, x2) =
σ

|Λu|
Λk1

s

Λk2
u

ϕk1k2(x1, x2) , σ = Λs/|Λs|

is smoothing, with the higher k1, k2 eigenvectors decaying exponentially
faster, by Λk1

s /Λk2+1
u factor in the eigenvalue. One verifies by an explicit cal-

culation (undoing the geometric series expansions to lead to (17.9)) that the
trace of L indeed equals 1/|det (1−M)| = 1/|(1−Λu)(1−Λs)| , from which
it follows that all our trace and spectral determinant formulas apply. The ar-
gument applies to any hyperbolic map linearized around the fixed point of
form f(x1...., xd) = (Λ1x1,Λ2x2, . . . ,Λdxd).

So far we have checked the trace and spectral determinant formu-
las derived heuristically in Chapters 16 and 17, but only for the case of
1- and 2-d linear maps. But for infinite-dimensional vector spaces this
game is fraught with dangers, and we have already been mislead by
piecewise linear examples into spectral confusions: contrast the spec-
tra of Example 14.1 and Example 15.1 with the spectrum computed in
Example 16.1.

We show next that the above results do carry over to a sizable class
of piecewise analytic expanding maps.
ChaosBook.org version11.9.2, Aug 21 2007 converg - 15aug2006
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21.2 Evolution operator in a matrix
representation

The standard, and for numerical purposes sometimes very effective
way to look at operators is through their matrix representations. Evo-
lution operators are moving density functions defined over some state
space, and as in general we can implement this only numerically, the
temptation is to discretize the state space as in Section 14.3. The prob-
lem with such state space discretization approaches that they some-
times yield plainly wrong spectra (compare Example 15.1 with the re-
sult of Example 16.1), so we have to think through carefully what is it
that we really measure.

An expanding map f (x) takes an initial smooth density φn(x), de-
fined on a subinterval, stretches it out and overlays it over a larger in-
terval, resulting in a new, smoother density φn+1(x). Repetition of this
process smoothes the initial density, so it is natural to represent densi-
ties φn(x) by their Taylor series. Expanding

φn(y) =
∞∑

k=0

φ(k)
n (0)

yk

k!
, φn+1(y)k =

∞∑
�=0

φ
(�)
n+1(0)

y�

�!
,

φ
(�)
n+1(0) =

∫
dx δ(�)(y − f(x))φn(x)

∣∣∣
y=0

, x = f−1(0) ,

and substitute the two Taylor series into (14.6):

φn+1(y) = (Lφn) (y) =
∫
M
dx δ(y − f (x))φn(x) .

The matrix elements follow by evaluating the integral

L�k =
∂�

∂y�

∫
dxL(y, x)

xk

k!

∣∣∣∣
y=0

. (21.11)

we obtain a matrix representation of the evolution operator∫
dxL(y, x)

xk

k!
=
∑
k′

yk′

k′!
Lk′k , k, k′ = 0, 1, 2, . . .

which maps the xk component of the density of trajectories φn(x) into
the yk′

component of the density φn+1(y) one time step later, with y =
f (x).
We already have some practice with evaluating derivatives δ(�)(y) =
∂�

∂y� δ(y) from Section 14.2. This yields a representation of the evolution
operator centered on the fixed point, evaluated recursively in terms of
derivatives of the map f :

(L)�k =
∫
dx δ(�)(x − f(x))

xk

k!

∣∣∣∣
x=f(x)

(21.12)

=
1
|f ′|

(
d

dx

1
f ′(x)

)�
xk

k!

∣∣∣∣∣
x=f(x)

.

converg - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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The matrix elements vanish for � < k, so L is a lower triangular matrix.
The diagonal and the successive off-diagonal matrix elements are easily
evaluated iteratively by computer algebra

Lkk =
1

|Λ|Λk
, Lk+1,k = − (k + 2)!f ′′

2k!|Λ|Λk+2
, · · · .

For chaotic systems the map is expanding, |Λ| > 1. Hence the diagonal
terms drop off exponentially, as 1/|Λ|k+1, the terms below the diagonal
fall off even faster, and truncating L to a finite matrix introduces only
exponentially small errors.

The trace formula (21.3) takes now a matrix form

tr
zL

1 − zL = tr
L

1 − zL
. (21.13)

In order to illustrate how this works, we work out a few examples.
In Example 21.7 we show that these results carry over to any ana-

lytic single-branch 1-d repeller. Further examples motivate the steps
that lead to a proof that spectral determinants for general analytic 1-
dimensional expanding maps, and - in Section 21.5, for 2-dimensional
hyperbolic mappings - are also entire functions.

Example 21.7 Perron-Frobenius operator in a matrix representation:
As in Example 21.1, we start with a map with a single fixed point, but this
time with a nonlinear piecewise analytic map f with a nonlinear inverse F =
f−1, sign of the derivative σ = σ(F ′) = F ′/|F ′| , and the Perron-Frobenius
operator acting on densities analytic in an open domain enclosing the fixed
point x = w∗,

Lφ(y) =

∫
dx δ(y − f(x))φ(x) = σ F ′(y) φ(F (y)) .

