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“It seems very pretty,” she said when she had finished it, “but
it’s rather hard to understand!” (You see she didn’t like to con-
fess, even to herself, that she couldn’t make it out at all.) “Some-
how it seems to fill my head with ideas — only I don’t exactly
know what they are!”
Lewis Carroll, Through the Looking Glass

The problem with the trace formulas (16.10), (16.23) and (16.28) is that
they diverge at z = e−s0 , respectively s = s0, i.e., precisely where one
would like to use them. While this does not prevent numerical estima-
tion of some “thermodynamic” averages for iterated mappings, in the
case of the Gutzwiller trace formula of Chapter ?? this leads to a per-

Chapter ??plexing observation that crude estimates of the radius of convergence
seem to put the entire physical spectrum out of reach. We shall now

Chapter ??cure this problem by thinking, at no extra computational cost; while
traces and determinats are formally equivalent, determinants are the
tool of choice when it comes to computing spectra. The idea is illus-
trated by Fig. 1.13: Determinants tend to have larger analyticity do-
mains because if trL/(1−zL) = − d

dz ln det (1−zL) diverges at a partic-
ular value of z, then det (1− zL) might have an isolated zero there, and
a zero of a function is easier to determine numerically than its poles.

17.1 Spectral determinants for maps

The eigenvalues zk of a linear operator are given by the zeros of the
determinant

det (1− zL) =
∏
k

(1 − z/zk) . (17.1)

For finite matrices this is the characteristic determinant; for operators
this is the Hadamard representation of the spectral determinant (sparing
the reader from pondering possible regularization factors). Consider

Appendix ??
first the case of maps, for which the evolution operator advances the
densities by integer steps in time. In this case we can use the formal
matrix identity

4.1, page 67

ln det (1 −M) = tr ln(1−M) = −
∞∑

n=1

1
n

tr Mn , (17.2)



246 CHAPTER 17. SPECTRAL DETERMINANTS

to relate the spectral determinant of an evolution operator for a map to
its traces (16.8), and hence to periodic orbits:

det (1 − zL) = exp

(
−

∞∑
n

zn

n
trLn

)

= exp

(
−
∑

p

∞∑
r=1

1
r

znprerβ·Ap∣∣det
(
1−M r

p

)∣∣
)

. (17.3)

Going the other way, the trace formula (16.10) can be recovered from
the spectral determinant by taking a derivative

tr
zL

1− zL = −z
d

dz
ln det (1 − zL) . (17.4)

fast track

Section 17.2, p. 246

Example 17.1 Spectral determinants of transfer operators:

For a piecewise-linear map (15.17) with a finite Markov partition,
an explicit formula for the spectral determinant follows by substituting the
trace formula (16.11) into (17.3):

det (1 − zL) =

∞∏
k=0

(
1 − t0

Λk
0

− t1
Λk

1

)
, (17.5)

where ts = z/|Λs|. The eigenvalues are necessarily the same as in (16.12),
which we already determined from the trace formula (16.10).
The exponential spacing of eigenvalues guarantees that the spectral deter-
minant (17.5) is an entire function. It is this property that generalizes to
piecewise smooth flows with finite Markov parititions, and singles out spec-
tral determinants rather than the trace formulas or dynamical zeta functions
as the tool of choice for evaluation of spectra.

17.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for diffeo-
morphisms seems quite remote for flows. However we will
mention a wild idea in this direction. [· · ·] define l(γ) to be
the minimal period of γ [· · ·] then define formally (another zeta
function!) Z(s) to be the infinite product

Z(s) =
∏
γ∈Γ

∞∏
k=0

(
1 − [exp l(γ)]−s−k

)
.

Stephen Smale, Differentiable Dynamical Systems
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We write the formula for the spectral determinant for flows by anal-
ogy to (17.3)

det (s−A) = exp

(
−
∑

p

∞∑
r=1

1
r

er(β·Ap−sTp)∣∣det
(
1−M r

p

)∣∣
)

, (17.6)

and then check that the trace formula (16.23) is the logarithmic deriva-
tive of the spectral determinant

tr
1

s−A =
d

ds
ln det (s−A) . (17.7)

With z set to z = e−s as in (16.24), the spectral determinant (17.6) has
the same form for both maps and flows. We refer to (17.6) as spectral
determinant, as the spectrum of the operator A is given by the zeros of

det (s−A) = 0 . (17.8)

