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“Progress was a labyrinth ... people plunging blindly in and
then rushing wildly back, shouting that they had found it ... the
invisible king the élan vital the principle of evolution ... writing
a book, starting a war, founding a school....”
F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the
evolution operator formalism. Here we slow down in order to develop
some fingertip feeling for the traces of evolution operators.

20.1 Escape rates

We start by verifying the claim (15.11) that for a nice hyperbolic flow
the trace of the evolution operator grows exponentially with time. Con-
sider again the game of pinball of Fig. 1.3. Designate by M a state space
region that encloses the three disks, say the surface of the table × all
pinball directions. The fraction of initial points whose trajectories start
out within the state space region M and recur within that region at the
time t is given by

Γ̂M(t) =
1

|M|

∫ ∫
M
dxdy δ

(
y − f t(x)

)
. (20.1)

This quantity is eminently measurable and physically interesting in a
variety of problems spanning nuclear physics to celestial mechanics.
The integral over x takes care of all possible initial pinballs; the integral
over y checks whether they are still within M by the time t. If the dy-
namics is bounded, and M envelops the entire accessible state space,
Γ̂M(t) = 1 for all t. However, if trajectories exit M the recurrence frac-
tion decreases with time. For example, any trajectory that falls off the
pinball table in Fig. 1.3 is gone for good.

These observations can be made more concrete by examining the pin-
ball phase space of Fig. 1.10. With each pinball bounce the initial condi-
tions that survive get thinned out, each strip yielding two thinner strips
within it. The total fraction of survivors (1.2) after n bounces is given
by

Γ̂n =
1

|M|

(n)∑
i

|Mi| , (20.2)



310 CHAPTER 20. WHY CYCLE?

where i is a binary label of the ith strip, and |Mi| is the area of the
ith strip. The phase space volume is preserved by the flow, so the
strips of survivors are contracted along the stable eigendirections, and
ejected along the unstable eigendirections. As a crude estimate of the
number of survivors in the ith strip, assume that the spreading of a
ray of trajectories per bounce is given by a factor Λ, the mean value
of the expanding eigenvalue of the corresponding fundamental matrix
of the flow, and replace |Mi| by the phase space strip width estimate
|Mi|/|M| ∼ 1/Λi. This estimate of a size of a neighborhood (given
already on p. 70) is right in spirit, but not without drawbacks. One
problem is that in general the eigenvalues of a fundamental matrix for
a finite segment of a trajectory have no invariant meaning; they depend
on the choice of coordinates. However, we saw in Chapter 16 that the
sizes of neighborhoods are determined by stability eigenvalues of peri-
odic points, and those are invariant under smooth coordinate transfor-
mations.

In the approximation Γ̂n receives 2n contributions of equal size

Γ̂1 ∼
1
Λ

+
1
Λ
, · · · , Γ̂n ∼ 2n

Λn
= e−n(λ−h) = e−nγ , (20.3)

up to pre-exponential factors. We see here the interplay of the two key
ingredients of chaos first alluded to in Section 1.3.1: the escape rate γ
equals local expansion rate (the Lyapunov exponent λ = ln Λ), minus
the rate of global reinjection back into the system (the topological en-
tropy h = ln 2). As we shall see in (??), with correctly defined “entropy”
this result is exact.

As at each bounce one loses routinely the same fraction of trajecto-
ries, one expects the sum (20.2) to fall off exponentially with n. More
precisely, by the hyperbolicity assumption of Section 16.1.1 the expand-
ing eigenvalue of the fundamental matrix of the flow is exponentially
bounded from both above and below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (20.4)

and the area of each strip in (20.2) is bounded by |Λ−n
max| ≤ |Mi| ≤

|Λ−n
min|. Replacing |Mi| in (20.2) by its over (under) estimates in terms of

|Λmax|, |Λmin| immediately leads to exponential bounds (2/|Λmax|)n ≤
Γ̂n ≤ (2/|Λmin|)n , i.e.,

ln |Λmax| − ln 2 ≥ − 1
n

ln Γ̂n ≥ ln |Λmin| − ln 2 . (20.5)

