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Sometimes They Come Back
Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanović)

In the theory of chaotic dynamics developed so far we assumed that
the evolution operators have discrete spectra {z0, z1, z2, . . .} given by
the zeros of

1/ζ(z) = (· · ·)
∏
k

(1 − z/zk) .

The assumption was based on the tacit premise that the dynamics is
everywhere exponentially unstable. Real life is nothing like that - state
spaces are generically infinitely interwoven patterns of stable and un-
stable behaviors. The stable (in the case of Hamiltonian flows, inte-
grable) orbits do not communicate with the ergodic components of the
phase space, and can be treated by classical methods. In general, one
is able to treat the dynamics near stable orbits as well as chaotic com-
ponents of the phase space dynamics well within a periodic orbit ap-
proach. Problems occur at the borderline between chaos and regular
dynamics where marginally stable orbits and manifolds present diffi-
culties and still unresolved challenges.

We shall use the simplest example of such behavior - intermittency
in 1-dimensional maps - to illustrate effects of marginal stability. The
main message will be that spectra of evolution operators are no longer
discrete, dynamical zeta functions exhibit branch cuts of the form

1/ζ(z) = (· · ·) + (1 − z)α(· · ·) ,

and correlations decay no longer exponentially, but as power laws.

22.1 Intermittency everywhere

In many fluid dynamics experiments one observes transitions from reg-
ular behaviors to behaviors where long time intervals of regular be-
havior (“laminar phases”) are interrupted by fast irregular bursts. The
closer the parameter is to the onset of such bursts, the longer are the in-
tervals of regular behavior. The distributions of laminar phase intervals
are well described by power laws.

This phenomenon is called intermittency, and it is a very general as-
pect of dynamics, a shadow cast by non-hyperbolic, marginally sta-
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Fig. 22.1 Typical phase space for an area-preserving map with mixed phase space dynamics; here the standard map for k=1.2.

ble state space regions. Complete hyperbolicity assumed in (16.5) is
the exception rather than the rule, and for almost any dynamical sys-
tem of interest (dynamics in smooth potentials, billiards with smooth
walls, the infinite horizon Lorentz gas, etc.) one encounters mixed
state spaces with islands of stability coexisting with hyperbolic regions,
see Fig. 22.1. Wherever stable islands are interspersed with chaotic
regions, trajectories which come close to the stable islands can stay
‘glued’ for arbitrarily long times. These intervals of regular motion
are interrupted by irregular bursts as the trajectory is re-injected into
the chaotic part of the phase space. How the trajectories are precisely
‘glued’ to the marginally stable region is often hard to describe. What
coarsely looks like a border of an island will under magnification dis-
solve into infinities of island chains of decreasing sizes, broken tori and
bifurcating orbits, as illustrated in Fig. 22.1.

Intermittency is due to the existence of fixed points and cycles of
marginal stability (5.2), or (in studies of the onset of intermittency)
to the proximity of a nearly marginal complex or unstable orbits. In
Hamiltonian systems intermittency goes hand in hand with the exis-
tence of (marginally stable) KAM tori. In more general settings, the
existence of marginal or nearly marginal orbits is due to incomplete in-
tersections of stable and unstable manifolds in a Smale horseshoe type
dynamics (see Fig. 13.3.1). Following the stretching and folding of the
invariant manifolds in time one will inevitably find state space points
at which the stable and unstable manifolds are almost or exactly tan-
gential to each other, implying non-exponential separation of nearby
points in state space or, in other words, marginal stability. Under small
inter - 12sep2003 ChaosBook.org version11.9.2, Aug 21 2007



22.1. INTERMITTENCY EVERYWHERE 347

parameter perturbations such neighborhoods undergo tangent bifurca-
tions - a stable/unstable pair of periodic orbits is destroyed or created
by coalescing into a marginal orbit, so the pruning which we shall en-
counter in Chapter 11, and the intermittency discussed here are two
sides of the same coin. ⇒ Section 11.5
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Fig. 22.2 A complete binary repeller with
a marginal fixed point.

How to deal with the full complexity of a typical Hamiltonian system
with mixed phase space is a very difficult, still open problem. Never-
theless, it is possible to learn quite a bit about intermittency by con-
sidering rather simple examples. Here we shall restrict our consider-
ations to 1-dimensional maps which in the neighborhood of a single
marginally stable fixed point at x=0 take the form

x �→ f(x) = x+O(x1+s) , (22.1)

and are expanding everywhere else. Such a map may allow for escape,
like the map shown in Fig. 22.2 or the dynamics may be bounded, like
the Farey map (18.31) 163,164c153,154

x �→ f(x) =
{
x/(1 − x) x ∈ [0, 1/2[
(1 − x)/x x ∈ [1/2, 1]

introduced in Section 18.5.
Figure 22.3 compares a trajectory of the tent map (10.6) side by side

with a trajectory of the Farey map. In a stark contrast to the uniformly
chaotic trajectory of the tent map, the Farey map trajectory alternates
intermittently between slow regular motion close to the marginally sta-
ble fixed point, and chaotic bursts. ⇒ Section 18.5.3The presence of marginal stability has striking dynamical consequences:
correlation decay may exhibit long range power law asymptotic be-
havior and diffusion processes can assume anomalous character. Es-
cape from a repeller of the form Fig. 22.2 may be algebraic rather than
exponential. In long time explorations of the dynamics intermittency
manifests itself by enhancement of natural measure in the proximity of
marginally stable cycles.

