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This is a bizzare and discordant situation.
M.V. Berry

(R. Artuso and P. Cvitanović)

The advances in the theory of dynamical systems have brought a new
life to Boltzmann’s mechanical formulation of statistical mechanics. Sinai,
Ruelle and Bowen (SRB) have generalized Boltzmann’s notion of er-
godicity for a constant energy surface for a Hamiltonian system in equi-
librium to dissipative systems in nonequilibrium stationary states. In
this more general setting the attractor plays the role of a constant en-
ergy surface, and the SRB measure of Section 14.1 is a generalization of
the Liouville measure. Such measures are purely microscopic and in-
different to whether the system is at equilibrium, close to equilibrium
or far from it. “Far for equilibrium” in this context refers to systems
with large deviations from Maxwell’s equilibrium velocity distribution.
Furthermore, the theory of dynamical systems has yielded new sets of
microscopic dynamics formulas for macroscopic observables such as
diffusion constants and the pressure, to which we turn now.

We shall apply cycle expansions to the analysis of transport properties
of chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are
made, and the all correlations are taken into account by the inclusion
of cycles of all periods. The infinite extent systems for which the peri-
odic orbit theory yields formulas for diffusion and other transport co-
efficients are spatially periodic, the global state space being tiled with
copies of a elementary cell. The motivation are physical problems such
as beam defocusing in particle accelerators or chaotic behavior of pas-
sive tracers in 2-d rotating flows, problems which can be described as
deterministic diffusion in periodic arrays.

In Section 23.1 we derive the formulas for diffusion coefficients in a
simple physical setting, the 2-d periodic Lorentz gas. This system, how-
ever, is not the best one to exemplify the theory, due to its complicated
symbolic dynamics. Therefore we apply the theory first to diffusion
induced by a 1-d maps in Section 23.2.
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23.1 Diffusion in periodic arrays

The 2-d Lorentz gas is an infinite scatterer array in which diffusion of a
light molecule in a gas of heavy scatterers is modeled by the motion of a
point particle in a plane bouncing off an array of reflecting disks. The

Fig. 23.1 Deterministic diffusion in a fi-
nite horizon periodic Lorentz gas. (Cour-
tesy of T. Schreiber)

Lorentz gas is called “gas” as one can equivalently think of it as consist-
ing of any number of pointlike fast “light molecules” interacting only
with the stationary “heavy molecules” and not among themselves. As
the scatterer array is built up from only defocusing concave surfaces, it
is a pure hyperbolic system, and one of the simplest nontrivial dynami-
cal systems that exhibits deterministic diffusion, Fig. 23.1. We shall now
show that the periodic Lorentz gas is amenable to a purely deterministic
treatment. In this class of open dynamical systems quantities character-
izing global dynamics, such as the Lyapunov exponent, pressure and
diffusion constant, can be computed from the dynamics restricted to
the elementary cell. The method applies to any hyperbolic dynamical
system that is a periodic tiling M̂ =

⋃
n̂∈T Mn̂ of the dynamical state

space M̂ by translates Mn̂ of an elementary cell M, with T the Abelian
group of lattice translations. If the scattering array has further discrete
symmetries, such as reflection symmetry, each elementary cell may be
built from a fundamental domain M̃ by the action of a discrete (not nec-
essarily Abelian) group G. The symbol M̂ refers here to the full state
space, i.e.,, both the spatial coordinates and the momenta. The spatial
component of M̂ is the complement of the disks in the whole space.

We shall now relate the dynamics in M to diffusive properties of the
Lorentz gas in M̂.

These concepts are best illustrated by a specific example, a Lorentz
gas based on the hexagonal lattice Sinai billiard of Fig. 23.2. We distin-
guish two types of diffusive behavior; the infinite horizon case, which
allows for infinite length flights, and the finite horizon case, where any
free particle trajectory must hit a disk in finite time. In this chapter

Fig. 23.2 Tiling of M̂, a periodic lattice
of reflecting disks, by the fundamental
domain M̃. Indicated is an example of
a global trajectory x̂(t) together with the
corresponding elementary cell trajectory
x(t) and the fundamental domain trajec-
tory x̃(t). (Courtesy of J.-P. Eckmann)

we shall restrict our consideration to the finite horizon case, with disks
sufficiently large so that no infinite length free flight is possible. In this
case the diffusion is normal, with x̂(t)2 growing like t. We shall return
to the anomalous diffusion case in Section 23.3.

As we will work with three kinds of state spaces, good manners re-
quire that we repeat what hats, tildes and nothings atop symbols sig-
nify:

˜ fundamental domain, triangle in Fig. 23.2
elementary cell, hexagon in Fig. 23.2

ˆ full state space, lattice in Fig. 23.2 (23.1)

It is convenient to define an evolution operator for each of the 3 cases of
Fig. 23.2. x̂(t) = f̂ t(x̂) denotes the point in the global space M̂ reached
by the flow in time t. x(t) = ft(x0) denotes the corresponding flow in
the elementary cell; the two are related by

n̂t(x0) = f̂ t(x0) − f t(x0) ∈ T , (23.2)
diffusion - 2sep2002 ChaosBook.org version11.9.2, Aug 21 2007



23.1. DIFFUSION IN PERIODIC ARRAYS 375

the translation of the endpoint of the global path into the elementary
cell M. The quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental
domain M̃; f̃ t(x̃) is related to f t(x̃) by a discrete symmetry g ∈ G

which maps x̃(t) ∈ M̃ to x(t) ∈M .
Chapter 19

Fix a vector β ∈ R
d, where d is the dimension of the state space.