Assume that F is a contraction of the unit disk in the complex plane, i.e.,

0 0.5 1
w

0

0.5

1

f(w)

w *

Fig. 21.1 A nonlinear one-branch repeller
with a single fixed point w∗.

|F (z)| < θ < 1 and |F ′(z)| < C <∞ for |z| < 1 , (21.14)

and expand φ in a polynomial basis with the Cauchy integral formula

φ(z) =

∞∑
n=0

znφn =

∮
dw

2πi

φ(w)

w − z
, φn =

∮
dw

2πi

φ(w)

wn+1

Combining this with (21.22), we see that in this basis Perron-Frobenius oper-
ator L is represented by the matrix

Lφ(w) =
∑
m,n

wmLmnφn , Lmn =

∮
dw

2πi

σ F ′(w)(F (w))n

wm+1
. (21.15)

Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =

∮
dw

2πi

σ F ′(w)

w − F (w)
.

This integral has but one simple pole at the unique fixed pointw∗ = F (w∗) =
f(w∗). Hence

21.6, page 342
tr L =

σ F ′(w∗)
1 − F ′(w∗)

=
1

|f ′(w∗) − 1| .

ChaosBook.org version11.9.2, Aug 21 2007 converg - 15aug2006
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This super-exponential decay of cummulants Qk ensures that for a
repeller consisting of a single repelling point the spectral determinant
(21.4) is entire in the complex z plane.

In retrospect, the matrix representation method for solving the den-
sity evolution problems is eminently sensible — after all, that is the
way one solves a close relative to classical density evolution equations,
the Schrödinger equation. When available, matrix representations for
L enable us to compute many more orders of cumulant expansions of
spectral determinants and many more eigenvalues of evolution oper-
ators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas such as (17.25)
imply that the dynamical zeta function is a meromorphic function. The
practical import of this observation is that it guarantees that finite or-
der estimates of zeroes of dynamical zeta functions and spectral det-
erminants converge exponentially, or - in cases such as (21.4) - super-
exponentially to the exact values, and so the cycle expansions to be dis-
cussed in Chapter 18 represent a true perturbative approach to chaotic
dynamics.

Before turning to specifics we summarize a few facts about classi-
cal theory of integral equations, something you might prefer to skip
on first reading. The purpose of this exercise is to understand that the
Fredholm theory, a theory that works so well for the Hilbert spaces
of quantum mechanics does not necessarily work for deterministic dy-
namics - the ergodic theory is much harder.

fast track

Section 21.4, p. 330

21.3 Classical Fredholm theory

He who would valiant be
’Gainst all disaster
Let him in constancy
Follow the Master.
John Bunyan, Pilgrim’s Progress

The Perron-Frobenius operator

Lφ(x) =
∫
dy δ(x− f(y))φ(y)

has the same appearance as a classical Fredholm integral operator

Kϕ(x) =
∫
M

dyK(x, y)ϕ(y) , (21.16)

and one is tempted to resort too classical Fredholm theory in order to
establish analyticity properties of spectral determinants. This path to
enlightenment is blocked by the singular nature of the kernel, which is a
converg - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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distribution, whereas the standard theory of integral equations usually
concerns itself with regular kernels K(x, y) ∈ L2(M2). Here we briefly
recall some steps of Fredholm theory, before working out the example
of Example 21.5.

The general form of Fredholm integral equations of the second kind
is

ϕ(x) =
∫
M

dyK(x, y)ϕ(y) + ξ(x) (21.17)

where ξ(x) is a given function inL2(M) and the kernelK(x, y) ∈ L2(M2)
(Hilbert-Schmidt condition). The natural object to study is then the lin-
ear integral operator (21.16), acting on the Hilbert space L2(M): the
fundamental property that follows from the L2(Q) nature of the kernel
is that such an operator is compact, that is close to a finite rank oper-
ator (see Appendix ??). A compact operator has the property that for
every δ > 0 only a finite number of linearly independent eigenvectors
exist corresponding to eigenvalues whose absolute value exceeds δ, so
we immediately realize (Fig. 21.4) that much work is needed to bring
Perron-Frobenius operators into this picture.

We rewrite (21.17) in the form

T ϕ = ξ , T = 11 −K . (21.18)

The Fredholm alternative is now applied to this situation as follows:
the equation T ϕ = ξ has a unique solution for every ξ ∈ L2(M) or
there exists a non-zero solution of T ϕ0 = 0, with an eigenvector of K
corresponding to the eigenvalue 1. The theory remains the same if
instead of T we consider the operator Tλ = 11 − λK with λ �= 0. As K
is a compact operator there is at most a denumerable set of λ for which
the second part of the Fredholm alternative holds: apart from this set
the inverse operator ( 11 − λT )−1 exists and is bounded (in the operator
sense). When λ is sufficiently small we may look for a perturbative
expression for such an inverse, as a geometric series

( 11 − λK)−1 = 11 + λK + λ2K2 + · · · = 11 + λW , (21.19)

where Kn is a compact integral operator with kernel

Kn(x, y) =
∫
Mn−1

dz1 . . . dzn−1 K(x, z1) · · · K(zn−1, y) ,

and W is also compact, as it is given by the convergent sum of compact
operators. The problem with (21.19) is that the series has a finite radius
of convergence, while apart from a denumerable set of λ’s the inverse
operator is well defined. A fundamental result in the theory of integral
equations consists in rewriting the resolving kernel W as a ratio of two
analytic functions of λ

W(x, y) =
D(x, y;λ)
D(λ)

.

ChaosBook.org version11.9.2, Aug 21 2007 converg - 15aug2006
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If we introduce the notation

K
(
x1 . . . xn

y1 . . . yn

)
=

∣∣∣∣∣∣
K(x1, y1) . . . K(x1, yn)

. . . . . . . . .
K(xn, y1) . . . K(xn, yn)

∣∣∣∣∣∣
we may write the explicit expressions

D(λ) = 1 +
∞∑

n=1

(−1)n λ
n

n!