The argument based on (20.5) establishes only that the sequence γn =
− 1

n ln Γn has a lower and an upper bound for any n. In order to prove
that γn converge to the limit γ, we first show that for hyperbolic sys-
tems the sum over survivor intervals (20.2) can be replaced by the sum
over periodic orbit stabilities. By (20.4) the size of Mi strip can be
bounded by the stability Λi of ith periodic point:

C1
1
|Λi|

<
|Mi|
|M| < C2

1
|Λi|

, (20.6)
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for any periodic point i of period n, with constants Cj dependent on the
dynamical system but independent of n. The meaning of these bounds
is that for longer and longer cycles in a system of bounded hyperbol-
icity, the shrinking of the ith strip is better and better approximated by
the derivatives evaluated on the periodic point within the strip. Hence
the survival probability can be bounded close to the cycle point stability
sum

Ĉ1 Γn <

(n)∑
i

|Mi|
|M| < Ĉ2 Γn , (20.7)

where Γn =
∑(n)

i 1/|Λi| is the asymptotic trace sum (16.26). In this way
we have established that for hyperbolic systems the survival probabil-
ity sum (20.2) can be replaced by the periodic orbit sum (16.26).

We conclude that for hyperbolic, locally unstable flows the fraction
(20.1) of initial x whose trajectories remain trapped within M up to
time t is expected to decay exponentially,

ΓM(t) ∝ e−γt ,

where γ is the asymptotic escape rate defined by

γ = − lim
t→∞

1
t

ln ΓM(t) . (20.8)

20.1, page 318

14.4, page 221

20.2 Natural measure in terms of periodic
orbits

We now refine the reasoning of Section 20.1. Consider the trace (16.7)
in the asymptotic limit (16.25):

trLn =
∫
dx δ(x− fn(x)) eβAn(x) ≈

(n)∑
i

eβAn(xi)

|Λi|
.

The factor 1/|Λi| was interpreted in (20.2) as the area of the ith phase
space strip. Hence trLn is a discretization of the integral

∫
dxeβAn(x)

approximated by a tessellation into strips centered on periodic points
xi, Fig. 1.12, with the volume of the ith neighborhood given by esti-
mate |Mi| ∼ 1/|Λi|, and eβAn(x) estimated by eβAn(xi), its value at the
ith periodic point. If the symbolic dynamics is a complete, any rect-
angle [s−m · · · s0.s1s2 · · · sn] of Section 11.4.1 always contains the cycle
point s−m · · · s0s1s2 · · · sn; hence even though the periodic points are
of measure zero (just like rationals in the unit interval), they are dense
on the non-wandering set. Equipped with a measure for the associated
rectangle, periodic orbits suffice to cover the entire non-wandering set.
The average of eβAn

evaluated on the non-wandering set is therefore
ChaosBook.org version11.9.2, Aug 21 2007 getused - 14jun2006
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given by the trace, properly normalized so 〈1〉 = 1:

〈
eβAn

〉
n
≈
∑(n)

i eβAn(xi)/|Λi|∑(n)
i 1/|Λi|

=
(n)∑
i

μi e
βAn(xi) . (20.9)

Here μi is the normalized natural measure

(n)∑
i

μi = 1 , μi = enγ/|Λi| , (20.10)

correct both for the closed systems as well as the open systems of Sec-
tion 15.1.3.

Unlike brute numerical slicing of the integration space into an arbi-
trary lattice (for a critique, see Section 14.3), the periodic orbit theory is
smart, as it automatically partitions integrals by the intrinsic topology
of the flow, and assigns to each tile the invariant natural measure μi.