We will compute the diffusive properties of the Lorentz gas from the
leading eigenvalue of the evolution operator (15.11)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (23.3)

where the average is over all initial points in the elementary cell, x ∈
M.

If all odd derivatives vanish by symmetry, there is no drift and the
second derivatives

∂

∂βi

∂

∂βj
s(β)

∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t) − x)i(x̂(t) − x)j〉M ,

yield a (generally anisotropic) diffusion matrix. The spatial diffusion
constant is then given by the Einstein relation (15.13)

D =
1
2d

∑
i

∂2

∂β2
i

s(β)
∣∣∣∣
β=0

= lim
t→∞

1
2dt

〈(q̂(t) − q)2〉M ,

where the i sum is restricted to the spatial components qi of the state
space vectors x = (q, p), i.e., if the dynamics is Hamiltonian to the num-
ber of the degrees of freedom.

We now turn to the connection between (23.3) and periodic orbits in
the elementary cell. As the full M̂ → M̃ reduction is complicated by

Remark 23.3
the nonabelian nature of G, we shall introduce the main ideas in the
abelian M̂ →M context.

23.1.1 Reduction from M̂ to M
The key idea follows from inspection of the relation〈

eβ·(x̂(t)−x)
〉
M

=
1

|M|

∫
x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) .

|M| =
∫
M dx is the volume of the elementary cell M. As in Section 15.2,

we have used the identity 1 =
∫
Mdy δ(y − x̂(t)) to motivate the in-

troduction of the evolution operator Lt(ŷ, x). There is a unique lattice
translation n̂ such that ŷ = y − n̂, with y ∈ M, and f t(x) given by
(23.2). The difference is a translation by a constant, and the Jacobian for
changing integration from dŷ to dy equals unity. Therefore, and this is
the main point, translation invariance can be used to reduce this aver-
age to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1

|M|

∫
x,y∈M

dxdy eβ·(f̂t(x)−x)δ(y − f t(x)) . (23.4)

ChaosBook.org version11.9.2, Aug 21 2007 diffusion - 2sep2002



376 CHAPTER 23. DETERMINISTIC DIFFUSION

As this is a translation, the Jacobian is δŷ/δy = 1. In this way the global
f̂ t(x) flow averages can be computed by following the flow ft(x0) re-
stricted to the elementary cell M. The equation (23.4) suggests that we
study the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − f t(x)) , (23.5)

where x̂(t) = f̂ t(x) ∈ M̂, but x, f t(x), y ∈ M. It is straightforward to
check that this operator satisfies the semigroup property (15.25),∫

M
dz Lt2(y, z)Lt1(z, x) = Lt2+t1(y, x) .

For β = 0, the operator (23.5) is the Perron-Frobenius operator (14.10),
with the leading eigenvalue es0 = 1 because there is no escape from this
system (this will lead to the flow conservation sum rule (20.11) later on).

The rest is old hat. The spectrum of L is evaluated by taking the traceSection 16.2 ←−
trLt =

∫
M
dx eβ·n̂t(x)δ(x − x(t)) .

Here n̂t(x) is the discrete lattice translation defined in (23.2). Two kinds
of orbits periodic in the elementary cell contribute. A periodic orbit is
called standing if it is also periodic orbit of the infinite state space dy-
namics, f̂Tp(x) = x, and it is called running if it corresponds to a lattice
translation in the dynamics on the infinite state space, f̂Tp(x) = x+ n̂p.
In the theory of area–preserving maps such orbits are called accelerator
modes, as the diffusion takes place along the momentum rather than the
position coordinate. The travelled distance n̂p = n̂Tp(x0) is indepen-
dent of the starting point x0, as can be easily seen by continuing the
path periodically in M̂.

The final result is the spectral determinant (17.6)

det (s(β) −A) =
∏
p

exp

(
−

∞∑
r=1

1
r

e(β·n̂p−sTp)r∣∣det
(
1−M r

p

)∣∣
)
, (23.6)

or the corresponding dynamical zeta function (17.15)

1/ζ(β, s) =
∏
p

(
1 − e(β·n̂p−sTp)

|Λp|

)
. (23.7)

The dynamical zeta function cycle averaging formula (18.21) for the
diffusion constant (15.13), zero mean drift 〈x̂i〉 = 0 , is given by

D =
1
2d

〈
x̂2
〉

ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · ·+ n̂pk
)2

|Λp1 · · ·Λpk
| . (23.8)

where the sum is over all distinct non-repeating combination of prime
cycles. The derivation is standard, still the formula is strange. Diffusion
diffusion - 2sep2002 ChaosBook.org version11.9.2, Aug 21 2007



23.2. DIFFUSION INDUCED BY CHAINS OF 1-D MAPS 377

is unbounded motion accross an infinite lattice; nevertheless, the reduc-
tion to the elementary cell enables us to compute relevant quantities in
the usual way, in terms of periodic orbits.