∫
Mn

dz1 . . . dzn K
(
z1 . . . zn

z1 . . . zn

)

= exp

(
−

∞∑
m=1

λm

m
trKm

)
(21.20)

D(x, y;λ) = K
(
x
y

)
+

∞∑
n=1

(−λ)n

n!

∫
Mn

dz1 . . . dzn K
(
x z1 . . . zn

y z1 . . . zn

)
The quantity D(λ) is known as the Fredholm determinant (see (17.24)
and Appendix ??): it is an entire analytic function of λ, and D(λ) = 0 if
and only if 1/λ is an eigenvalue of K.

Worth emphasizing again: the Fredholm theory is based on the
compactness of the integral operator, i.e., on the functional properties
(summability) of its kernel. As the Perron-Frobenius operator is not
compact, there is a bit of wishful thinking involved here.

21.4 Analyticity of spectral determinants

They savored the strange warm glow of being much more igno-
rant than ordinary people, who were only ignorant of ordinary
things.
Terry Pratchett

Spaces of functions integrable L1, or square-integrable L2 on inter-
val [0, 1] are mapped into themselves by the Perron-Frobenius operator,
and in both cases the constant function φ0 ≡ 1 is an eigenfunction with
eigenvalue 1. If we focus our attention on L1 we also have a family of
L1 eigenfunctions,

φθ(y) =
∑
k 
=0

exp(2πiky)
1
|k|θ (21.21)

with complex eigenvalue 2−θ, parametrized by complex θ with Re θ >
0. By varying θ one realizes that such eigenvalues fill out the entire unit
disk. Such essential spectrum, the case k = 0 of Fig. 21.4, hides all fine
details of the spectrum.

What’s going on? Spaces L1 and L2 contain arbitrarily ugly func-
tions, allowing any singularity as long as it is (square) integrable - and
there is no way that expanding dynamics can smooth a kinky function
with a non-differentiable singularity, let’s say a discontinuous step, and
converg - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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that is why the eigenspectrum is dense rather than discrete. Mathemati-
cians love to wallow in this kind of muck, but there is no way to prepare
a nowhere differentiable L1 initial density in a laboratory. The only
thing we can prepare and measure are piecewise smooth (real-analytic)
density functions.

For a bounded linear operator A on a Banach space Ω, the spectral
radius is the smallest positive number ρspec such that the spectrum is
inside the disk of radius ρspec, while the essential spectral radius is the
smallest positive number ρess such that outside the disk of radius ρess

the spectrum consists only of isolated eigenvalues of finite multiplicity
(see Fig. 21.4).

21.5, page 342We may shrink the essential spectrum by letting the Perron-Frobenius
operator act on a space of smoother functions, exactly as in the one-
branch repeller case of Section 21.1. We thus consider a smaller space,
C

k+α, the space of k times differentiable functions whose k’th deriva-
tives are Hölder continuous with an exponent 0 < α ≤ 1: the expan-
sion property guarantees that such a space is mapped into itself by the
Perron-Frobenius operator. In the strip 0 < Re θ < k + α most φθ will
cease to be eigenfunctions in the space Ck+α; the function φn survives
only for integer valued θ = n. In this way we arrive at a finite set
of isolated eigenvalues 1, 2−1, · · · , 2−k, and an essential spectral radius
ρess = 2−(k+α).

We follow a simpler path and restrict the function space even further,
namely to a space of analytic functions, i.e., functions for which the
Taylor expansion is convergent at each point of the interval [0, 1]. With
this choice things turn out easy and elegant. To be more specific, let φ be
a holomorphic and bounded function on the diskD = B(0, R) of radius
R > 0 centered at the origin. Our Perron-Frobenius operator preserves
the space of such functions provided (1 + R)/2 < R so all we need is
to choose R > 1. If Fs , s ∈ {0, 1}, denotes the s inverse branch of the
Bernoulli shift (21.6), the corresponding action of the Perron-Frobenius
operator is given by Lsh(y) = σ F ′

s(y) h ◦ Fs(y), using the Cauchy
integral formula along the ∂D boundary contour:

Lsh(y) = σ

∮
dw

2πi ∂D

h(w)F ′
s (y)

w − Fs(y)
. (21.22)

For reasons that will be made clear later we have introduced a sign
σ = ±1 of the given real branch |F ′(y)| = σ F ′(y). For both branches
of the Bernoulli shift s = 1, but in general one is not allowed to take
absolute values as this could destroy analyticity. In the above formula
one may also replace the domain D by any domain containing [0, 1] such
that the inverse branches maps the closure of D into the interior of D.
Why? simply because the kernel remains non-singular under this con-
dition, i.e., w − F (y) �= 0 whenever w ∈ ∂D and y ∈ Cl D. The
problem is now reduced to the standard theory for Fredholm determi-
nants, Section 21.3. The integral kernel is no longer singular, traces and
determinants are well-defined, and we can evaluate the trace of LF by
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means of the Cauchy contour integral formula:

tr LF =
∮

dw

2πi
σF ′(w)
w − F (w)

.

Elementary complex analysis shows that since F maps the closure of D
into its own interior, F has a unique (real-valued) fixed point x∗ with a
multiplier strictly smaller than one in absolute value. Residue calculus21.6, page 342

therefore yields

tr LF =
σF ′(x∗)

1 − F ′(x∗)
=

1
|f ′(x∗) − 1| ,

justifying our previous ad hoc calculations of traces using Dirac delta
functions.