20.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in Section 15.1 was to evaluate the space and time averaged
expectation value (15.9). An average over all periodic orbits can accom-
plish the job only if the periodic orbits fully explore the asymptotically
accessible state space.

Why should the unstable periodic points end up being dense? The
cycles are intuitively expected to be dense because on a connected chaotic
set a typical trajectory is expected to behave ergodically, and pass in-
finitely many times arbitrarily close to any point on the set, including
the initial point of the trajectory itself. The argument is more or less
the following. Take a partition of M in arbitrarily small regions, and
consider particles that start out in region Mi, and return to it in n steps
after some peregrination in state space. In particular, a particle might
return a little to the left of its original position, while a close neighbor
might return a little to the right of its original position. By assumption,
the flow is continuous, so generically one expects to be able to gently
move the initial point in such a way that the trajectory returns precisely
to the initial point, i.e., one expects a periodic point of period n in cell i.
As we diminish the size of regions Mi, aiming a trajectory that returns
to Mi becomes increasingly difficult. Therefore, we are guaranteed that
unstable orbits of larger and larger period are densely interspersed in
the asymptotic non-wandering set.

The above argument is heuristic, by no means guaranteed to work,
and it must be checked for the particular system at hand. A variety of
ergodic but insufficiently mixing counter-examples can be constructed
- the most familiar being a quasiperiodic motion on a torus.
getused - 14jun2006 ChaosBook.org version11.9.2, Aug 21 2007
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20.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remain confined
for all times, escape rate (20.8) vanishes γ = −s0 = 0, and the leading
eigenvalue of the Perron-Frobenius operator (14.10) is simply exp(−tγ) =
1. Conservation of material flow thus implies that for bound flows cy-
cle expansions of dynamical zeta functions and spectral determinants
satisfy exact flow conservation sum rules:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1 · · ·Λpk
| = 0

F (0, 0) = 1 −
∞∑

n=1

cn(0, 0) = 0 (20.11)

obtained by setting s = 0 in (18.15), (18.16) cycle weights tp = e−sTp/|Λp| →
1/|Λp| . These sum rules depend neither on the cycle periods Tp nor
on the observable a(x) under investigation, but only on the cycle sta-
bilities Λp,1, Λp,2, · · ·, Λp,d, and their significance is purely geometric:
they are a measure of how well periodic orbits tessellate the state space.
Conservation of material flow provides the first and very useful test of
the quality of finite cycle length truncations, and is something that you
should always check first when constructing a cycle expansion for a
bounded flow.

The trace formula version of the flow conservation flow sum rule
comes in two varieties, one for the maps, and another for the flows.
By flow conservation the leading eigenvalue is s0 = 0, and for maps
(18.14) yields

trLn =
∑

i∈Fixfn

1
|det (1−Mn(xi)) |

= 1 + es1n + . . . . (20.12)

For flows one can apply this rule by grouping together cycles from t =
T to t = T + ΔT

1
ΔT

T≤rTp≤T+ΔT∑
p,r

Tp∣∣det
(
1−M r

p

)∣∣ =
1

ΔT

∫ T+ΔT

T

dt
(
1 + es1t + . . .

)
= 1 +

1
ΔT

∞∑
α=1

esαT

sα

(
esαΔT − 1

)
≈ 1 + es1T + · · · .(20.13)

As is usual for the the fixed level trace sums, the convergence of (20.12)
is controled by the gap between the leading and the next-to-leading
eigenvalues of the evolution operator.
ChaosBook.org version11.9.2, Aug 21 2007 getused - 14jun2006
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20.4 Correlation functions

The time correlation function CAB(t) of two observables A and B along
the trajectory x(t) = f t(x0) is defined as

CAB(t;x0) = lim
T→∞

1
T

∫ T

0

dτA(x(τ + t))B(x(τ)) , x0 = x(0) .(20.14)

If the system is ergodic, with invariant continuous measure ρ0(x)dx,
then correlation functions do not depend on x0 (apart from a set of zero
measure), and may be computed by a state space average as well