A sleepy reader might protest that xp = x(Tp) − x(0) is manifestly
equal to zero for a periodic orbit. That is correct; n̂p in the above for-
mula refers to a displacement on the infinite periodic lattice, while p
refers to closed orbit of the dynamics reduced to the elementary cell,
with xp belonging to the closed prime cycle p.

Even so, this is not an obvious formula. Globally periodic orbits have
x̂2

p = 0, and contribute only to the time normalization 〈T〉ζ . The mean
square displacement

〈
x̂2
〉

ζ
gets contributions only from the periodic

runaway trajectories; they are closed in the elementary cell, but on the
periodic lattice each one grows like x̂(t)2 = (n̂p/Tp)2 = v2

pt
2. So the

orbits that contribute to the trace formulas and spectral determinants
exhibit either ballistic transport or no transport at all: diffusion arises
as a balance between the two kinds of motion, weighted by the 1/|Λp|
measure. If the system is not hyperbolic such weights may be abnor-
mally large, with 1/|Λp| ≈ 1/Tp

α rather than 1/|Λp| ≈ e−Tpλ, where λ
is the Lyapunov exponent, and they may lead to anomalous diffusion -
accelerated or slowed down depending on whether the probabilities of
the running or the standing orbits are enhanced. ⇒ Section 23.3We illustrate the main idea, tracking of a globally diffusing orbit by
the associated confined orbit restricted to the elementary cell, with a
class of simple 1-d dynamical systems where all transport coefficients
can be evaluated analytically.

23.2 Diffusion induced by chains of 1-d maps

In a typical deterministic diffusive process, trajectories originating from
a given scatterer reach a finite set of neighboring scatterers in one bounce,
and then the process is repeated. As was shown in Chapter 10, the es-
sential part of this process is the stretching along the unstable directions
of the flow, and in the crudest approximation the dynamics can be mod-
elled by 1-d expanding maps. This observation motivates introduction
of a class of particularly simple 1-d systems, chains of piecewise linear
maps.

We start by defining the map f̂ on the unit interval as

f̂(x̂) =
{

Λx̂ x̂ ∈ [0, 1/2)
Λx̂+ 1 − Λ x̂ ∈ (1/2, 1] , Λ > 2 , (23.9)

and then extending the dynamics to the entire real line, by imposing
the translation property

f̂ (x̂ + n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (23.10)

As the map is dicontinuous at x̂ = 1/2, f̂(1/2) is undefined, and the
x = 1/2 point has to be excluded from the Markov partition. The map
ChaosBook.org version11.9.2, Aug 21 2007 diffusion - 2sep2002
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(a) (b)

Fig. 23.3 (a) f̂ (x̂), the full space sawtooth map (23.9), Λ > 2. (b) f (x), the sawtooth map
restricted to the unit circle (23.12), Λ = 6.

is antisymmetric under the x̂-coordinate flip

f̂ (x̂) = −f̂ (−x̂) , (23.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the
generating function (15.11) with respect to β, evaluated at β = 0, will
vanish.

The map (23.9) is sketched in Fig. 23.2 (a). Initial points sufficiently
close to either of the fixed points in the initial unit interval remain in
the elementary cell for one iteration; depending on the slope Λ, other
points jump n̂ cells, either to the right or to the left. Repetition of this
process generates a random walk for almost every initial condition.

The translational symmetry (23.10) relates the unbounded dynamics
on the real line to dynamics restricted to the elementary cell - in the
example at hand, the unit interval curled up into a circle. Associated to
f̂ (x̂) we thus also consider the circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂− [x̂] ∈ [0, 1] (23.12)

Fig. 23.2 (b), where [· · ·] stands for the integer part (23.2). As noted
above, the elementary cell cycles correspond to either standing or run-
ning orbits for the map on the full line: we shall refer to n̂p ∈ Z as the
jumping number of the p cycle, and take as the cycle weight

tp = znpeβn̂p/|Λp| . (23.13)

For the piecewise linear map of Fig. 23.2 we can evaluate the dynam-
ical zeta function in closed form. Each branch has the same value of
the slope, and the map can be parametrized by a single parameter, for
example its critical value a = f̂ (1/2), the absolute maximum on the
interval [0, 1] related to the slope of the map by a = Λ/2. The larger Λ
is, the stronger is the stretching action of the map.
diffusion - 2sep2002 ChaosBook.org version11.9.2, Aug 21 2007
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The diffusion constant formula (23.8) for 1-d maps is

D =
1
2

〈
n̂2
〉

ζ

〈n〉ζ
(23.14)

where the “mean cycle time” is given by (18.22)

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k np1 + · · ·+ npk

|Λp1 · · ·Λpk
| , (23.15)

and the “mean cycle displacement squared” by (??)〈
n̂2
〉

ζ
=

∂2

∂β2

1
ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk
)2

|Λp1 · · ·Λpk
| , (23.16)

the primed sum indicating all distinct non-repeating combinations of
prime cycles. The evaluation of these formulas in this simple system
will require nothing more than pencil and paper.