The questions we shall address here are: how does marginal stability
affect zeta functions or spectral determinants? And, can we deduce
power law decays of correlations from cycle expansions?

In Example 21.5 we saw that marginal stability violates one of the
conditions which ensure that the spectral determinant is an entire func-
tion. Already the simple fact that the cycle weight 1/|1 − Λr

p| in the
trace (16.3) or the spectral determinant (17.3) diverges for marginal or-
bits with |Λp| = 1 tells us that we have to treat these orbits with care.

In the following we will incorporate marginal stability orbits into
cycle-expansions in a systematic manner. To get to know the difficulties
lying ahead, we will start in Section 22.2 with a piecewise linear map,
with the asymptotics (22.1). We will construct a dynamical zeta func-
tion in the usual way without worrying too much about its justification
and show that it has a branch cut singularity. We will calculate the rate
of escape from our piecewise linear map and find that it is characterized
ChaosBook.org version11.9.2, Aug 21 2007 inter - 12sep2003



348 CHAPTER 22. INTERMITTENCY

by decay, rather than exponential decay, a power law. We will show that
dynamical zeta functions in the presence of marginal stability can still
be written in terms of periodic orbits, exactly as in Chapters 15 and 20,
with one exception: the marginally stable orbits have to be explicitly
excluded. This innocent looking step has far reaching consequences; it
forces us to change the symbolic dynamics from a finite to an infinite
alphabet, and entails a reorganization of the order of summations in
cycle expansions, Section 22.2.4.

Branch cuts are typical also for smooth intermittent maps with iso-
lated marginally stable fixed points and cycles. In Section 22.3, we dis-
cuss the cycle expansions and curvature combinations for zeta func-
tions of smooth maps tailored to intermittency. The knowledge of the
type of singularity one encounters enables us to develop the efficient
resummation method presented in Section 22.3.1.

Finally, in Section 22.4, we discuss a probabilistic approach to inter-
mittency that yields approximate dynamical zeta functions and pro-
vides valuable information about more complicated systems, such as
billiards.

22.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertoire of inter-
esting dynamics, it is also at the root of many sorrows such as slow
convergence of cycle expansions. In order to get to know the kind of
problems which arise when studying dynamical zeta functions in the
presence of marginal stability we will consider an artfully concocted
piecewise linear model first. From there we will move on to the more
general case of smooth intermittant maps, Section 22.3.

22.2.1 A toy map

The Bernoulli shift map (21.6) is an idealized, but highly instructive,
example of a hyperbolic map. To study intermittency we will now con-
struct a likewise piecewise linear model, an intermittent map stripped
down to its bare essentials.

Consider a map x �→ f(x) on the unit interval M = [0, 1] with two
monotone branches

f(x) =
{
f0(x) for x ∈ M0 = [0, a]
f1(x) for x ∈ M1 = [b, 1] . (22.2)

The two branches are assumed complete, that is f0(M0) = f1(M1) =
M. The map allows escape if a < b and is bounded if a = b (see Fig. 22.2
and Fig. 22.4). We take the right branch to be expanding and linear:
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f1(x) =
1

1 − b
(x − b) .

Next, we will construct the left branch in a way, which will allow us
to model the intermittent behavior (22.1) near the origin. We chose a
inter - 12sep2003 ChaosBook.org version11.9.2, Aug 21 2007



22.2. INTERMITTENCY FOR PEDESTRIANS 349

monotonically decreasing sequence of points qn in [0, a] with q1 = a
and qn → 0 as n → ∞. This sequence defines a partition of the left
interval M0 into an infinite number of connected intervals Mn, n ≥ 2
with

Mn = ]qn, qn−1] and M0 =
∞⋃

n=2

Mn. (22.3)

The map f0(x) is now specified by the following requirements

• f0(x) is continuous.
• f0(x) is linear on the intervals Mn for n ≥ 2.
• f0(qn) = qn−1, that is Mn = f−n+1

0 ([a, 1]) .