We now note that the r sum in (17.6) is close in form to the expansion
of a logarithm. This observation enables us to recast the spectral deter-
minant into an infinite product over periodic orbits as follows:

Let Mp be the p-cycle [d× d] transverse fundamental matrix, with
eigenvalues Λp,1, Λp,2, . . ., Λp,d. Expanding the expanding eigenvalue
factors 1/(1− 1/Λp,e) and the contracting eigenvalue factors 1/(1− Λp,c)
in (16.4) as geometric series, substituting back into (17.6), and resum-
ming the logarithms, we find that the spectral determinant is formally
given by the infinite product

det (s−A) =
∞∏

k1=0

· · ·
∞∏

lc=0

1
ζk1···lc

1/ζk1···lc =
∏
p

(
1− tp

Λl1
p,e+1Λ

l2
p,e+2 · · ·Λlc

p,d

Λk1
p,1Λ

k2
p,2 · · ·Λke

p,e

)
(17.9)

tp = tp(z, s, β) =
1
|Λp|e

β·Ap−sTpznp . (17.10)

In such formulas tp is a weight associated with the p cycle (letter t
refers to the “local trace” evaluated along the p cycle trajectory), and
the index p runs through all distinct prime cycles. When convenient, we
inserts the znp factor into cycle weights, as a formal parameter which
keeps track of the topological cycle lengths. These factors will assists us

Chapter 18
in expanding zeta functions and determinants, eventually we shall set
z = 1. The subscripts e, c indicate that there are e expanding eigenval-
ues, and c contracting eigenvalues. The observable whose average we
wish to compute contributes through the At(x) term in the p cycle mul-
tiplicative weight eβ·Ap . By its definition (15.1), the weight for maps is
a product along the cycle points

eAp =
np−1∏
j=0

ea(fj(xp)) ,

ChaosBook.org version11.9.2, Aug 21 2007 det - 19apr2005
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and the weight for flows is an exponential of the integral (15.5) along
the cycle

eAp = exp

(∫ Tp

0

a(x(τ))dτ

)
.

This formula is correct for scalar weighting functions; more general ma-
trix valued weights require a time-ordering prescription as in the fun-
damental matrix of Section 4.1.

Example 17.2 Expanding 1-d map:

For expanding 1-dmappings the spectral determinant (17.9) takes the
form

det (1 − zL) =
∏
p

∞∏
k=0

(
1 − tp/Λ

k
p

)
, tp =

eβAp

|Λp|
znp . (17.11)

Example 17.3 Two-degree of freedom Hamiltonian flows:
For a 2-degree of freedom Hamiltonian flows the energy conservation elimi-
nates on phase space variable, and restriction to a Poincaré section eliminates
the marginal longitudinal eigenvalue Λ = 1, so a periodic orbit of 2-degree of
freedom hyperbolic Hamiltonian flow has one expanding transverse eigen-
value Λ, |Λ| > 1, and one contracting transverse eigenvalue 1/Λ. The weight
in (16.4) is expanded as follows:

1∣∣det
(
1 −Mr

p

)∣∣ =
1

|Λ|r(1 − 1/Λr
p)2

=
1

|Λ|r
∞∑

k=0

k + 1

Λkr
p

. (17.12)

The spectral determinant exponent can be resummed,

−
∞∑

r=1

1

r

e(βAp−sTp)r∣∣det
(
1 −Mr

p

)∣∣ =
∞∑

k=0

(k + 1) log

(
1 − eβAp−sTp

|Λp|Λk
p

)
,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian
flow rewritten as an infinite product over prime cycles

det (s−A) =
∏
p

∞∏
k=0

(
1 − tp/Λ

k
p

)k+1

. (17.13)

??, page ??