Example 21.8 Perron-Frobenius operator in a matrix representation:
As in Example 21.1, we start with a map with a single fixed point, but this
time with a nonlinear piecewise analytic map f with a nonlinear inverse F =
f−1, sign of the derivative σ = σ(F ′) = F ′/|F ′|

Lφ(z) =

∫
dx δ(z − f(x))φ(x) = σ F ′(z) φ(F (z)) .

Assume that F is a contraction of the unit disk, i.e.,

|F (z)| < θ < 1 and |F ′(z)| < C <∞ for |z| < 1 , (21.23)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑
n≥0

znφn =

∮
dw

2πi

φ(w)

w − z
, φn =

∮
dw

2πi

φ(w)

wn+1

Combining this with (21.22), we see that in this basis L is represented by the
matrix

Lφ(w) =
∑
m,n

wmLmnφn , Lmn =

∮
dw

2πi

σ F ′(w)(F (w))n

wm+1
. (21.24)

Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =

∮
dw

2πi

σ F ′(w)

w − F (w)
.

This integral has but one simple pole at the unique fixed pointw∗ = F (w∗) =
f(w∗). Hence21.6, page 342

tr L =
σ F ′(w∗)

1 − F ′(w∗)
=

1

|f ′(w∗) − 1| .

We worked out a very specific example, yet our conclusions can be
generalized, provided a number of restrictive requirements are met by
the dynamical system under investigation:
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1) the evolution operator is multiplicative along the flow,
2) the symbolic dynamics is a finite subshift,
3) all cycle eigenvalues are hyperbolic (exponentially bound-
ed in magnitude away from 1),
4) the map (or the flow) is real analytic, i.e., it has a piece-
wise analytic continuation to a complex extension of the
state space.

These assumptions are romantic expectations not satisfied by the dy-
namical systems that we actually desire to understand. Still, they are
not devoid of physical interest; for example, nice repellers like our 3-
disk game of pinball do satisfy the above requirements.

Properties 1 and 2 enable us to represent the evolution operator as
a finite matrix in an appropriate basis; properties 3 and 4 enable us to
bound the size of the matrix elements and control the eigenvalues. To
see what can go wrong, consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the fol-
lowing weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(
y − f t(x)

)
,

where Λt(x) is an eigenvalue of the fundamental matrix transverse to
the flow. Semiclassical quantum mechanics suggest operators of this
form with β = 1/2, (see Chapter ??). The problem with such operators
arises from the fact that when considering the fundamental matrices
Jab = JaJb for two successive trajectory segments a and b, the corre-
sponding eigenvalues are in general not multiplicative, Λab �= ΛaΛb

(unless a, b are iterates of the same prime cycle p, so JaJb = Jra+rb
p ).

Consequently, this evolution operator is not multiplicative along the
trajectory. The theorems require that the evolution be represented as
a matrix in an appropriate polynomial basis, and thus cannot be ap-
plied to non-multiplicative kernels, i.e., kernels that do not satisfy the
semi-group property Lt′Lt = Lt′+t. The cure for this problem in this
particular case is given in Appendix ??.

Property 2 is violated by the 1-d tent map (see Fig. 21.4 (a))

f(x) = α(1 − |1 − 2x|) , 1/2 < α < 1 .

All cycle eigenvalues are hyperbolic, but in general the critical point
xc = 1/2 is not a pre-periodic point, so there is no finite Markov par-
tition and the symbolic dynamics does not have a finite grammar (see
Section 11.5 for definitions). In practice, this means that while the lead-
ing eigenvalue of L might be computable, the rest of the spectrum is
very hard to control; as the parameter α is varied, the non-leading ze-
ros of the spectral determinant move wildly about.

Property 3 is violated by the map (see Fig. 21.4 (b))

f(x) =
{
x+ 2x2 , x ∈ I0 = [0, 1

2 ]
2 − 2x , x ∈ I1 = [12 , 1] .
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(a)
0 0.5 1

x
0

0.5

1

f(x)

(b)
0 0.5 1

x
0

0.5

1

f(x)

I I0 1

Fig. 21.2 (a) A (hyperbolic) tent map without a finite Markov partition. (b) A Markov
map with a marginal fixed point.

Here the interval [0, 1] has a Markov partition into two subintervals I0
and I1, and f is monotone on each. However, the fixed point at x = 0
has marginal stability Λ0 = 1, and violates condition 3. This type of
map is called “intermittent” and necessitates much extra work. The
problem is that the dynamics in the neighborhood of a marginal fixed
point is very slow, with correlations decaying as power laws rather than
exponentially. We will discuss such flows in Chapter 22.

Property 4 is required as the heuristic approach of Chapter 16 faces
two major hurdles:

(1) The trace (16.8) is not well defined because the integral kernel is
singular.

(2) The existence and properties of eigenvalues are by no means clear.

Actually, property 4 is quite restrictive, but we need it in the present
approach, so that the Banach space of analytic functions in a disk is
preserved by the Perron-Frobenius operator.

In attempting to generalize the results, we encounter several prob-
lems. First, in higher dimensions life is not as simple. Multi-dimensional
residue calculus is at our disposal but in general requires that we find
poly-domains (direct product of domains in each coordinate) and this
need not be the case. Second, and perhaps somewhat surprisingly, the
‘counting of periodic orbits’ presents a difficult problem. For example,
instead of the Bernoulli shift consider the doubling map of the circle,
x �→ 2x mod 1, x ∈ R/Z . Compared to the shift on the interval [0, 1] the
only difference is that the endpoints 0 and 1 are now glued together. Be-
cause these endpoints are fixed points of the map, the number of cycles
of length n decreases by 1. The determinant becomes:

det(1 − zL) = exp

(
−
∑
n=1

zn

n

2n − 1
2n − 1

)
= 1 − z. (21.25)

The value z = 1 still comes from the constant eigenfunction, but the
Bernoulli polynomials no longer contribute to the spectrum (as they are
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not periodic). Proofs of these facts, however, are difficult if one sticks
to the space of analytic functions.