23.2.1 Case of unrestricted symbolic dynamics

Whenever Λ is an integer number, the symbolic dynamics is exceed-
ingly simple. For example, for the case Λ = 6 illustrated in Fig. 23.2 (b),
the elementary cell map consists of 6 full branches, with uniform stretch-
ing factor Λ = 6. The branches have different jumping numbers: for
branches 1 and 2 we have n̂ = 0, for branch 3 we have n̂ = +1, for
branch 4 n̂ = −1, and finally for branches 5 and 6 we have respec-
tively n̂ = +2 and n̂ = −2. The same structure reappears whenever
Λ is an even integer Λ = 2a: all branches are mapped onto the whole
unit interval and we have two n̂ = 0 branches, one branch for which
n̂ = +1 and one for which n̂ = −1, and so on, up to the maximal
jump |n̂| = a− 1. The symbolic dynamics is thus full, unrestricted shift
in 2a symbols {0+, 1+, . . . , (a− 1)+, (a− 1)−, . . . , 1−, 0−}, where the
symbol indicates both the length and the direction of the corresponding
jump.

For the piecewise linear maps with uniform stretching the weight
associated with a given symbol sequence is a product of weights for
individual steps, tsq = tstq. For the map of Fig. 23.2 there are 6 distinct
weigths (23.13):

t1 = t2 = z/Λ
t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .

The piecewise linearity and the simple symbolic dynamics lead to the
full cancellation of all curvature corrections in (18.7). The exact dynam-
ical zeta function (13.13) is given by the fixed point contributions:

1/ζ(β, z) = 1 − t0+ − t0− − · · · − t(a−1)+ − t(a−1)−

= 1 − z

a

⎛⎝1 +
a−1∑
j=1

cosh(βj)

⎞⎠ . (23.17)

ChaosBook.org version11.9.2, Aug 21 2007 diffusion - 2sep2002
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The leading (and only) eigenvalue of the evolution operator (23.5) is

s(β) = log

⎧⎨⎩1
a

⎛⎝1 +
a−1∑
j=1

cosh(βj)

⎞⎠⎫⎬⎭ , Λ = 2a, a integer . (23.18)

The flow conservation (20.11) sum rule is manifestly satisfied, so s(0) =
0. The first derivative s(0)′ vanishes as well by the left/right symmetry
of the dynamics, implying vanishing mean drift 〈x̂〉 = 0. The second
derivative s(β)′′ yields the diffusion constant (23.14):

〈n〉ζ = 2a
1
Λ

= 1 ,
〈
x̂2
〉

ζ
= 2

02

Λ
+2

12

Λ
+2

22

Λ
+· · ·+2

(a− 1)2

Λ
(23.19)

Using the identity
∑n

k=1 k
2 = n(n+ 1)(2n+ 1)/6 we obtain

D =
1
24

(Λ− 1)(Λ − 2) , Λ even integer . (23.20)

Similar calculation for odd integer Λ = 2k − 1 yields23.1, page 389

D =
1
24

(Λ2 − 1) , Λ odd integer . (23.21)

23.2.2 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk
s(β)

∣∣∣∣
β=0

, B2 = D , (23.22)

known for k > 2 as the Burnett coefficients. The behavior of the higher
order coefficients yields information on the relaxation to the asymptotic
distribution function generated by the diffusive process. Here x̂t is the
relevant dynamical variable and Bk’s are related to moments

〈
x̂k

t

〉
of

arbitrary order.
Were the diffusive process purely Gaussian

ets(β) =
1√

4πDt

∫ +∞

−∞
dx̂ eβx̂e−x̂2/(4Dt) = eβ2Dt (23.23)

the only Bk coefficient different from zero would be B2 = D. Hence,
nonvanishing higher order coefficients signal deviations of determinis-
tic diffusion from a Gaussian stochastic process.

For the map under consideration the first Burnett coefficient coeffi-
cient B4 is easily evaluated. For example, using (23.18) in the case of
even integer slope Λ = 2a we obtain23.2, page 389

B4 = − 1
4! · 60

(a− 1)(2a− 1)(4a2 − 9a+ 7) . (23.24)

We see that deterministic diffusion is not a Gaussian stochastic process.
Higher order even coefficients may be calculated along the same lines.
diffusion - 2sep2002 ChaosBook.org version11.9.2, Aug 21 2007
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(a)

0+ 0 -

0+

0 -

1+ 1 -

1+

1 -

2+ 2 -

2+

2 -

(b)

0+
1+

0--1

22+ -

0+ 0-

-11+

(c)

6
7

4
5

2 31

1 3

Fig. 23.4 (a) A partition of the unit interval into six intervals, labeled by the jumping
number n̂(x) I = {0+, 1+, 2+, 2−, 1−, 0−}. The partition is Markov, as the critical point
is mapped onto the right border of M1+ . (b) The Markov graph for this partition. (c) The
Markov graph in the compact notation of (23.26) (introduced by Vadim Moroz).

23.2.3 Case of finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the
critical points are mapped in finite numbers of iterations onto partition
boundary points, or onto unstable periodic orbits. We will work out
here an example for which this occurs in two iterations, leaving other
cases as exercises.