Now we are finally poised to deal with the problem posed at the
beginning of Chapter 16; how do we actually evaluate the averages in-
troduced in Section 15.1? The eigenvalues of the dynamical averaging
evolution operator are given by the values of s for which the spectral
determinant (17.6) of the evolution operator (15.23) vanishes. If we can
compute the leading eigenvalue s0(β) and its derivatives, we are done.
Unfortunately, the infinite product formula (17.9) is no more than a
shorthand notation for the periodic orbit weights contributing to the
spectral determinant; more work will be needed to bring such formu-
las into a tractable form. This shall be accomplished in Chapter 18, but
here it is natural to introduce still another variant of a determinant, the
dynamical zeta function.
det - 19apr2005 ChaosBook.org version11.9.2, Aug 21 2007
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17.3 Dynamical zeta functions

It follows from Section 16.1.1 that if one is interested only in the leading
eigenvalue of Lt, the size of the p cycle neighborhood can be approxi-
mated by 1/|Λp|r, the dominant term in the rTp = t → ∞ limit, where
Λp =

∏
e Λp,e is the product of the expanding eigenvalues of the fun-

damental matrix Mp. With this replacement the spectral determinant
(17.6) is replaced by the dynamical zeta function

1/ζ = exp

(
−
∑

p

∞∑
r=1

1
r
trp

)
(17.14)

that we have already derived heuristically in Section 1.5.2. Resumming
the logarithms using

∑
r trp/r = − ln(1− tp) we obtain the Euler product

representation of the dynamical zeta function:

1/ζ =
∏
p

(1− tp) . (17.15)

In order to simplify the notation, we usually omit the explicit depen-
dence of 1/ζ, tp on z, s, β whenever the dependence is clear from the
context.

The approximate trace formula (16.28) plays the same role vis-à-vis
the dynamical zeta function (17.7)

Γ(s) =
d

ds
ln ζ−1 =

∑
p

Tptp
1− tp

, (17.16)

as the exact trace formula (16.23) plays vis-à-vis the spectral determin-
ant (17.6). The heuristically derived dynamical zeta function of Sec-
tion 1.5.2 now re-emerges as the 1/ζ0···0(z) part of the exact spectral
determinant; other factors in the infinite product (17.9) affect the non-
leading eigenvalues of L.

In summary, the dynamical zeta function (17.15) associated with the
flow f t(x) is defined as the product over all prime cycles p. The quan-
tities, Tp, np and Λp, denote the period, topological length and product
of the expanding stability eigenvalues of prime cycle p, Ap is the inte-
grated observable a(x) evaluated on a single traversal of cycle p (see
(15.5)), s is a variable dual to the time t, z is dual to the discrete “topo-
logical” time n, and tp(z, s, β) denotes the local trace over the cycle p.
We have included the factor znp in the definition of the cycle weight in
order to keep track of the number of times a cycle traverses the surface
of section. The dynamical zeta function is useful because the term

1/ζ(s) = 0 (17.17)

when s = s0, Here s0 is the leading eigenvalue of Lt = etA, which is
often all that is necessary for application of this equation. The above
argument completes our derivation of the trace and determinant for-
mulas for classical chaotic flows. In chapters that follow we shall make
these formulas tangible by working out a series of simple examples.
ChaosBook.org version11.9.2, Aug 21 2007 det - 19apr2005
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The remainder of this chapter offers examples of zeta functions.

fast track

Chapter 18, p. 261

17.3.1 A contour integral formulation

The following observation is sometimes useful, in particular for
zeta functions with richer analytic structure than just zeros and poles,
as in the case of intermittency (Chapter ??): Γn , the trace sum (16.26),
can be expressed in terms of the dynamical zeta function (17.15)

1/ζ(z) =
∏
p

(
1− znp

|Λp|
)

. (17.18)

as a contour integral

Γn =
1

2πi

∮
γ−

r

z−n

(
d

dz
log ζ−1(z)

)
dz , (17.19)

where a small contour γ−
r encircles the origin in negative (clockwise)17.7, page 257

direction. If the contour is small enough, i.e., it lies inside the unit
circle |z| = 1, we may write the logarithmic derivative of ζ−1(z) as
a convergent sum over all periodic orbits. Integrals and sums can be
interchanged, the integrals can be solved term by term, and the trace
formula (16.26) is recovered. For hyperbolic maps, cycle expansions orChapter 18

other techniques provide an analytical continuation of the dynamical
zeta function beyond the leading zero; we may therefore deform the
original contour into a larger circle with radius R which encircles both
poles and zeros of ζ−1(z), as depicted in Fig. 17.1. Residue calculus
turns this into a sum over the zeros zα and poles zβ of the dynamical
zeta function, that is

Γn =
zeros∑

|zα|<R

1
zn

α

−
poles∑
|zβ |<R

1
zn

β

+
1

2πi

∮
γ−

R

dz z−n d

dz
log ζ−1, (17.20)

where the last term gives a contribution from a large circle γ−
R . It would

be a miracle if you still remebered this, but in Section 1.4.3 we inter-
preted Γn as fraction of survivors after n bounces, and defined the es-
cape rate γ as the rate of the find exponential decay of Γn. We now see
that this exponential decay is dominated by the leading zero or pole of
ζ−1(z).