Third, our Cauchy formulas a priori work only when considering
purely expanding maps. When stable and unstable directions co-exist
we have to resort to stranger function spaces, as shown in the next sec-
tion.

21.5 Hyperbolic maps

I can give you a definion of a Banach space, but I do not know
what that means.
Federico Bonnetto, Banach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the following paradox: If
f is an area-preserving hyperbolic and real-analytic map of, for exam-
ple, a 2-dimensional torus then the Perron-Frobenius operator is uni-
tary on the space of L2 functions, and its spectrum is confined to the
unit circle. On the other hand, when we compute determinants we
find eigenvalues scattered around inside the unit disk. Thinking back
to the Bernoulli shift Example 21.5 one would like to imagine these
eigenvalues as popping up from the L2 spectrum by shrinking the func-
tion space. Shrinking the space, however, can only make the spectrum
smaller so this is obviously not what happens. Instead one needs to
introduce a ‘mixed’ function space where in the unstable direction one
resorts to analytic functions, as before, but in the stable direction one
instead considers a ‘dual space’ of distributions on analytic functions.
Such a space is neither included in nor includes L2 and we have thus
resolved the paradox. However, it still remains to be seen how traces
and determinants are calculated.

The linear hyperbolic fixed point Example 21.6 is somewhat mislead-
ing, as we have made explicit use of a map that acts independently
along the stable and unstable directions. For a more general hyperbolic
map, there is no way to implement such direct product structure, and
the whole argument falls apart. Her comes an idea; use the analyticity
of the map to rewrite the Perron-Frobenius operator acting as follows
(where σ denotes the sign of the derivative in the unstable direction):

Lh(z1, z2) =
∮ ∮

σ h(w1, w2)
(z1 − f1(w1, w2)(f2(w1, w2) − z2)

dw1

2πi
dw2

2πi
. (21.26)

Here the function φ should belong to a space of functions analytic re-
spectively outside a disk and inside a disk in the first and the second co-
ordinates; with the additional property that the function decays to zero
as the first coordinate tends to infinity. The contour integrals are along
the boundaries of these disks. It is an exercise in multi-dimensional
residue calculus to verify that for the above linear example this expres-
sion reduces to (21.9). Such operators form the building blocks in the
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Fig. 21.3 For an analytic hyperbolic map, specifying the contracting coordinate wh at the
initial rectangle and the expanding coordinate zv at the image rectangle defines a unique
trajectory between the two rectangles. In particular, wv and zh (not shown) are uniquely
specified.

calculation of traces and determinants. One can prove the following:
Theorem: The spectral determinant for 2-d hyperbolic analytic maps is entire.

Remark 21.4

The proof, apart from the Markov property that is the same as for
the purely expanding case, relies heavily on the analyticity of the map
in the explicit construction of the function space. The idea is to view
the hyperbolicity as a cross product of a contracting map in forward
time and another contracting map in backward time. In this case the
Markov property introduced above has to be elaborated a bit. Instead
of dividing the state space into intervals, one divides it into rectan-
gles. The rectangles should be viewed as a direct product of intervals
(say horizontal and vertical), such that the forward map is contract-
ing in, for example, the horizontal direction, while the inverse map
is contracting in the vertical direction. For Axiom A systems (see Re-
mark 21.4) one may choose coordinate axes close to the stable/unstable
manifolds of the map. With the state space divided into N rectangles
{M1,M2, . . . ,MN}, Mi = Ih

i × Iv
i one needs a complex extension

Dh
i × Dv

i , with which the hyperbolicity condition (which simultane-
ously guarantees the Markov property) can be formulated as follows:

Analytic hyperbolic property: Either f(Mi) ∩ Int(Mj) = ∅, or for
each pair wh ∈ Cl(Dh

i ), zv ∈ Cl(Dv
j ) there exist unique analytic func-

tions of wh, zv: wv = wv(wh, zv) ∈ Int(Dv
i ), zh = zh(wh, zv) ∈ Int(Dh

j ),
such that f(wh, wv) = (zh, zv). Furthermore, if wh ∈ Ih

i and zv ∈ Iv
j ,

then wv ∈ Iv
i and zh ∈ Ih

j (see Fig. 21.5).
In plain English, this means for the iterated map that one replaces the

coordinates zh, zv at time n by the contracting pair zh, wv , where wv is
the contracting coordinate at time n+ 1 for the ‘partial’ inverse map.

In two dimensions the operator in (21.26) acts on functions analytic
outside Dh

i in the horizontal direction (and tending to zero at infinity)
and inside Dv

i in the vertical direction. The contour integrals are pre-
cisely along the boundaries of these domains.
converg - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007



21.6. THE PHYSICS OF EIGENVALUES AND EIGENFUNCTIONS337

A map f satisfying the above condition is called analytic hyperbolic
and the theorem states that the associated spectral determinant is en-
tire, and that the trace formula (16.8) is correct.

Examples of analytic hyperbolic maps are provided by small analytic
perturbations of the cat map, the 3-disk repeller, and the 2-d baker’s
map.