The key idea is to construct a Markov partition (10.4), with intervals
mapped onto unions of intervals. As an example we determine a value
of the parameter 4 ≤ Λ ≤ 6 for which f (f (1/2)) = 0. As in the in-
teger Λ case, we partition the unit interval into six intervals, labeled
by the jumping number n̂(x) ∈ {M0+ ,M1+ ,M2+ ,M2− ,M1− ,M0−},
ordered by their placement along the unit interval, Fig. 23.2.3 (a).

In general the critical value a = f̂ (1/2) will not correspond to an
interval border, but now we choose a such that the critical point is
mapped onto the right border of M1+ . Equating f (1/2) with the right
border of M1+ , x = 1/Λ, we obtain a quadratic equation with the ex-
panding solution Λ = 2(

√
2 + 1). For this parameter value f(M1+) =

M0+

⋃
M1+ , f(M2−) = M0−

⋃
M1− , while the remaining intervals

map onto the whole unit interval M. The transition matrix (10.2) is
given by

φ′ = Tφ =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
φ0+

φ1+

φ2+

φ2−
φ1−
φ0−

⎞⎟⎟⎟⎟⎟⎠ . (23.25)

One could diagonalize (23.25) on a computer, but, as we saw in Sec-
tion 10.4, the Markov graph Fig. 23.2.3 (b) corresponding to Fig. 23.2.3 (a)
offers more insight into the dynamics. The graph Fig. 23.2.3 (b) can be
ChaosBook.org version11.9.2, Aug 21 2007 diffusion - 2sep2002
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redrawn more compactly as Markov graph Fig. 23.2.3 (c) by replacing
parallel lines in a graph by their sum

2

3

2 311
= t1 + t2 + t3 . (23.26)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .

Applying the loop expansion (13.13) of Section 13.3, we are led to the
dynamical zeta function

1/ζ(β, z) = 1 − t0+ − t1+ − t2+0+ − t2+1+ − t2−1− − t2−0− − t1− − t0−

= 1 − 2z
Λ

(1 + cosh(β)) − 2z2

Λ2
(cosh(2β) + cosh(3β)) . (23.27)

For grammar as simple as this one, the dynamical zeta function is the
sum over fixed points of the unrestricted alphabet. As the first check of
this expression for the dynamical zeta function we verify that

1/ζ(0, 1) = 1 − 4
Λ
− 4

Λ2
= 0 ,

as required by the flow conservation (20.11). Conversely, we could
have started by picking the desired Markov partition, writing down
the corresponding dynamical zeta function, and then fixing Λ by the
1/ζ(0, 1) = 0 condition. For more complicated Markov graphs this ap-
proach, together with the factorization (23.35), is helpful in reducing
the order of the polynomial condition that fixes Λ.

The diffusion constant follows from (23.14)23.3, page 389

〈n〉ζ = 4
1
Λ

+ 4
2
Λ2

,
〈
n̂2
〉

ζ
= 2

12

Λ
+ 2

22

Λ2
+ 2

32

Λ2

D =
15 + 2

√
2

16 + 8
√

2
. (23.28)

It is by now clear how to build an infinite hierarchy of finite Markov
partitions: tune the slope in such a way that the critical value f(1/2) is
mapped into the fixed point at the origin in a finite number of iterations
p fP (1/2) = 0. By taking higher and higher values of p one constructs
a dense set of Markov parameter values, organized into a hierarchy
that resembles the way in which rationals are densely embedded in
the unit interval. For example, each of the 6 primary intervals can be
subdivided into 6 intervals obtained by the 2-nd iterate of the map, and
for the critical point mapping into any of those in 2 steps the grammar
(and the corresponding cycle expansion) is finite. So, if we can prove
continuity of D = D(Λ), we can apply the periodic orbit theory to the
sawtooth map (23.9) for a random “generic” value of the parameter Λ,
for example Λ = 4.5. The idea is to bracket this value of Λ by a sequence
of nearby Markov values, compute the exact diffusion constant for each
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such Markov partition, and study their convergence toward the value
of D for Λ = 4.5. Judging how difficult such problem is already for
a tent map (see Section 13.6 and Appendix ??), this is not likely to take
only a week of work.

Expressions like (23.20) may lead to an expectation that the diffu-
sion coefficient (and thus transport properties) are smooth functions
of parameters controling the chaoticity of the system. For example,
one might expect that the diffusion coefficient increases smoothly and
monotonically as the slope Λ of the map (23.9) is increased, or, perhaps
more physically, that the diffusion coefficient is a smooth function of
the Lyapunov exponent λ. This turns out not to be true: D as a function
of Λ is a fractal, nowhere differentiable curve illustrated in Fig. 23.2.3.
The dependence of D on the map parameter Λ is rather unexpected -
even though for larger Λ more points are mapped outside the unit cell
in one iteration, the diffusion constant does not necessarily grow.

This is a consequence of the lack of structural stability, even of purely
hyperbolic systems such as the Lozi map and the 1-d diffusion map
(23.9). The trouble arises due to non-smooth dependence of the topo-
logical entropy on system parameters - any parameter change, no mater
how small, leads to creation and destruction of ininitely many periodic
orbits. As far as diffusion is concerned this means that even though
local expansion rate is a smooth function of Λ, the number of ways in
which the trajectory can re-enter the the initial cell is an irregular func-
tion of Λ.