This fixes the map for any given sequence {qn}. The last condition en-
sures the existence of a simple Markov partition. The slopes of the var-
ious linear segments are

f ′
0(x) = f0(qn−1)−f0(qn)

qn−1−qn
= |Mn−1|

|Mn| for x ∈ Mn, n ≥ 3

f ′
0(x) = f0(q1)−f0(q2)

q1−q2
= 1−a

|M2| for x ∈ M2

f ′
0(x) = 1

1−b = |M|
|M1| for x ∈ M1

(22.4)
with |Mn| = qn−1 − qn for n ≥ 2. Note that we do not require as yet
that the map exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10n plays a
key role for intermittent maps of the form (22.1). An orbit 10n enters
the intervals M1 → Mn+1 → Mn → . . . → M2 successively and the
family approaches the marginal stable fixed point at x = 0 for n → ∞.
The stability of a cycle 10n for n ≥ 1 is given by the chain rule (4.38),

Λ10n = f ′
0(xn+1)f ′

0(xn) . . . f ′
0(x2)f ′

1(x1) =
1

|Mn+1|
1 − a

1 − b
, (22.5)

with xi ∈ Mi.
The properties of the map (22.2) are completely determined by the

sequence {qn}. By choosing qn = 2−n, for example, we recover the
uniformly hyperbolic Bernoulli shift map (21.6). An intermittent map
of the form (22.3) having the asymptotic behavior (22.1) can be con-
structed by choosing an algebraically decaying sequence {qn} behaving
asymptotically like

qn ∼ 1
n1/s

, (22.6)

where s is the intermittency exponent in (22.1). Such a partition leads to
intervals whose length decreases asymptotically like a power-law, that
is,

|Mn| ∼
1

n1+1/s
. (22.7)

As can be seen from (22.5), the stability eigenvalues of periodic orbit
families approaching the marginal fixed point, such as the 10n family
increase in turn only algebraically with the cycle length.
ChaosBook.org version11.9.2, Aug 21 2007 inter - 12sep2003
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It may now seem natural to construct an intermittent toy map in
terms of a partition |Mn| = 1/n1+1/s, that is, a partition which fol-
lows (22.7) exactly. Such a choice leads to a dynamical zeta function
which can be written in terms of so-called Jonquière functions (or poly-
logarithms) which arise naturally also in the context of the Farey map
(18.31), and the anomalous diffusion of Section 23.3. We will, however,Remark 23.3

not go along this route here; instead, we will engage in a bit of reverse
engineering and construct a less obvious partition which will simplify
the algebra considerably later without loosing any of the key features
typical for intermittent systems. We fix the intermittent toy map by
specifying the intervals Mn in terms of Gamma functions according to

|Mn| = C Γ(n+m− 1/s− 1)
Γ(n+m)

for n ≥ 2, (22.8)

wherem = [1/s] denotes the integer part of 1/s and C is a normalization
constant fixed by the condition

∑∞
n=2 |Mn| = q1 = a, that is,

C = a

[ ∞∑
n=m+1

Γ(n− 1/s)
Γ(n+ 1)

]−1

. (22.9)

Using Stirling’s formula for the Gamma function

Γ(z) ∼ e−zzz−1/2
√

2π (1 + 1/12z + . . .) ,

we verify that the intervals decay asymptotically like n−(1+1/s), as re-
quired by the condition (22.7).

Next, let us write down the dynamical zeta function of the toy map
in terms of its periodic orbits, that is

1/ζ(z) =
∏
p

(
1 − znp

|Λp|

)
One may be tempted to expand the dynamical zeta function in terms
of the binary symbolic dynamics of the map; we saw, however, in Sec-
tion 18.5 that such cycle expansion converges extremely slowly. The
shadowing mechanism between orbits and pseudo-orbits fails for or-
bits of the form 10n with stabilities given by (22.5), due to the marginal
stability of the fixed point 0. It is therefore advantageous to choose as
the fundamental cycles the family of orbits with code 10n or, equiva-
lently, switch from the finite (binary) alphabet to an infinite alphabet
given by

10n−1 → n.

Due to the piecewise-linear form of the map which maps intervals Mn

exactly onto Mn−1, all periodic orbits entering the left branch at least
twice are canceled exactly by pseudo cycles, and the cycle expanded
dynamical zeta function depends only on the fundamental series 1, 10, 100, . . .:

1/ζ(z) =
∏
p
=0

(
1 − znp

|Λp|

)
= 1 −

∞∑
n=1

zn

|Λ10n−1 |
inter - 12sep2003 ChaosBook.org version11.9.2, Aug 21 2007
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= 1 − (1 − b)z − C 1 − b

1 − a

∞∑
n=2

Γ(n+m− 1/s− 1)
Γ(n+m)

zn .(22.10)

The fundamental term (18.7) consists here of an infinite sum over alge-
braically decaying cycle weights. The sum is divergent for |z| ≥ 1. We
will see that this behavior is due to a branch cut of 1/ζ starting at z = 1.
We need to find analytic continuations of sums over algebraically de-
creasing terms in (22.10). Note also that we omitted the fixed point 0
in the above Euler product; we will discussed this point as well as a
proper derivation of the zeta function in more detail in Section 22.2.4.

22.2.2 Branch cuts

Starting from the dynamical zeta function (22.10), we first have to worry
about finding an analytical continuation of the sum for |z| ≥ 1. We do,
however, get this part for free here due to the particular choice of inter-
val lengths made in (22.8). The sum over ratios of Gamma functions in
(22.10) can be evaluated analytically by using the following identities
valid for 1/s = α > 0 (the famed binomial theorem in disguise),

• α non-integer

(1 − z)α =
∞∑

n=0

Γ(n− α)
Γ(−α)Γ(n+ 1)

zn (22.11)

• α integer

(1 − z)α log(1 − z) =
α∑

n=1

(−1)ncnz
n (22.12)

+ (−1)α+1α!
∞∑

n=α+1

(n− α− 1)!
n!

zn

with

cn =
(
α
n

) n−1∑
k=0

1
α− k

.