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

17.3.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of
the topological zeta function (13.21) to a function that assigns different
det - 19apr2005 ChaosBook.org version11.9.2, Aug 21 2007
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weights to different cycles:

ζ(z) = exp
∞∑

n=1

zn

n

⎛
⎝ ∑

xi∈Fixfn

tr
n−1∏
j=0

g(f j(xi))

⎞
⎠ .

Here we sum over all periodic points xi of period n, and g(x) is any
16.2, page 243(matrix valued) weighting function, where the weight evaluated multi-

plicatively along the trajectory of xi.
By the chain rule (4.38) the stability of any n-cycle of a 1-d map is

given by Λp =
∏n

j=1 f ′(xi), so the 1-d map cycle stability is the sim-
plest example of a multiplicative cycle weight g(xi) = 1/|f ′(xi)|, and
indeed - via the Perron-Frobenius evolution operator (14.9) - the histor-
ical motivation for Ruelle’s more abstract construction.

In particular, for a piecewise-linear map with a finite Markov parti-
tion such as the map of Example 14.1, the dynamical zeta function is
given by a finite polynomial, a straightforward generalization of the
topological transition matrix determinant (10.2). As explained in Sec-
tion 13.3, for a finite [N ×N ] dimensional matrix the determinant is
given by ∏

p

(1− tp) =
N∑

n=1

zncn ,

where cn is given by the sum over all non-self-intersecting closed paths
of length n together with products of all non-intersecting closed paths
of total length n.

Example 17.4 A piecewise linear repeller:
Due to piecewise linearity, the stability of any n-cycle of the piecewise lin-
ear repeller (15.17) factorizes as Λs1s2...sn = Λm

0 Λn−m
1 , where m is the total

number of times the letter sj = 0 appears in the p symbol sequence, so the
traces in the sum (16.28) take the particularly simple form

trTn = Γn =

(
1

|Λ0|
+

1

|Λ1|

)n

.

The dynamical zeta function (17.14) evaluated by resumming the traces,
17.3, page 257

1/ζ(z) = 1 − z/|Λ0| − z/|Λ1| , (17.21)

is indeed the determinant det (1− zT ) of the transfer operator (15.19), which
is almost as simple as the topological zeta function (13.25).

⇒ Section 10.5More generally, piecewise-linear approximations to dynamical sys-
tems yield polynomial or rational polynomial cycle expansions, pro-
vided that the symbolic dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so dreaded by
quantum chaologians is a bogus anxiety; we are dealing with expo-
nentially many cycles of increasing length and instability, but all that
really matters in this example are the stabilities of the two fixed points.
Clearly the information carried by the infinity of longer cycles is highly
redundant; we shall learn in Chapter 18 how to exploit this redundancy
systematically.
ChaosBook.org version11.9.2, Aug 21 2007 det - 19apr2005



252 CHAPTER 17. SPECTRAL DETERMINANTS

17.4 False zeros

Compare (17.21) with the Euler product (17.15). For simplicity consider
two equal scales, |Λ0| = |Λ1| = eλ. Our task is to determine the leading
zero z = eγ of the Euler product. It is a novice error to assume that
the infinite Euler product (17.15) vanishes whenever one of its factors
vanishes. If that were true, each factor (1− znp/|Λp|) would yield

0 = 1− enp(γ−λp), (17.22)

so the escape rate γ would equal the stability exponent of a repulsive
cycle, one eigenvalue γ = γp for each prime cycle p. This is false! The
exponentially growing number of cycles with growing period conspires
to shift the zeros of the infinite product. The correct formula follows
from (17.21)

0 = 1− eγ−λ+h , h = ln 2. (17.23)

This particular formula for the escape rate is a special case of a general
relation between escape rates, Lyapunov exponents and entropies that
is not yet included into this book. Physically this means that the escape
induced by the repulsion by each unstable fixed point is diminished
by the rate of backscatter from other repelling regions, i.e., the entropy
h; the positive entropy of orbits shifts the “false zeros” z = eλp of the
Euler product (17.15) to the true zero z = eλ−h.