CAB(t) =
∫
M
dx0 ρ0(x0)A(f t(x0))B(x0) . (20.15)

For a chaotic system we expect that time evolution will loose the infor-
mation contained in the initial conditions, so that CAB(t) will approach
the uncorrelated limit 〈A〉 · 〈B〉. As a matter of fact the asymptotic decay
of correlation functions

ĈAB := CAB − 〈A〉 〈B〉 (20.16)

for any pair of observables coincides with the definition of mixing, a
fundamental property in ergodic theory. We now assume 〈B〉 = 0 (oth-
erwise we may define a new observable by B(x) − 〈B〉). Our purpose
is now to connect the asymptotic behavior of correlation functions with
the spectrum of the Perron-Frobenius operator L. We can write (20.15)
as

C̃AB(t) =
∫
M
dx

∫
M
dy A(y)B(x)ρ0(x)δ(y − f t(x)) ,

and recover the evolution operator

C̃AB(t) =
∫
M
dx

∫
M
dy A(y)Lt(y, x)B(x)ρ0(x)

We recall that in Section 14.1 we showed that ρ(x) is the eigenvector
of L corresponding to probability conservation∫

M
dy Lt(x, y)ρ(y) = ρ(x) .

Now, we can expand the x dependent part in terms of the eigenbasis of
L:

B(x)ρ0(x) =
∞∑

α=0

cαρα(x) ,

where ρ0(x) is the natural measure. Since the average of the left hand
side is zero the coefficient c0 must vanish. The action of L then can be
written as

C̃AB(t) =
∑
α
=0

e−sαtcα

∫
M
dy A(y)ρα(y). (20.17)
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We see immediately that if the spectrum has a gap, i.e., if the second.2, page 318

largest leading eigenvalue is isolated from the largest eigenvalue (s0 =
0) then (20.17) implies exponential decay of correlations

C̃AB(t) ∼ e−νt .

The correlation decay rate ν = s1 then depends only on intrinsic prop-
erties of the dynamical system (the position of the next-to-leading eigen-
value of the Perron-Frobenius operator), while the choice of a particular
observable influences only the prefactor.

Correlation functions are often accessible from time series measur-
able in laboratory experiments and numerical simulations: moreover
they are linked to transport exponents.

20.5 Trace formulas vs. level sums

Trace formulas (16.10) and (16.23) diverge precisely where one
would like to use them, at s equal to eigenvalues sα. Instead, one can
proceed as follows; according to (16.27) the “level” sums (all symbol
strings of length n) are asymptotically going like es0n∑

i∈Fixfn

eβAn(xi)

|Λi|
→ es0n ,

so an nth order estimate s(n) of the leading eigenvalue is given by

1 =
∑

i∈Fixfn

eβAn(xi)e−s(n)n

|Λi|
(20.18)

which generates a “normalized measure”. The difficulty with estimat-
ing this n→∞ limit is at least twofold:

1. due to the exponential growth in number of intervals, and the
exponential decrease in attainable accuracy, the maximal n attainable
experimentally or numerically is in practice of order of something be-
tween 5 to 20.

2. the pre-asymptotic sequence of finite estimates s(n) is not unique,
because the sums Γn depend on how we define the escape region, and
because in general the areas Mi in the sum (20.2) should be weighted
by the density of initial conditions x0. For example, an overall measur-
ing unit rescalingMi → αMi introduces 1/n corrections in s(n) defined
by the log of the sum (20.8): s(n) → s(n) − lnα/n. This can be partially
fixed by defining a level average〈

eβA(s)
〉

(n)
:=

∑
i∈Fixfn

eβAn(xi)esn

|Λi|
(20.19)

and requiring that the ratios of successive levels satisfy

1 =

〈
eβA(s(n))

〉
(n+1)〈

eβA(s(n))
〉
(n)