The lesson is that lack of structural stabily implies lack of spectral
stability, and no global observable is expected to depend smoothly on
the system parameters. If you want to master the material, working
through the project ?? and/or project ?? is strongly recommended.

23.3 Marginal stability and anomalous
diffusion

What effect does the intermittency of Chapter 22 have on transport
properties of 1-d maps? Consider a 1 − d map of the real line on it-
self with the same properties as in Section 23.2, except for a marginal
fixed point at x = 0.

A marginal fixed point unbalances the role of running and standing
orbits, thus generating a mechanism that may result in anomalous dif-
fusion. Our model example is the map shown in Fig. 23.3 (a), with the
corresponding circle map shown in Fig. 23.3 (b). As in Section 22.2.1,
a branch with support in Mi, i = 1, 2, 3, 4 has constant slope Λi, while
f |M0 is of intermittent form. To keep you nimble, this time we take
a slightly different choice of slopes. The toy example of Section 22.2.1
was cooked up so that the 1/s branch cut in dynamical zeta function
was the whole answer. Here we shall take a slightly different route,
and pick piecewise constant slopes such that the dynamical zeta func-
tion for intermittent system can be expressed in terms of the Jonquière
ChaosBook.org version11.9.2, Aug 21 2007 diffusion - 2sep2002
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Fig. 23.5 The dependence of D on the map parameter a is continuous, but not monotone.
(From Ref. [7]). Here a stands for the slope Λ in (23.9).
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(a) (b)

Fig. 23.6 (a) A map with marginal fixed point. (b) The map restricted to the unit circle.

function
Remark 23.3

J(z, s) =
∞∑

k=1

zk/ks (23.29)

Once the 0 fixed point is pruned away, the symbolic dynamics is
given by the infinite alphabet {1, 2, 3, 4, 0i1, 0j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . .
(compare with Table 22.1). The partitioning of the subinterval M0 is in-
duced by M0k(right) = φk

(right)(M3

⋃
M4) (where φ(right) denotes the

inverse of the right branch of f̂ |M0) and the same reasoning applies to
the leftmost branch. These are regions over which the slope of f̂ |M0 is
constant. Thus we have the following stabilities and jumping numbers
associated to letters:

0k3, 0k4 Λp = k1+α

q/2 n̂p = 1

0l1, 0l2 Λp = l1+α

q/2 n̂p = −1
3, 4 Λp = ±Λ n̂p = 1
2, 1 Λp = ±Λ n̂p = −1 , (23.30)

where α = 1/s is determined by the intermittency exponent (22.1),
while q is to be determined by the flow conservation (20.11) for f̂ : —PCde-
fine R

4
Λ

+ 2qζ(α+ 1) = 1

so that q = (Λ − 4)/2Λζ(α + 1). The dynamical zeta function picks up
contributions just by the alphabet’s letters, as we have imposed piece-
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wise linearity, and can be expressed in terms of a Jonguiere function
(23.29):

1/ζ0(z, β) = 1 − 4
Λ
z coshβ − Λ− 4

Λζ(1 + α)
z coshβ · J(z, α+ 1) . (23.31)

Its first zero z(β) is determined by

4
Λ
z +

Λ− 4
Λζ(1 + α)

z · J(z, α+ 1) =
1

coshβ
.

By using implicit function derivation we see thatD vanishes (i.e., z′′(β)|β=1 =
0) when α ≤ 1. The physical interpretation is that a typical orbit will
stick for long times near the 0 marginal fixed point, and the ‘trapping
time’ will be larger for higher values of the intermittency parameter s
(recall α = s−1). Hence, we need to look more closely at the behavior
of traces of high powers of the transfer operator.

The evaluation of transport coefficient requires one more derivative
with respect to expectation values of state space observables (see Sec-
tion 23.1): if we use the diffusion dynamical zeta function (23.7), we
may write the diffusion coefficient as an inverse Laplace transform,in
such a way that any distinction between maps and flows has vanished.
In the case of 1-d diffusion we thus have

D = lim
t→∞

d2

dβ2

1
2πi

∫ a+i∞

a−i∞
ds est ζ

′(β, s)
ζ(β, s)

∣∣∣∣
β=0

(23.32)

where the ζ′ refers to the derivative with respect to s.
The evaluation of inverse Laplace transforms for high values of the

argument is most conveniently performed using Tauberian theorems.
We shall take

ω(λ) =
∫ ∞

0

dx e−λxu(x) ,

with u(x) monotone as x→∞; then, as λ �→ 0 and x �→ ∞ respectively
(and ρ ∈ (0,∞),

ω(λ) ∼ 1
λρ
L

(
1
λ

)
if and only if

u(x) ∼ 1
Γ(ρ)

xρ−1L(x) ,

whereL denotes any slowly varying function with limt→∞ L(ty)/L(t) =
1. Now

1/ζ0′(e−s, β)
1/ζ0(e−s, β)

=

(
4
Λ + Λ−4

Λζ(1+α) (J(e−s, α+ 1) + J(e−s, α))
)

coshβ

1 − 4
Λe

−s coshβ − Λ−4
Λζ(1+α)e

−s(e−s, α+ 1) coshβJ
.