17.5 Spectral determinants vs. dynamical zeta
functions

In Section 17.3 we derived the dynamical zeta function as an approx-
imation to the spectral determinant. Here we relate dynamical zeta
functions to spectral determinants exactly, by showing that a dynam-
ical zeta function can be expressed as a ratio of products of spectral
determinants.

The elementary identity for d-dimensional matrices

1 =
1

det (1−M)

d∑
k=0

(−1)ktr
(∧kM

)
, (17.24)

inserted into the exponential representation (17.14) of the dynamical
zeta function, relates the dynamical zeta function to weighted spectral
determinants.

Example 17.5 Dynamical zeta function in terms of determinants, 1-d
maps:
For 1-d maps the identity

1 =
1

(1 − 1/Λ)
− 1

Λ

1

(1 − 1/Λ)
det - 19apr2005 ChaosBook.org version11.9.2, Aug 21 2007
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substituted into (17.14) yields an expression for the dynamical zeta function
for 1-d maps as a ratio of two spectral determinants

1/ζ =
det (1 − zL)

det (1 − zL(1))
(17.25)

where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we
shall see in Chapter ??, this establishes that for nice hyperbolic flows 1/ζ is
meromorphic, with poles given by the zeros of det (1−zL(1)). The dynamical
zeta function and the spectral determinant have the same zeros, although in
exceptional circumstances some zeros of det (1−zL(1)) might be cancelled by
coincident zeros of det (1 − zL(1)). Hence even though we have derived the
dynamical zeta function in Section 17.3 as an “approximation” to the spectral
determinant, the two contain the same spectral information.

Example 17.6 Dynamical zeta function in terms of determinants, 2-d
Hamiltonian maps:
For 2-dimensional Hamiltonian flows the above identity yields

1

|Λ| =
1

|Λ|(1 − 1/Λ)2
(1 − 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1 − zL) det (1 − zL(2))

det (1 − zL(1))
. (17.26)

This establishes that for nice 2-d hyperbolic flows the dynamical zeta func-
tion is meromorphic.

Example 17.7 Dynamical zeta functions for 2-d Hamiltonian flows:
The relation (17.26) is not particularly useful for our purposes. Instead we
insert the identity

1 =
1

(1 − 1/Λ)2
− 2

Λ

1

(1 − 1/Λ)2
+

1

Λ2

1

(1 − 1/Λ)2

into the exponential representation (17.14) of 1/ζk , and obtain

1/ζk =
det (1 − zL(k))det (1 − zL(k+2))

det (1 − zL(k+1))2
. (17.27)

Even though we have no guarantee that det (1 − zL(k)) are entire, we do
know that the upper bound on the leading zeros of det (1 − zL(k+1)) lies
strictly below the leading zeros of det (1 − zL(k)), and therefore we expect
that for 2-dimensional Hamiltonian flows the dynamical zeta function 1/ζk
generically has a double leading pole coinciding with the leading zero of the
det (1 − zL(k+1)) spectral determinant. This might fail if the poles and lead-
ing eigenvalues come in wrong order, but we have not encountered such
situations in our numerical investigations. This result can also be stated as
follows: the theorem establishes that the spectral determinant (17.13) is en-
tire, and also implies that the poles in 1/ζk must have the right multiplicities
to cancel in the det (1 − zL) =

∏
1/ζk+1

k product.

ChaosBook.org version11.9.2, Aug 21 2007 det - 19apr2005
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17.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral det-
erminant (17.13) tell us? Consider one of the simplest conceiv-

R

a L

1

Fig. 17.2 A game of p
two disks of equal siz
only periodic orbit (A

able hyperbolic flows: the game of pinball of Fig. 17.2 consisting of two
disks of equal size in a plane. There is only one periodic orbit, with the
period T and expanding eigenvalue Λ given by elementary considera-
tions (see Exercise 9.3), and the resonances det (sα −A) = 0, α = {k, n}
plotted in Fig. 17.3:

sα = −(k+1)λ+n
2πi

T
, n ∈ Z , k ∈ Z+ , multiplicity k+1, (17.28)

can be read off the spectral determinant (17.13) for a single unstable
cycle:

det (s−A) =
∞∏

k=0

(
1− e−sT/|Λ|Λk

)k+1
. (17.29)