In order to simplify the notation, we restrict the intermittency param-
eter to the range 1 ≤ 1/s < 2 with [1/s] = m = 1. All what follows
can easily be generalized to arbitrary s > 0 using equations (22.11) and
(22.12). The infinite sum in (22.10) can now be evaluated with the help
of (22.11) or (22.12), that is,
∞∑

n=2

Γ(n− 1/s)
Γ(n+ 1)

zn =
{

Γ(− 1
s )
[
(1 − z)1/s − 1 + 1

sz
]

for 1 < 1/s < 2;
(1 − z) log(1 − z) + z for s = 1 .

The normalization constant C in (22.8) can be evaluated explicitly using
(22.9) and the dynamical zeta function can be given in closed form. We
obtain for 1 < 1/s < 2

1/ζ(z) = 1 − (1 − b)z − a

1/s− 1
1 − b

1 − a

(
(1 − z)1/s − 1 +

1
s
z

)
. (22.13)

ChaosBook.org version11.9.2, Aug 21 2007 inter - 12sep2003
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and for s = 1,

1/ζ(z) = 1 − (1 − b)z − a
1 − b

1 − a
((1 − z) log(1 − z) + z) . (22.14)

It now becomes clear why the particular choice of intervals Mn made
in the last section is useful; by summing over the infinite family of pe-
riodic orbits 0n1 explicitly, we have found the desired analytical con-
tinuation for the dynamical zeta function for |z| ≥ 1. The function has
a branch cut starting at the branch point z = 1 and running along the
positive real axis. That means, the dynamical zeta function takes on dif-
ferent values when approaching the positive real axis for �z > 1 from
above and below. The dynamical zeta function for general s > 0 takes
on the form

1/ζ(z) = 1 − (1 − b)z − a

gs(1)
1 − b

1 − a

1
zm−1

(
(1 − z)1/s − gs(z)

)
(22.15)

for non-integer s with m = [1/s] and

1/ζ(z) = 1− (1 − b)z − a

gm(1)
1 − b

1 − a

1
zm−1

((1 − z)m log(1 − z)− gm(z))

(22.16)
for 1/s = m integer and gs(z) are polynomials of order m = [1/s]
which can be deduced from (22.11) or (22.12). We thus find algebraic
branch cuts for non integer intermittency exponents 1/s and logarith-
mic branch cuts for 1/s integer. We will see in Section 22.3 that branch
cuts of that form are generic for 1-dimensional intermittent maps.

Branch cuts are the all important new feature of dynamical zeta func-
tions due to intermittency. So, how do we calculate averages or escape
rates of the dynamics of the map from a dynamical zeta function with
branch cuts? We take ‘a learning by doing’ approach and calculate the
escape from our toy map for a < b.

22.2.3 Escape rate

Our starting point for the calculation of the fraction of survivors after n
time steps, is the integral representation (17.19)

Γn =
1

2πi

∮
γ−

r

z−n

(
d

dz
log ζ−1(z)

)
dz , (22.17)

where the contour encircles the origin in the clockwise direction. If the
contour lies inside the unit circle |z| = 1, we may expand the logarith-
mic derivative of ζ−1(z) as a convergent sum over all periodic orbits.
Integrals and sums can be interchanged, the integrals can be solved
term by term, and the formula (16.26) is recovered. For hyperbolic
maps, cycle expansion methods or other techniques may provide an
analytic extension of the dynamical zeta function beyond the leading
zero; we may therefore deform the original contour into a larger cir-
cle with radius R which encircles both poles and zeros of ζ−1(z), see
inter - 12sep2003 ChaosBook.org version11.9.2, Aug 21 2007
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Fig. 22.2.3 (a). Residue calculus turns this into a sum over the zeros zα

and poles zβ of the dynamical zeta function, that is

Γn =
zeros∑

|zα|<R

1
zn

α

−
poles∑
|zβ |<R

1
zn

β

+
1

2πi

∮
γ−

R

dz z−n d

dz
log ζ−1, (22.18)

where the last term gives a contribution from a large circle γ−R . We thus
find exponential decay of Γn dominated by the leading zero or pole of
ζ−1(z), see Chapter ?? for more details.

Things change considerably in the intermittent case. The point z = 1
is a branch cut singularity and there exists no Taylor series expansion
of ζ−1 around z = 1. Second, the path deformation that led us to (22.18)
requires more care, as it must not cross the branch cut. When expanding
the contour to large |z| values, we have to deform it along the branch
�(z) ≥ 1, �(z) = 0 encircling the branch cut in anti-clockwise direction,
see Fig. 22.2.3 (b). We will denote the detour around the cut as γcut. We
may write symbolically∮

γr

=
zeros∑

−
poles∑

+
∮

γR

+
∮

γcut

where the sums include only the zeros and the poles in the area en-
closed by the contours. The asymptotics is controlled by the zero, pole
or cut closest to the origin.