21.6 The physics of eigenvalues and
eigenfunctions

We appreciate by now that any honest attempt to look at the
spectral properties of the Perron-Frobenius operator involves hard math-
ematics, but the effort is rewarded by the fact that we are finally able
to control the analyticity properties of dynamical zeta functions and
spectral determinants, and thus substantiate the claim that these ob-
jects provide a powerful and well-founded perturbation theory.

Often (see Chapter 15) physically important part of the spectrum is
just the leading eigenvalue, which gives us the escape rate from a re-
peller, or, for a general evolution operator, formulas for expectation
values of observables and their higher moments. Also the eigenfunc-
tion associated to the leading eigenvalue has a physical interpretation
(see Chapter 14): it is the density of the natural measures, with singular
measures ruled out by the proper choice of the function space. This
conclusion is in accord with the generalized Perron-Frobenius theorem
for evolution operators. In the finite dimensional setting, such a theo-
rem is formulated as follows:

Remark 21.4

• Perron-Frobenius theorem: LetLij be a nonnegative matrix, such
that some n exists for which (Ln)ij > 0 ∀i, j: then

(1) The maximal modulus eigenvalue is non-degenerate real,
and positive

(2) The corresponding eigenvector (defined up to a constant)
has nonnegative coordinates

We may ask what physical information is contained in eigenvalues be-
yond the leading one: suppose that we have a probability conserving
system (so that the dominant eigenvalue is 1), for which the essential
spectral radius satisfies 0 < ρess < θ < 1 on some Banach space B.
Denote by P the projection corresponding to the part of the spectrum
inside a disk of radius θ. We denote by λ1, λ2 . . . , λM the eigenvalues
outside of this disk, ordered by the size of their absolute value, with
λ1 = 1. Then we have the following decomposition

Lϕ =
M∑
i=1

λiψiLiψ
∗
i ϕ + PLϕ (21.27)
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when Li are (finite) matrices in Jordan canomical form (L0 = 0 is a [1×1]
matrix, as λ0 is simple, due to the Perron-Frobenius theorem), whereas
ψi is a row vector whose elements form a basis on the eigenspace cor-
responding to λi, and ψ∗

i is a column vector of elements of B∗ (the dual
space of linear functionals over B) spanning the eigenspace of L∗ cor-
responding to λi. For iterates of the Perron-Frobenius operator, (21.27)
becomes

Lnϕ =
M∑
i=1

λn
i ψiL

n
i ψ

∗
i ϕ + PLnϕ . (21.28)

If we now consider, for example, correlation between initial ϕ evolved
n steps and final ξ,

〈ξ|Ln|ϕ〉 =
∫
M

dy ξ(y) (Lnϕ) (y) =
∫
M

dw (ξ ◦ fn)(w)ϕ(w) , (21.29)

it follows that

〈ξ|Ln|ϕ〉 = λn
1ω1(ξ, ϕ) +

L∑
i=2

λn
i ω

(n)
i (ξ, ϕ) +O(θn) , (21.30)

where
ω

(n)
i (ξ, ϕ) =

∫
M

dy ξ(y)ψiL
n
i ψ

∗
i ϕ .

The eigenvalues beyond the leading one provide two pieces of in-
formation: they rule the convergence of expressions containing high
powers of the evolution operator to leading order (the λ1 contribution).
Moreover if ω1(ξ, ϕ) = 0 then (21.29) defines a correlation function:21.7, page 342

as each term in (21.30) vanishes exponentially in the n → ∞ limit,
the eigenvalues λ2, . . . , λM determine the exponential decay of correla-
tions for our dynamical system. The prefactors ω depend on the choice
of functions, whereas the exponential decay rates (given by logarithms
of λi) do not: the correlation spectrum is thus a universal property of
the dynamics (once we fix the overall functional space on which the
Perron-Frobenius operator acts).

Example 21.9 Bernoulli shift eigenfunctions:
Let us revisit the Bernoulli shift example (21.6) on the space of analytic func-
tions on a disk: apart from the origin we have only simple eigenvalues λk =
2−k, k = 0, 1, . . .. The eigenvalue λ0 = 1 corresponds to probability conser-
vation: the corresponding eigenfunctionB0(x) = 1 indicates that the natural
measure has a constant density over the unit interval. If we now take any
analytic function η(x) with zero average (with respect to the Lebesgue mea-
sure), it follows that ω1(η, η) = 0, and from (21.30) the asymptotic decay of
the correlation function is (unless also ω1(η, η) = 0)

Cη,η(n) ∼ exp(−n log 2) . (21.31)

Thus, − log λ1 gives the exponential decay rate of correlations (with a pref-
actor that depends on the choice of the function). Actually the Bernoulli
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shift case may be treated exactly, as for analytic functions we can employ the
Euler-MacLaurin summation formula

η(z) =

∫ 1

0

dw η(w) +
∞∑

m=1

η(m−1)(1) − η(m−1)(0)

m!
Bm(z) . (21.32)

As we are considering functions with zero average, we have from (21.29) and
the fact that Bernoulli polynomials are eigenvectors of the Perron-Frobenius
operator that

Cη,η(n) =

∞∑
m=1

(2−m)n(η(m)(1) − η(m)(0))

m!

∫ 1

0

dz η(z)Bm(z) .

The decomposition (21.32) is also useful in realizing that the linear function-
als ψ∗

i are singular objects: if we write it as

η(z) =

∞∑
m=0

Bm(z)ψ∗
m[η] ,

we see that these functionals are of the form

ψ∗
i [ε] =

∫ 1

0

dwΨi(w)ε(w) ,

where

Ψi(w) =
(−1)i−1

i!