In the above λ = ln |Λ|/T is the cycle Lyapunov exponent. For an

s

s

Re

2π/Τ

−2π/Τ

4π/Τ

6π/Τ

−λ/Τ−2λ/Τ−3λ/Τ−4λ/Τ

−4π/Τ

s

{3,2}

{0,−3}

Im

Fig. 17.3 The classical resonances α =
{k, n} (17.28) for a 2-disk game of pin-
ball.

open system, the real part of the eigenvalue sα gives the decay rate of
αth eigenstate, and the imaginary part gives the “node number” of the
eigenstate. The negative real part of sα indicates that the resonance is
unstable, and the decay rate in this simple case (zero entropy) equals
the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negative�sα are not a prob-
lem, but as there are eigenvalues arbitrarily far in the imaginary direc-
tion, this might seem like all too many eigenvalues. However, they are
necessary - we can check this by explicit computation of the right hand
side of (16.23), the trace formula for flows:

∞∑
α=0

esαt =
∞∑

k=0

∞∑
n=−∞

(k + 1)e(k+1)λt+i2πnt/T

=
∞∑

k=0

(k + 1)
(

1
|Λ|Λk

)t/T ∞∑
n=−∞

ei2πn/T

=
∞∑

k=0

k + 1
|Λ|rΛkr

∞∑
r=−∞

δ(r − t/T)

= T
∞∑

r=−∞

δ(t− rT)
|Λ|(1 − 1/Λr)2

. (17.30)

Hence, the two sides of the trace formula (16.23) are verified. The for-
mula is fine for t > 0; for t → 0+, however, sides are divergent and
need regularization.

The reason why such sums do not occur for maps is that for discrete
time we work with the variable z = es, so an infinite strip along �s
maps into an annulus in the complex z plane, and the Dirac delta sum
in the above is replaced by the Kronecker delta sum in (16.8). In the
case at hand there is only one time scale T, and we could just as well
det - 19apr2005 ChaosBook.org version11.9.2, Aug 21 2007
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replace s by the variable z = e−sT . In general, a continuous time flow
has an infinity of irrationally related cycle periods, and the resonance
arrays are more irregular, cf. Fig. 18.1.

Summary

The eigenvalues of evolution operators are given by the zeros of corre-
sponding determinants, and one way to evaluate determinants is to ex-
pand them in terms of traces, using the matrix identity log det = tr log.
Traces of evolution operators can be evaluated as integrals over Dirac
delta functions, and in this way the spectra of evolution operators are
related to periodic orbits. The spectral problem is now recast into a
problem of determining zeros of either the spectral determinant

det (s−A) = exp

(
−
∑

p

∞∑
r=1

1
r

e(β·Ap−sTp)r∣∣det
(
1−M r

p

)∣∣
)

,

or the leading zeros of the dynamical zeta function

1/ζ =
∏
p

(1− tp) , tp =
1
|Λp|e

β·Ap−sTp .

The spectral determinant is the tool of choice in actual calculations, as
it has superior convergence properties (this will be discussed in Chap-
ter ?? and is illustrated, for example, by Table 18.2). In practice both
spectral determinants and dynamical zeta functions are preferable to
trace formulas because they yield the eigenvalues more readily; the
main difference is that while a trace diverges at an eigenvalue and re-
quires extrapolation methods, determinants vanish at s corresponding
to an eigenvalue sα, and are analytic in s in an open neighborhood of
sα.

The critical step in the derivation of the periodic orbit formulas for
spectral determinants and dynamical zeta functions is the hyperbol-
icity assumption (16.5) that no cycle stability eigenvalue is marginal,
|Λp,i| 
= 1. By dropping the prefactors in (1.4), we have given up on any
possibility of recovering the precise distribution of the initial x (return
to the past is rendered moot by the chaotic mixing and the exponen-
tial growth of errors), but in exchange we gain an effective description
of the asymptotic behavior of the system. The pleasant surprise (to
be demonstrated in Chapter 18) is that the infinite time behavior of an
unstable system turns out to be as easy to determine as its short time
behavior.

Further reading
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Piecewise monotone maps. A partial list of cases for
which the transfer operator is well defined: the expand-
ing Hölder case, weighted subshifts of finite type, expand-
ing differentiable case, see Bowen [23]: expanding holo-
morphic case, see Ruelle [?]; piecewise monotone maps of
the interval, see Hofbauer and Keller [15] and Baladi and
Keller [18].