.
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This avoids the worst problem with the formula (20.18), the inevitable
1/n corrections due to its lack of rescaling invariance. However, even
though much published pondering of “chaos” relies on it, there is no
need for such gymnastics: the dynamical zeta functions and spectral
determinants are already invariant not only under linear rescalings,
but under all smooth nonlinear conjugacies x → h(x), and require no
n → ∞ extrapolations to asymptotic times. Comparing with the cycle
expansions (18.7) we see what the difference is; while in the level sum
approach we keep increasing exponentially the number of terms with
no reference to the fact that most are already known from shorter esti-
mates, in the cycle expansions short terms dominate, longer ones enter
only as exponentially small corrections.

The beauty of the trace formulas is that they are coordinatization
independent: both

∣∣det
(
1−Mp

)∣∣ = |det (1 − MTp(x))| and eβAp =
eβATp(x) contribution to the cycle weight tp are independent of the start-
ing periodic point point x. For the fundamental matrix Mp this fol-
lows from the chain rule for derivatives, and for eβAp from the fact that
the integral over eβAt(x) is evaluated along a closed loop. In addition,∣∣det

(
1−Mp

)∣∣ is invariant under smooth coordinate transformations.

Summary

We conclude this chapter by a general comment on the relation of the
finite trace sums such as (20.2) to the spectral determinants and dyn-
amical zeta functions. One might be tempted to believe that given a
deterministic rule, a sum like (20.2) could be evaluated to any desired
precision. For short finite times this is indeed true: every region Mi

in (20.2) can be accurately delineated, and there is no need for fancy
theory. However, if the dynamics is unstable, local variations in initial
conditions grow exponentially and in finite time attain the size of the
system. The difficulty with estimating the n → ∞ limit from (20.2) is
then at least twofold:

1. due to the exponential growth in number of intervals, and the
exponential decrease in attainable accuracy, the maximal n attainable
experimentally or numerically is in practice of order of something be-
tween 5 to 20;

2. the pre-asymptotic sequence of finite estimates γn is not unique,
because the sums Γ̂n depend on how we define the escape region, and
because in general the areas |Mi| in the sum (20.2) should be weighted
by the density of initial x0.

In contrast, the dynamical zeta functions and spectral determinants
are invariant under all smooth nonlinear conjugacies x→ h(x), not only
linear rescalings, and require no n→ ∞ extrapolations.
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Further reading

Nonhyperbolic measures. μi = 1/|Λi| is the natural
measure only for the strictly hyperbolic systems. For non-
hyperbolic systems, the measure might develop cusps.
For example, for Ulam type maps (unimodal maps with
quadratic critical point mapped onto the “left” unstable
fixed point x0, discussed in more detail in Chapter 22), the
measure develops a square-root singularity on the 0 cycle:

μ0 =
1

|Λ0|1/2
. (20.20)

The thermodynamics averages are still expected to con-
verge in the “hyperbolic” phase where the positive en-
tropy of unstable orbits dominates over the marginal or-
bits, but they fail in the “non-hyperbolic” phase. The gen-
eral case remains unclear [22, ?, ?, ?].

Trace formula periodic orbit averaging. The cycle av-
eraging formulas are not the first thing that one would in-
tuitively write down; the approximate trace formulas are
more accessibly heuristically. The trace formula averag-
ing (20.13) seems to have be discussed for the first time
by Hannay and Ozorio de Almeida [?, 11]. Another nov-
elty of the cycle averaging formulas and one of their main
virtues, in contrast to the explicit analytic results such as
those of Ref. [4], is that their evaluation does not require
any explicit construction of the (coordinate dependent)

eigenfunctions of the Perron-Frobenius operator (i.e., the
natural measure ρ0).