(
δ(i−1)(w − 1) − δ(i−1)(w)

)
, (21.33)

when i ≥ 1 and Ψ0(w) = 1. This representation is only meaningful when the
function ε is analytic in neighborhoods of w,w − 1.

21.7 Troubles ahead

The above discussion confirms that for a series of examples of increas-
ing generality formal manipulations with traces and determinants are
justified: the Perron-Frobenius operator has isolated eigenvalues, the
trace formulas are explicitly verified, and the spectral determinant is an
entire function whose zeroes yield the eigenvalues. Real life is harder,
as we may appreciate through the following considerations:

essential spectrum

isolated eigenvaluespectral radius

Fig. 21.4 Spectrum of the Perron-
Frobenius operator acting on the space
of Ck+α Hölder-continuous functions:
only k isolated eigenvalues remain be-
tween the spectral radius, and the essen-
tial spectral radius which bounds the “es-
sential”, continuous spectrum.

• Our discussion tacitly assumed something that is physically en-
tirely reasonable: our evolution operator is acting on the space
of analytic functions, i.e., we are allowed to represent the initial
density ρ(x) by its Taylor expansions in the neighborhoods of pe-
riodic points. This is however far from being the only possi-

21.1, page 342

ble choice: mathematicians often work with the function space
Ck+α, i.e., the space of k times differentiable functions whose k’th
derivatives are Hölder continuous with an exponent 0 < α ≤ 1:
then every yη with �η > k is an eigenfunction of the Perron-
Frobenius operator and we have

Lyη =
1

|Λ|Λη
yη , η ∈ C .
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This spectrum differs markedly from the analytic case: only a
small number of isolated eigenvalues remain, enclosed between
the spectral radius and a smaller disk of radius 1/|Λ|k+1, see Fig. 21.4.
In literature the radius of this disk is called the essential spectral ra-
dius.
In Section 21.4 we discussed this point further, with the aid of a
less trivial 1-dimensional example. The physical point of view is
complementary to the standard setting of ergodic theory, where
many chaotic properties of a dynamical system are encoded by
the presence of a continuous spectrum, used to prove asymptotic
decay of correlations in the space of L2 square-integrable func-
tions.21.2, page 342

• A deceptively innocent assumption is hidden beneath many fea-
tures discussed so far: that (21.1) maps a given function space
into itself. This is strictly related to the expanding property of the
map: if f(x) is smooth in a domain D then f(x/Λ) is smooth on a
larger domain, provided |Λ| > 1. This is not obviously the case for
hyperbolic systems in higher dimensions, and, as we saw in Sec-
tion 21.5, extensions of the results obtained for expanding maps
are highly nontrivial.

• It is not at all clear that the above analysis of a simple one-branch,
one fixed point repeller can be extended to dynamical systems
with a Cantor set of periodic points: we showed this in Section 21.4.

Summary

Examples of analytic eigenfunctions for 1-d maps are seductive, and
make the problem of evaluating ergodic averages appears easy; just
integrate over the desired observable weightes by the natural measure,
right? No, generic natural measure sits on a fractal set and is singular
everywhere. The point of this book is that you never need to construct
the natural measure, cycle expansions will do that job.

A theory of evaluation of dynamical averages by means of trace for-
mulas and spectral determinants requires a deep understanding of their
analyticity and convergence.

We work here through a series of examples:

(1) exact spectrum (but for a single fixed point of a linear map)

(2) exact spectrum for a locally analytic map, matix representation

(3) rigorous proof of existence of dicrete spectrum for 2-d hyperbolic
maps

In the case of especially well-behaved “Axiom A” systems, where
both the symbolic dynamics and hyperbolicity are under control, it
is possible to treat traces and determinants in a rigorous fashion, and
strong results about the analyticity properties of dynamical zeta func-
tions and spectral determinants outlined above follow.
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Most systems of interest are not of the “axiom A” category; they are
neither purely hyperbolic nor (as we have seen in Chapters 10 and 11
) do they have finite grammar. The importance of symbolic dynamics
is generally grossly unappreciated; the crucial ingredient for nice ana-
lyticity properties of zeta functions is the existence of a finite grammar
(coupled with uniform hyperbolicity). The dynamical systems which
are really interesting - for example, smooth bounded Hamiltonian po-
tentials - are presumably never fully chaotic, and the central question
remains: How do we attack this problem in a systematic and control-
lable fashion?

Further reading

Surveys of rigorous theory. We recommend the references
listed in Section ?? for an introduction to the mathemat-
ical literature on this subject. For a physicist, Driebe’s
monograph [33] might be the most accessible introduction
into mathematics discussed briefley in this chapter. There
are a number of reviews of the mathematical approach to
dynamical zeta functions and spectral determinants, with
pointers to the original references, such as Refs. [1, 2]. An
alternative approach to spectral properties of the Perron-
Frobenius operator is given in Ref. [3].

Ergodic theory, as presented by Sinai [14] and oth-
ers, tempts one to describe the densities on which the
evolution operator acts in terms of either integrable or
square-integrable functions. For our purposes, as we
have already seen, this space is not suitable. An in-
troduction to ergodic theory is given by Sinai, Kornfeld
and Fomin [15]; more advanced old-fashioned presenta-
tions are Walters [12] and Denker, Grillenberger and Sig-
mund [16]; and a more formal one is given by Peter-
son [17].

Fredholm theory. Our brief summary of Fredholm
theory is based on the exposition of Ref. [4]. A technical
introduction of the theory from an operator point of view
is given in Ref. [5]. The theory is presented in a more gen-
eral form in Ref. [6].