Smale’s wild idea. Smale’s wild idea quoted
on page 246 was technically wrong because 1) the Sel-
berg zeta function yields the spectrum of a quantum me-
chanical Laplacian rather than the classical resonances, 2)
the spectral determinant weights are different from what
Smale conjectured, as the individual cycle weights also de-
pend on the stability of the cycle, 3) the formula is not
dimensionally correct, as k is an integer and s represents
inverse time. Only for spaces of constant negative cur-
vature do all cycles have the same Lyapunov exponent
λ = ln |Λp|/Tp. In this case, one can normalize time so
that λ = 1, and the factors e−sTp/Λk

p in (17.9) simplify to
s−(s+k)Tp , as intuited in Smale’s quote on page 246 (where
l(γ) is the cycle period denoted here by Tp). Nevertheless,
Smale’s intuition was remarkably on the target.

Is this a generalization of the Fourier analysis?
Fourier analysis is a theory of the space ↔ eigenfunction
duality for dynamics on a circle. The way in which peri-
odic orbit theory generalizes Fourier analysis to nonlinear
flows is discussed in Ref. [4], a very readable introduction
to the Selberg Zeta function.

Zeta functions, antecedents. For a function to
be deserving of the appellation “zeta function”, one ex-
pects it to have an Euler product representation (17.15),
and perhaps also satisfy a functional equation. Various
kinds of zeta functions are reviewed in Refs. [8–10]. His-
torical antecedents of the dynamical zeta function are the
fixed-point counting functions introduced by Weil [11],
Lefschetz [12] and Artin and Mazur [13], and the deter-

minants of transfer operators of statistical mechanics [25].
In his review article Smale [22] already intuited, by

analogy to the Selberg Zeta function, that the spectral det-
erminant is the right generalization for continuous time
flows. In dynamical systems theory, dynamical zeta func-
tions arise naturally only for piecewise linear mappings;
for smooth flows the natural object for the study of clas-
sical and quantal spectra are the spectral determinants.
Ruelle derived the relation (17.3) between spectral deter-
minants and dynamical zeta functions, but since he was
motivated by the Artin-Mazur zeta function (13.21) and
the statistical mechanics analogy, he did not consider the
spectral determinant to be a more natural object than the
dynamical zeta function. This has been put right in papers
on “flat traces” [21, ?].

The nomenclature has not settled down yet; what we
call evolution operators here is elsewhere called trans-
fer operators [27], Perron-Frobenius operators [6] and/or
Ruelle-Araki operators.

Here we refer to kernels such as (15.23) as evolution
operators. We follow Ruelle in usage of the term “dyn-
amical zeta function”, but elsewhere in the literature the
function (17.15) is often called the Ruelle zeta function.
Ruelle [28] points out that the corresponding transfer op-
erator T was never considered by either Perron or Frobe-
nius; a more appropriate designation would be the Ruelle-
Araki operator. Determinants similar to or identical with
our spectral determinants are sometimes called Selberg
Zetas, Selberg-Smale zetas [8], functional determinants,
Fredholm determinants, or even - to maximize confusion
- dynamical zeta functions [14]. A Fredholm determinant
is a notion that applies only to trace class operators - as
we consider here a somewhat wider class of operators, we
prefer to refer to their determinants loosely as “spectral
determinants”.

Exercises

(17.1) Escape rate for a 1-d repeller, numerically. Con-
sider the quadratic map

f(x) = Ax(1− x) (17.31)

on the unit interval. The trajectory of a point start-
ing in the unit interval either stays in the interval
forever or after some iterate leaves the interval and

diverges to minus infinity. Estimate numerically the
escape rate (??), the rate of exponential decay of the
measure of points remaining in the unit interval,
for either A = 9/2 or A = 6. Remember to com-
pare your numerical estimate with the solution of
the continuation of this exercise, Exercise 18.2.

(17.2) Spectrum of the “golden mean” pruned map.
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(medium - Exercise 13.6 continued)

(a) Determine an expression for trLn, the trace
of powers of the Perron-Frobenius operator
(14.10) for the tent map of Exercise 13.6.