Let us now go back to our intermittent toy map. The asymptotics of
the survival probability of the map is here governed by the behavior of
the integrand d

dz log ζ−1 in (22.17) at the branch point z = 1. We restrict
ourselves again to the case 1 < 1/s < 2 first and write the dynamical
zeta function (22.13) in the form

1/ζ(z) = a0 + a1(1 − z) + b0(1 − z)1/s ≡ G(1 − z)

and
a0 =

b− a

1 − a
, b0 =

a

1 − 1/s
1 − b

1 − a
.

Setting u = 1 − z, we need to evaluate

1
2πi

∮
γcut

(1 − u)−n d

du
logG(u)du (22.19)

where γcut goes around the cut (i.e., the negative u axis). Expanding the
integrand d

du logG(u) = G′(u)/G(u) in powers of u and u1/s at u = 0,
one obtains

d

du
logG(u) =

a1

a0
+

1
s

b0
a0
u1/s−1 +O(u) . (22.20)

The integrals along the cut may be evaluated using the general for-
mula

1
2πi

∮
γcut

uα(1 − u)−ndu =
Γ(n− α− 1)
Γ(n)Γ(−α)

∼ 1
nα+1

(1 +O(1/n)) (22.21)
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which can be obtained by deforming the contour back to a loop around
the point u = 1, now in positive (anti-clockwise) direction. The con-
tour integral then picks up the (n−1)st term in the Taylor expansion of
the function uα at u = 1, cf. (22.11). For the continuous time case the
corresponding formula is

1
2πi

∮
γcut

zαeztdz =
1

Γ(−α)
1

tα+1
. (22.22)

Plugging (22.20) into (22.19) and using (22.21) we get the asymptotic
result

Γn ∼ b0
a0

1
s

1
Γ(1 − 1/s)

1
n1/s

=
a

s− 1
1 − b

b− a

1
Γ(1 − 1/s)

1
n1/s

. (22.23)

We see that, asymptotically, the escape from an intermittent repeller is
described by power law decay rather than the exponential decay we
are familiar with for hyperbolic maps; a numerical simulation of the
power-law escape from an intermittent repeller is shown in Fig. 22.6.

0 200 400 600 800 1000
10

-8

10
-6

10
-4

10
-2

n

p n

Fig. 22.6 The asymptotic escape from an
intermittent repeller is a power law. Nor-
mally it is preceded by an exponential,
which can be related to zeros close to the
cut but beyond the branch point z = 1,
as in Fig. 22.2.3 (b).

For general non-integer 1/s > 0, we write

1/ζ(z) = A(u) + (u)1/sB(u) ≡ G(u)

with u = 1 − z and A(u), B(u) are functions analytic in a disc of radius
1 around u = 0. The leading terms in the Taylor series expansions of
A(u) and B(u) are

a0 =
b− a

1 − a
, b0 =

a

gs(1)
1 − b

1 − a
,

see (22.15). Expanding d
du logG(u) around u = 0, one again obtains

leading order contributions according to (22.20) and the general result
follows immediately using (22.21), that is,

Γn ∼ a

sgs(1)
1 − b

b− a

1
Γ(1 − 1/s)

1
n1/s

. (22.24)

Applying the same arguments for integer intermittency exponents 1/s =
m, one obtains

Γn ∼ (−1)m+1 a

sgm(1)
1 − b

b− a

m!
nm

. (22.25)

So far, we have considered the survival probability for a repeller, that
is we assumed a < b. The formulas (22.24) and (22.25) do obviously not
apply for the case a = b, that is, for the bounded map. The coefficient
a0 = (b − a)/(1 − a) in the series representation of G(u) is zero, and
the expansion of the logarithmic derivative of G(u) (22.20) is no longer
valid. We get instead

d

du
logG(u) =

{
1
u

(
1 +O(u1/s−1)

)
s < 1

1
u

(
1
s +O(u1−1/s)

)
s > 1

,
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assuming non-integer 1/s for convenience. One obtains for the survival
probability.

Γn ∼
{

1 +O(n1−1/s) s < 1
1/s+O(n1/s−1) s > 1

.

For s > 1, this is what we expect. There is no escape, so the survival
probability is equal to 1, which we get as an asymptotic result here. The
result for s > 1 is somewhat more worrying. It says that Γn defined as
sum over the instabilities of the periodic orbits as in (20.12) does not
tend to unity for large n. However, the case s > 1 is in many senses
anomalous. For instance, the invariant density cannot be normalized.
It is therefore not reasonable to expect that periodic orbit theories will
work without complications.

22.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructed in the previ-
ous section, we had the nice property that interval lengths did exactly
coincide with the inverse of the stability of periodic orbits of the system,
that is

|Mn| = 1/|Λ10|n−1.