Bernoulli shift. For a more detailed discussion, con-
sult chaper 3 of Ref. [33]. The extension of Fredholm the-
ory to the case or Bernoulli shift on C

k+α (in which the
Perron-Frobenius operator is not compact – technically it
is only quasi-compact. That is, the essential spectral radius
is strictly smaller than the spectral radius) has been given
by Ruelle [7]: a concise and readable statement of the re-
sults is contained in Ref. [8].

Hyperbolic dynamics. When dealing with hyperbolic

systems one might try to reduce to the expanding case by
projecting the dynamics along the unstable directions. As
mentioned in the text this can be quite involved techni-
cally, as such unstable foliations are not characterized by
strong smoothness properties. For such an approach, see
Ref. [3].

Spectral determinants for smooth flows. The theo-
rem on page 335 also applies to hyperbolic analytic maps
in d dimensions and smooth hyperbolic analytic flows in
(d + 1) dimensions, provided that the flow can be re-
duced to a piecewise analytic map by a suspension on a
Poincaré section, complemented by an analytic “ceiling”
function (3.5) that accounts for a variation in the section
return times. For example, if we take as the ceiling func-
tion g(x) = esT (x), where T (x) is the next Poincaré section
time for a trajectory staring at x, we reproduce the flow
spectral determinant (17.13). Proofs are beyond the scope
of this chapter.

Explicit diagonalization. For 1-d repellers a diagonal-
ization of an explicit truncated Lmn matrix evaluated in a
judiciously chosen basis may yield many more eigenval-
ues than a cycle expansion (see Refs. [10,11]). The reasons
why one persists in using periodic orbit theory are par-
tially aesthetic and partially pragmatic. The explicit calcu-
lation of Lmn demands an explicit choice of a basis and is
thus non-invariant, in contrast to cycle expansions which
utilize only the invariant information of the flow. In addi-
tion, we usually do not know how to construct Lmn for a
realistic high-dimanensional flow, such as the hyperbolic
3-disk game of pinball flow of Section 1.3, whereas peri-
odic orbit theory is true in higher dimensions and straight-
forward to apply.

Perron-Frobenius theorem. A proof of the Perron-
Frobenius theorem may be found in Ref. [12]. For positive
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transfer operators, this theorem has been generalized by
Ruelle [13].

Axiom A systems. The proofs in Section 21.5
follow the thesis work of H.H. Rugh [9,18,19]. For a math-
ematical introduction to the subject, consult the excellent
review by V. Baladi [1]. It would take us too far afield to
give and explain the definition of Axiom A systems (see
Refs. [22, 23]). Axiom A implies, however, the existence
of a Markov partition of the state space from which the
properties 2 and 3 assumed on page 324 follow.

Exponential mixing speed of the Bernoulli shift. We
see from (21.31) that for the Bernoulli shift the exponential
decay rate of correlations coincides with the Lyapunov ex-
ponent: while such an identity holds for a number of sys-

tems, it is by no means a general result, and there exist
explicit counterexamples.

Left eigenfunctions. We shall never use an explicit
form of left eigenfunctions, corresponding to highly sin-
gular kernels like (21.33). Many details have been elab-
orated in a number of papers, such as Ref. [20], with a
daring physical interpretation.

Ulam’s idea. The approximation of Perron-Frobenius
operator defined by (14.14) has been shown to reproduce
the spectrum for expanding maps, once finer and finer
Markov partitions are used [21]. The subtle point of choos-
ing a state space partitioning for a “generic case” is dis-
cussed in Ref. [22].

Exercises

(21.1) What space does L act on? Show that (21.2) is
a complete basis on the space of analytic functions
on a disk (and thus that we found the complete set of
eigenvalues).

(21.2) What space does L act on? What can be said
about the spectrum of (21.1) on L1[0, 1]? Compare
the result with Fig. 21.4.

(21.3) Euler formula. Derive the Euler formula (21.5)
∞∏

k=0

(1 + tuk) = 1 +
t

1 − u
+

t2u

(1 − u)(1 − u2)
+

t3u3

(1 − u)(1 − u2)(1 − u3)
· · ·

=
∞∑

k=0

tk
u

k(k−1)
2

(1 − u) · · · (1 − uk)
, |u| < 1. (21.34)

(21.4) 2-d product expansion∗∗. We conjecture that the
expansion corresponding to (21.34) is in this case
∞∏

k=0

(1 + tuk)k+1 =
∞∑

k=0

Fk(u)

(1 − u)2(1 − u2)2 · · · (1 − uk)2
tk

= 1 +
1

(1 − u)2
t+

2u

(1 − u)2(1 − u2)2
t2

+
u2(1 + 4u+ u2)

(1 − u)2(1 − u2)2(1 − u3)2
t3 + · · ·(21.35)

Fk(u) is a polynomial in u, and the coefficients fall
off asymptotically as Cn ≈ un3/2

. Verify; if you
have a proof to all orders, e-mail it to the authors.
(See also Solution 21.3).

(21.5) Bernoulli shift onL spaces. Check that the family
(21.21) belongs to L1([0, 1]). What can be said about
the essential spectral radius on L2([0, 1])? A useful
reference is [24].

(21.6) Cauchy integrals. Rework all complex analysis
steps used in the Bernoulli shift example on analytic
functions on a disk.

(21.7) Escape rate. Consider the escape rate from a
strange repeller: find a choice of trial functions ξ
and ϕ such that (21.29) gives the fraction on parti-
cles surviving after n iterations, if their initial den-
sity distribution is ρ0(x). Discuss the behavior of
such an expression in the long time limit.
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