(b) Show that the spectral determinant for the
Perron-Frobenius operator is

det (1 − zL) =
∏

k even

(
1 − z

Λk+1
− z2

Λ2k+2

)
∏

k odd

(
1 +

z

Λk+1
+

z2

Λ2k+2

)
.(17.32)

(17.3) Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta
function

1/ζ(z) =
∏
p

(
1 − znp

|Λp|

)
,

for the piecewise-linear map (15.17) with the
left branch slope Λ0, the right branch slope Λ1.

x

f(x)

Λ0 Λ1

x

f(x)

s10s00

s01 s11

(b) What if there are four different slopes
s00, s01, s10, and s11 instead of just two, with
the preimages of the gap adjusted so that junc-
tions of branches s00, s01 and s11, s10 map in
the gap in one iteration? What would the dyn-
amical zeta function be?

(17.4) Dynamical zeta functions from Markov graphs.
Extend Section 13.3 to evaluation of dynamical
zeta functions for piecewise linear maps with finite
Markov graphs. This generalizes the results of Ex-
ercise 17.3.

(17.5) Zeros of infinite products. Determination of
the quantities of interest by periodic orbits involves
working with infinite product formulas.

(a) Consider the infinite product

F (z) =
∞∏

k=0

(1 + fk(z))

where the functions fk are “sufficiently nice.”
This infinite product can be converted into an

infinite sum by the use of a logarithm. Use the
properties of infinite sums to develop a sensi-
ble definition of infinite products.

(b) If z∗ is a root of the function F , show that the
infinite product diverges when evaluated at
z∗.

(c) How does one compute a root of a function
represented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition of F (z) to the in-
finite product

F (z) =
∏
p

(1 − znp

Λnp
)

(e) Are the roots of the factors in the above prod-
uct the zeros of F (z)?

(Per Rosenqvist)

(17.6) Dynamical zeta functions as ratios of spectral determinants.
(medium) Show that the zeta function

1/ζ(z) = exp

(
−
∑

p

∑
r=1

1

r

znp

|Λp|r

)

can be written as the ratio 1/ζ(z) =
det (1 − zL(0))/det (1 − zL(1)) ,
where det (1 − zL(s)) =

∏
p

∏∞
k=0(1 −

znp/|Λp|Λk+s
p ).

(17.7) Contour integral for survival probability. Per-
form explicitly the contour integral appearing in
(17.19).

(17.8) Dynamical zeta function for maps. In this
problem we will compare the dynamical zeta func-
tion and the spectral determinant. Compute the ex-
act dynamical zeta function for the skew Ulam tent
map (14.45)

1/ζ(z) =
∏
p∈P

(
1 − znp

|Λp|

)
.

What are its roots? Do they agree with those com-
puted in Exercise 14.7?

(17.9) Dynamical zeta functions for Hamiltonian maps.
Starting from

1/ζ(s) = exp

(
−
∑

p

∞∑
r=1

1

r
trp

)

for a 2-dimensional Hamiltonian map. Using the
equality

1 =
1

(1 − 1/Λ)2
(1 − 2/Λ + 1/Λ2) ,
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show that

1/ζ = det (1 − L) det (1 − L(2))/det (1 −L(1))
2 .

In this expression det (1 − zL(k)) is the expansion
one gets by replacing tp → tp/Λ

k
p in the spectral

determinant.

(17.10) Riemann ζ function. The Riemann ζ function is
defined as the sum

ζ(s) =
∞∑

n=1

1

ns
, s ∈ C .

(a) Use factorization into primes to derive the Eu-
ler product representation

ζ(s) =
∏
p

1

1 − p−s
.

The dynamical zeta function Exercise 17.15 is
called a “zeta” function because it shares the
form of the Euler product representation with
the Riemann zeta function.

(b) (Not trivial:) For which complex values of s is
the Riemann zeta sum convergent?

(c) Are the zeros of the terms in the product, s =
− ln p, also the zeros of the Riemann ζ func-
tion? If not, why not?

(17.11) Finite truncations. (easy) Suppose we have a one-
dimensional system with complete binary dynam-
ics, where the stability of each orbit is given by a
simple multiplicative rule:

Λp = Λ
np,0
0 Λ

np,1
1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example, Λ00101 = Λ3
0Λ

2
1.

(a) Compute the dynamical zeta function for this
system; perhaps by creating a transfer matrix
analogous to (15.19), with the right weights.

(b) Compute the finite p truncations of the cycle
expansion, i.e. take the product only over the
p up to given length with np ≤ N , and expand
as a series in z∏

p

(
1 − znp

|Λp|

)
.

Do they agree? If not, how does the disagree-
ment depend on the truncation length N?
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