There is thus no problem in replacing the survival probability Γn given
by (1.2), (20.2), that is the fraction of state space M surviving n itera-
tions of the map,

Γn =
1

|M|

(n)∑
i

|Mi| .

by a sum over periodic orbits of the form (16.26). The only orbit to
worry about is the marginal fixed point 0 itself which we excluded from
the zeta function (22.10).

For smooth intermittent maps, things are less clear and the fact that
we had to prune the marginal fixed point is a warning sign that in-
terval estimates by periodic orbit stabilities might go horribly wrong.
The derivation of the survival probability in terms of cycle stabilities
in Chapter 20 did indeed rely heavily on a hyperbolicity assumption
which is clearly not fulfilled for intermittent maps. We therefore have
to carefully reconsider this derivation in order to show that periodic or-
bit formulas are actually valid for intermittent systems in the first place.

We will for simplicity consider maps, which have a finite number of
say s branches defined on intervals Ms and we assume that the map
maps each interval Ms onto M, that is f(Ms) = M. This ensures the
existence of a complete symbolic dynamics - just to make things easy
(see Fig. 22.2).

The generating partition is composed of the domains Ms . The nth
level partition C(n) = {Mi} can be constructed iteratively. Here i’s are
words i = s2s2 . . . sn of length n, and the intervals Mi are constructed
recursively

Msj = f−1
s (Mj) , (22.26)
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where sj is the concatenation of letter s with word j of length nj < n.
In what follows we will concentrate on the survival probability Γn ,

postponing other quantities of interest, such as averages, to later con-
siderations. In establishing the equivalence of the survival probability
and the periodic orbit formula for the escape rate for hyperbolic sys-
tems we have assumed that the map is expanding, with a minimal ex-
pansion rate |f ′(x)| ≥ Λmin > 1. This enabled us to bound the size of
every survivor strip Mi by (20.6), the stability Λi of the periodic orbit i
within the Mi, and bound the survival probability by the periodic orbit
sum (20.7).

The bound (20.6)

C1
1
|Λi|

<
|Mi|
|M| < C2

1
|Λi|

relies on hyperbolicity, and is thus indeed violated for intermittent sys-
tems. The problem is that now there is no lower bound on the expan-
sion rate, the minimal expansion rate is Λmin = 1. The survivor strip
M0n which includes the marginal fixed point is thus completely over-
estimated by 1/|Λ0n | = 1 which is constant for all n.17.7, page 266

However, bounding survival probability strip by strip is not what
is required for establishing the bound (20.7). For intermittent systems
a somewhat weaker bound can be established, saying that the average
size of intervals along a periodic orbit can be bounded close to the stability
of the periodic orbit for all but the interval M0n . The weaker bound
applies to averaging over each prime cycle p separately

C1
1

|Λp|
<

1
np

∑
i∈p

|Mi|
|M| < C2

1
|Λp|

, (22.27)

where the word i represents a code of the periodic orbit p and all its
cyclic permutations. It can be shown that one can find positive con-
stants C1, C2 independent of p. Summing over all periodic orbits leads
then again to (20.7).

To study averages of multiplicative weights we follow Section 15.1
and introduce a state space observable a(x) and the integrated quantity

An(x) =
n−1∑
k=0

a(fk(x)).

This leads us to introduce the generating function (15.10)

〈eβ An(x)〉,

where 〈.〉 denote some averaging over the distribution of initial points,
which we choose to be uniform (rather than the a priori unknown in-
variant density). Again, all we have to show is, that constants C1, C2

exist, such that

C1
eβAp

|Λp|
<

1
np

∑
i∈p

1
|M|

∫
MQ

eβAn(x)dx < C2
eβAp

|Λp|
, (22.28)
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is valid for all p. After performing the above average one gets

C1Γn(β) <
1

|M|

∫
M
eβA(x,n)dx < C2Γn(β), (22.29)

with

Γn(β) =
n∑
p

eβAp

|Λp|
. (22.30)

and a dynamical zeta function can be derived. In the intermittent case
one can expect that the bound (22.28) holds using an averaging argu-
ment similar to the one discussed in (22.27). This justifies the use of
dynamical zeta functions for intermittent systems.

One lesson we should have learned so far is that the natural alphabet
to use is not {0, 1} but rather the infinite alphabet {0k−11, 0 ; k ≥ 1}.
The symbol 0 occurs unaccompanied by any 1’s only in the 0 marginal
fixed point which is disconnected from the rest of the Markov graph
see Fig. 22.7.

Chapter 11

0 0 00 0

0

1

Fig. 22.7 Markov graph corresponding to
the alphabet {0k−11; 0 , k ≥ 1}

What happens if we remove a single prime cycle from a dynamic-
al zeta function? In the hyperbolic case such a removal introduces a
pole in the 1/ζ and slows down the convergence of cycle expansions.
The heuristic interpretation of such a pole is that for a subshift of finite
type removal of a single prime cycle leads to unbalancing of cancella-
tions within the infinity of of shadowing pairs. Nevertheless, removal
of a single prime cycle is an exponentially small perturbation of the
trace sums, and the asymptotics of the associated trace formulas is un-
affected.