We then take the double derivative with respect to β and obtain

d2

dβ2

(
1/ζ0′(e−s, β)/ζ−1(e−s, β)

)
β=0
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=
4
Λ + Λ−4

Λζ(1+α) (J(e−s, α+ 1) + J(e−s, α))(
1 − 4

Λe
−s − Λ−4

Λζ(1+α)e
−sJ(e−s, α+ 1)

)2 = gα(s) (23.33)

The asymptotic behavior of the inverse Laplace transform (23.32) may
then be evaluated via Tauberian theorems, once we use our estimate
for the behavior of Jonquière functions near z = 1. The deviations from
normal behavior correspond to an explicit dependence of D on time.
Omitting prefactors (which can be calculated by the same procedure)
we have

gα(s) ∼

⎧⎨⎩
s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .

The anomalous diffusion exponents follow:
23.6, page 389

〈(x − x0)2〉t ∼

⎧⎨⎩
t for α > 1
tα for α ∈ (0, 1)
t/ ln t for α = 1 .

(23.34)

Summary

The classical Boltzmann equation for evolution of 1-particle density is
based on stosszahlansatz, neglect of particle correlations prior to, or after
a 2-particle collision. It is a very good approximate description of dilute
gas dynamics, but a difficult starting point for inclusion of systematic
corrections. In the theory developed here, no correlations are neglected
- they are all included in the cycle averaging formula such as the cycle
expansion for the diffusion constant

D =
1
2d

1
〈T〉ζ

∑′
(−1)k+1 (n̂p + · · ·)

|Λp · · · |
(n̂p1 + · · ·+ n̂pk

)2

|Λp1 · · ·Λpk
| .

Such formulas are exact; the issue in their applications is what are the
most effective schemes of estimating the infinite cycle sums required for
their evaluation. Unlike most statistical mechanics, here there are no
phenomenological macroscopic parameters; quantities such as trans-
port coefficients are calculable to any desired accuracy from the micro-
scopic dynamics.

Though superficially indistinguishable from the probabilistic random
walk diffusion, deterministic diffusion is quite recognizable, at least in
low dimensional settings, through fractal dependence of the diffusion
constant on the system parameters, and through non-Gaussion relax-
ation to equilibrium (non-vanishing Burnett coefficients).

For systems of a few degrees of freedom these results are on rigorous
footing, but there are indications that they capture the essential dynam-
ics of systems of many degrees of freedom as well.

Actual evaluation of transport coefficients is a test of the techniques
developped above in physical settings. In cases of severe pruning the
trace formulas and ergodic sampling of dominant cycles might be more
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effective strategy than the cycle expansions of dynamical zeta functions
and systematic enumeration of all cycles.

Further reading

Lorentz gas. The original pinball model proposed by
Lorentz [3] consisted of randomly, rather than regularly
placed scatterers.

Who’s dun it? Cycle expansions for the diffusion con-
stant of a particle moving in a periodic array have been
introduced independently by R. Artuso [4] (exact dynam-
ical zeta function for 1-d chains of maps (23.8)), by W.N.
Vance [5], and by P. Cvitanović, J.-P. Eckmann, and P.
Gaspard [6] (the dynamical zeta function cycle expansion
(23.8) applied to the Lorentz gas).

Lack of structural stability for D. Expressions like
(23.20) may lead to an expectation that the diffusion coeffi-
cient (and thus transport properties) are smooth functions
of the chaoticity of the system (parametrized, for example,
by the Lyapunov exponent λ = ln Λ). This turns out not to
be true: D as a function of Λ is a fractal, nowhere differen-
tiable curve shown in Fig. 23.2.3. The dependence ofD on
the map parameter Λ is rather unexpected - even though
for larger Λ more points are mapped outside the unit cell
in one iteration, the diffusion constant does not necessar-
ily grow. The fractal dependence of diffusion constant on
the map parameter is discussed in Refs. [7–9]. Statistical
mechanicians tend to believe that such complicated be-
havior is not to be expected in systems with very many
degrees of freedom, as the addition to a large integer di-
mension of a number smaller than 1 should be as unno-
ticeable as a microscopic perturbation of a macroscopic
quantity. No fractal-like behavior of the conductivity for
the Lorentz gas has been detected so far [10].

Diffusion induced by 1-d maps. We refer the reader
to Refs. [11, 12] for early work on the deterministic diffu-
sion induced by 1-dimenional maps. The sawtooth map
(23.9) was introduced by Grossmann and Fujisaka [13]
who derived the integer slope formulas (23.20) for the dif-
fusion constant. The sawtooth map is also discussed in
Refs. [14].

Symmetry factorization in one dimension. In
the β = 0 limit the dynamics (23.11) is symmetric under
x → −x, and the zeta functions factorize into products of
zeta functions for the symmetric and antisymmetric sub-
spaces, as described in Section 19.1.1:

1

ζ(0, z)
=

1

ζs(0, z)

1

ζa(0, z)
,

∂

∂z

1

ζ
=

1

ζs

∂

∂z

1

ζa
+

1

ζa

∂

∂z

1

ζs
.