Role of noise in dynamical systems. In any physical
application the dynamics is always accompanied by addi-
tional external noise. The noise can be characterized by its
strength σ and distribution. Lyapunov exponents, corre-
lation decay and dynamo rate can be defined in this case
the same way as in the deterministic case. You might fear
that noise completely destroys the results derived here.
However, one can show that the deterministic formulas
remain valid to accuracy comparable with noise width if
the noise level is small. A small level of noise even helps
as it makes the dynamics more ergodic, with determin-
istically non-communicating parts of the state space now
weakly connected due to the noise, making periodic orbit
theory applicable to non-ergodic systems. For small am-
plitude noise one can expand

a = a0 + a1σ
2 + a2σ

4 + ... ,

around the deterministic averages a0. The expansion co-
efficients a1, a2, ... can also be expressed via periodic or-
bit formulas. The calculation of these coefficients is one
of the challenges facing periodic orbit theory, discussed in
Refs. [5–7].
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Exercises

(20.1) Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remain-
ing trapped in the interval [0, 1] for the logistic
map

f(x) = A(1 − (2x− 1)2), (20.21)

and determine theA dependence of the escape
rate γ(A) numerically.

(b) Work out a numerical method for calculating
the lengths of intervals of trajectories remain-
ing stuck for n iterations of the map.

(c) What is your expectation about the A depen-
dence near the critical value Ac = 1?

(20.2) Four scale map decay. Compute the second
largest eigenvalue of the Perron-Frobenius operator
for the four scale map

f(x) =

⎧⎪⎪⎨⎪⎪⎩
a1x if 0 < x < b/a1,
(1 − b)((x− b/a1)/(b− b/a1)) + b if b/a1 < x < b,
a2(x− b) if b < x < b+ b/a2,
(1 − b)((x− b− b/a2)/(1 − b− b/a2)) + b if b+ b/a2 < x < 1.

(20.22)

(20.3) Lyapunov exponents for 1-dimensional maps.
Extend your cycle expansion programs so that the
first and the second moments of observables can be
computed. Use it to compute the Lyapunov expo-
nent for some or all of the following maps:

(a) the piecewise-linear flow conserving map, the
skew tent map

f(x) =

{
ax if 0 ≤ x ≤ a−1,

a
a−1

(1 − x) if a−1 ≤ x ≤ 1.

(b) the Ulam map f(x) = 4x(1 − x)

(c) the skew Ulam map (??)

f(x) = Λ0x(1−x)(1−bx) , 1/Λ0 = xc(1−xc)(1−bxc) .
(20.23)

In our numerical work we fix (arbitrarily, the
value chosen in Ref. [3]) b = 0.6, so

f(x) = 0.1218 x(1 − x)(1 − 0.6 x)

with a peak at 0.7.

(d) the repeller of f(x) = Ax(1 − x), for either
A = 9/2 or A = 6 (this is a continuation of
Exercise 18.2).

(e) for the 2-branch flow conserving map

f0(x) =
h− p+

√
(h− p)2 + 4hx

2h
, x ∈ [0, p] (20.24)

f1(x) =
h+ p− 1 +

√
(h+ p− 1)2 + 4h(x− p)

2h
, x ∈ [p, 1]

This is a nonlinear perturbation of (h = 0)
Bernoulli map (21.6); the first 15 eigenvalues
of the Perron-Frobenius operator are listed in
Ref. [1] for p = 0.8, h = 0.1. Use these param-
eter values when computing the Lyapunov ex-
ponent.

Cases (a) and (b) can be computed analytically;
cases (c), (d) and (e) require numerical computation
of cycle stabilities. Just to see whether the theory
is worth the trouble, also cross check your cycle ex-
pansions results for cases (c) and (d) with Lyapunov
exponent computed by direct numerical averaging
along trajectories of randomly chosen initial points:

(f) trajectory-trajectory separation (15.27) (hint:
rescale δx every so often, to avoid numerical
overflows),

(g) iterated stability (15.32).

How good is the numerical accuracy compared
with the periodic orbit theory predictions? oo

.
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