Chapter 21
In the intermittent case, the fixed point 0 does not provide any shad-

owing (cf. Section ??), and a statement such as

Λ1·0k+1 ≈ Λ1·0kΛ0,

is meaningless. It seems therefore sensible to take out the factor (1 −
t0) = 1 − z from the product representation of the dynamical zeta
function (17.15), that is, to consider a pruned dynamical zeta function
1/ζinter(z) defined by

1/ζ(z) = (1 − z)1/ζinter(z) .

We saw in the last sections, that the zeta function 1/ζinter(z) has all the
nice properties we know from the hyperbolic case, that is, we can find
a cycle expansion with - in the toy model case - vanishing curvature
contributions and we can calculate dynamical properties like escape af-
ter having understood, how to handle the branch cut. But you might
still be worried about leaving out the extra factor 1 − z all together. It
turns out, that this is not only a matter of convenience, omitting the
marginal 0 cycle is a dire necessity. The cycle weight Λn

0 = 1 overesti-
mates the corresponding interval length of M0n in the partition of the
phase space M by an increasing amount thus leading to wrong results
when calculating escape. By leaving out the 0 cycle (and thus also the
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M0n contribution), we are guaranteed to get at least the right asymp-
totical behavior.

Note also, that if we are working with the spectral determinant (17.3),
given in product form as

det (1 − zL) =
∏
p

∞∏
m=0

(
1 − znp

|Λp|Λm
p

)
,

for intermittent maps the marginal stable cycle has to be excluded. It in-
troduces an (unphysical) essential singularity at z = 1 due the presence
of a factor (1 − z)∞ stemming from the 0 cycle.

22.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piece wise
linearity of the map led to exact cancellations of the curvature contri-
butions leaving only the fundamental terms. There are still infinitely
many orbits included in the fundamental term, but the cycle weights
were chosen in such a way that the zeta function could be written in
closed form. For a smooth intermittent map this all will not be the case
in general; still, we will argue that we have already seen almost all the
fundamentally new features due to intermittency. What remains are
technicalities - not necessarily easy to handle, but nothing very surprise
any more.

In the following we will sketch, how to make cycle expansion tech-
niques work for general 1-dimensional maps with a single isolated marginal
fixed point. To keep the notation simple, we will consider two-branch
maps with a complete binary symbolic dynamics as for example the
Farey map, Fig. 22.3, or the repeller depicted in Fig. 22.2. We again
assume that the behavior near the fixed point is given by (22.1). This
implies that the stability of a family of periodic orbits approaching the
marginally stable orbit, as for example the family 10n, will increase only
algebraically, that is we find again for large n

1
Λ10n

∼ 1
n1+1/s

,

where s denotes the intermittency exponent.
When considering zeta functions or trace formulas, we again have to

take out the marginal orbit 0; periodic orbit contributions of the form
t0n1 are now unbalanced and we arrive at a cycle expansion in terms
of infinitely many fundamental terms as for our toy map. This corre-
sponds to moving from our binary symbolic dynamics to an infinite
symbolic dynamics by making the identification

10n−1 → n; 10n−110m−1 → nm; 10n−110m−110k−1 → nmk; . . .

see also Table 22.1. The topological length of the orbit is thus no longer
determined by the iterations of our two-branch map, but by the num-
ber of times the cycle goes from the right to the left branch. Equiva-
lently, one may define a new map, for which all the iterations on the
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∞ – alphabet binary alphabet

n = 1 n = 2 n = 3 n = 4 n = 5

1-cycles n 1 10 100 1000 10000
2-cycles mn

1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000
3n 1001 10010 100100 1001000 10010000
4n 10001 100010 1000100 10001000 100010000

3-cycles kmn
11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

Table 22.1 Infinite alphabet versus the original binary alphabet for the shortest periodic
orbit families. Repetitions of prime cycles (11 = 12, 0101 = 012, . . .) and their cyclic re-
peats (110 = 101, 1110 = 1101, . . .) are accounted for by cancellations and combination
factors in the cycle expansion (22.31).

left branch are done in one step. Such a map is called an induced map
and the topological length of orbits in the infinite alphabet corresponds
to the iterations of this induced map.

11.1, page 162For generic intermittent maps, curvature contributions in the cycle
expanded zeta function will not vanish exactly. The most natural way
to organize the cycle expansion is to collect orbits and pseudo orbits of
the same topological length with respect to the infinite alphabet. De-
noting cycle weights in the new alphabet as tnm... = t10n−110m−1..., one
obtains

ζ−1 =
∏
p
=0

(1 − tp) = 1 −
∞∑

n=1

ce (22.31)

= 1 −
∞∑

n=1

tn −
∞∑

m=1

∞∑
n=1

1
2
(tmn − tmtn)

−
∞∑

k=1

∞∑
m=1

∞∑
n=1

(
1
3
tkmn − 1

2
tkmtn +

1
6
tktmtn)−

∞∑
l=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

. . . .
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The first sum is the fundamental term, which we have already seen in
the toy model, (22.10). The curvature terms cn in the expansion are now
e-fold infinite sums where the prefactors take care of double counting
of prime periodic orbits.