(23.35)

The leading (material flow conserving) eigenvalue z = 1
belongs to the symmetric subspace 1/ζs(0, 1) = 0, so
the derivatives (23.15) also depend only on the symmet-
ric subspace:

〈n〉ζ = z
∂

∂z

1

ζ(0, z)

∣∣∣∣
z=1

=
1

ζa(0, z)
z
∂

∂z

1

ζs(0, z)

∣∣∣∣
z=1

.

(23.36)
Implementing the symmetry factorization is convenient,
but not essential, at this level of computation.

Lorentz gas in the fundamental domain. The vec-
tor valued nature of the generating function (23.3) in the
case under consideration makes it difficult to perform a
calculation of the diffusion constant within the fundamen-
tal domain. Yet we point out that, at least as regards scalar
quantities, the full reduction to M̃ leads to better esti-
mates. A proper symbolic dynamics in the fundamental
domain has been introduced in Ref. [15], numerical esti-
mates for scalar quantities are reported in Table ??, taken
from Ref. [16].

In order to perform the full reduction for diffusion one
should express the dynamical zeta function (23.7) in terms
of the prime cycles of the fundamental domain M̃ of the
lattice (see Fig. 23.2) rather than those of the elementary
(Wigner-Seitz) cell M. This problem is complicated by the
breaking of the rotational symmetry by the auxilliary vec-
tor β, or, in other words, the non-commutativity of trans-
lations and rotations: see Ref. [6].

Anomalous diffusion. Anomalous diffusion for 1-d
intermittent maps was studied in the continuous time ran-
dom walk approach in Refs. [10, 11]. The first approach
within the framework of cycle expansions (based on trun-
cated dynamical zeta functions) was proposed in Ref. [12].
Our treatment follows methods introduced in Ref. [13],
applied there to investigate the behavior of the Lorentz
gas with unbounded horizon.

Jonquière functions. In statistical mechanics Jon-
quière functions

J(z, s) =
∞∑

k=1

zk/ks (23.37)

appear in the theory of free Bose-Einstein gas, see
Refs. [21, 22].
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Exercises

(23.1) Diffusion for odd integer Λ. Show that when the
slope Λ = 2k−1 in (23.9) is an odd integer, the diffu-
sion constant is given byD = (Λ2 −1)/24, as stated
in (23.21).

(23.2) Fourth-order transport coefficient. Verify (23.24).
You will need the identity

n∑
k=1

k4 =
1

30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1) .

(23.3) Finite Markov partitions. Verify (23.28).

(23.4) Maps with variable peak shape:
Consider the following piecewise linear map

fδ(x) =

⎧⎨⎩
3x

1−δ
for x ∈

[
0, 1

3
(1 − δ)

]
3
2
−
(

2
δ

∣∣ 4−δ
12

− x
∣∣) for x ∈

[
1
3
(1 − δ), 1

6
(2 + δ)

]
1 − 3

1−δ

(
x− 1

6
(2 + δ)

)
for x ∈

[
1
6
(2 + δ), 1

2

]
(23.38)

and the map in [1/2, 1] is obtained by antisymme-
try with respect to x = 1/2, y = 1/2. Write the
corresponding dynamical zeta function relevant to
diffusion and then show that

D =
δ(2 + δ)

4(1 − δ)

See Refs. [17, 18] for further details.

(23.5) Two-symbol cycles for the Lorentz gas. Write
down all cycles labeled by two symbols, such as
(0 6), (1 7), (1 5) and (0 5). Appendix ?? con-
tains several project-length deterministic diffusion
exercises.

(23.6) Accelerated diffusion. Consider a map h, such
that ĥ = f̂ of Fig. 23.3 (b), but now running
branches are turner into standing branches and vice
versa, so that 1, 2, 3, 4 are standing while 0 leads to
both positive and negative jumps. Build the corre-
sponding dynamical zeta function and show that

σ2(t) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

(23.7) Recurrence times for Lorentz gas with infinite
horizon. Consider the Lorentz gas with un-
bounded horizon with a square lattice geometry,
with disk radius R and unit lattice spacing. La-
bel disks according to the (integer) coordinates of
their center: the sequence of recurrence times {tj}
is given by the set of collision times. Consider or-
bits that leave the disk sitting at the origin and hit
a disk far away after a free flight (along the hor-
izontal corridor). Initial conditions are character-
ized by coordinates (φ, α) (φ determines the initial
position along the disk, while α gives the angle of
the initial velocity with respect to the outward nor-
mal: the appropriate measure is then dφ cosαdα
(φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find how ψ(T )
scales for large values of T : this is equivalent to in-
vestigating the scaling of portions of the state space
that lead to a first collision with disk (n, 1), for large
values of n (as n �→ ∞ n � T ).
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[16] P. Cvitanović, P. Gaspard, and T. Schreiber, “Investigation of the

Lorentz Gas in terms of periodic orbits”, CHAOS 2, 85 (1992).
[17] S. Grossmann and S. Thomae, Phys. Lett.A 97, 263 (1983).
[18] R. Artuso, G. Casati and R. Lombardi, Physica A 205, 412 (1994).
[19] I. Dana and V.E. Chernov, “Periodic orbits and chaotic-diffusion

probability distributions”, Physica A 332, 219 (2004).

refsDiff - 7aug2002 ChaosBook.org version11.9.2, Aug 21 2007