Let us consider the fundamental term first. For generic intermittent
maps, we can not expect to obtain an analytic expression for the infinite
sum of the form

f(z) =
∞∑

n=0

hnz
n. (22.32)

with algebraically decreasing coefficients

hn ∼ 1
nα

with α > 0

To evaluate the sum, we face the same problem as for our toy map:
the power series diverges for z > 1, that is, exactly in the ‘interest-
ing’ region where poles, zeros or branch cuts of the zeta function are
to be expected. By carefully subtracting the asymptotic behavior with
the help of (22.11) or (22.12), one can in general construct an analytic
continuation of f(z) around z = 1 of the form

f(z) ∼ A(z) + (1 − z)α−1B(z) α /∈ N (22.33)
f(z) ∼ A(z) + (1 − z)α−1 ln(1 − z) α ∈ N ,

where A(z) and B(z) are functions analytic in a disc around z = 1. We
thus again find that the zeta function (22.31) has a branch cut along
the real axis �z ≥ 1. From here on we can switch to auto-pilot and
derive algebraic escape, decay of correlation and all the rest. We find in
particular that the asymptotic behavior derived in (22.24) and (22.25) is
a general result, that is, the survival probability is given asymptotically
by

Γn ∼ C
1

n1/s
(22.34)

for all 1-dimensional maps of the form (22.1). We have to work a bit
harder if we want more detailed information like the prefactorC, expo-
nential precursors given by zeros or poles of the dynamical zeta func-
tion or higher order corrections. This information is buried in the func-
tionsA(z) andB(z) or more generally in the analytically continued zeta
function. To get this analytic continuation, one may follow either of the
two different strategies which we will sketch next.

22.3.1 Resummation

One way to get information about the zeta function near the branch cut
is to derive the leading coefficients in the Taylor series of the functions
A(z) and B(z) in (22.33) at z = 1. This can be done in principle, if the
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coefficients hn in sums like (22.32) are known (as for our toy model).
One then considers a resummation of the form

∞∑
j=0

hjz
j =

∞∑
j=0

aj(1 − z)j + (1 − z)α−1
∞∑

j=0

bj(1 − z)j, (22.35)

and the coefficients aj and bj are obtained in terms of the hj ’s by ex-
panding (1 − z)j and (1 − z)j+α−1 on the right hand side around z = 0
using (22.11) and equating the coefficients.

In practical calculations one often has only a finite number of coef-
ficients hj , 0 ≤ j ≤ N , which may have been obtained by finding
periodic orbits and their stabilities numerically. One can still design
a resummation scheme for the computation of the coefficients aj and
bj in (22.35). We replace the infinite sums in (22.35) by finite sums of
increasing degrees na and nb, and require that

na∑
i=0

ai(1− z)i +(1− z)α−1
nb∑
i=0

bi(1− z)i =
N∑

i=0

hiz
i +O(zN+1) . (22.36)

One proceeds again by expanding the right hand side around z = 0,
skipping all powers zN+1 and higher, and then equating coefficients.
It is natural to require that |nb + α − 1 − na| < 1, so that the maximal
powers of the two sums in (22.36) are adjacent. If one chooses na +nb +
2 = N + 1, then, for each cutoff length N , the integers na and nb are
uniquely determined from a linear system of equations. The price we
pay is that the so obtained coefficients depend on the cutoff N . One
can now study convergence of the coefficients aj , and bj, with respect
to increasing values of N , or various quantities derived from aj and
bj . Note that the leading coefficients a0 and b0 determine the prefactor
C in (22.34), cf. (22.23). The resummed expression can also be used to
compute zeros, inside or outside the radius of convergence of the cycle
expansion

∑
hjz

j .
The scheme outlined in this section tacitly assumes that a represen-

tation of form (22.33) holds in a disc of radius 1 around z = 1. Conver-
gence is improved further if additional information about the asymp-
totics of sums like (22.32) is used to improve the ansatz (22.35).

22.3.2 Analytical continuation by integral
transformations

We will now introduce a method which provides an analytic continua-
tion of sums of the form (22.32) without explicitly relying on an ansatz
(22.35). The main idea is to rewrite the sum (22.32) as a sum over inte-
grals with the help of the Poisson summation formula and find an ana-
lytic continuation of each integral by contour deformation. In order to
do so, we need to know the n dependence of the coefficients hn ≡ h(n)
explicitly for all n. If the coefficients are not known analytically, one
may proceed by approximating the large n behavior in the form

h(n) = n−α(C1 + C2n
−1 + . . .) , n �= 0 ,
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and determine the constants Ci numerically from periodic orbit data.
By using the Poisson resummation identity

∞∑
n=−∞

δ(x − n) =
∞∑

m=−∞
exp(2πimx) , (22.37)

we may write the sum as (22.32)

f(z) =
1
2
h(0) +

∞∑
m=−∞

∫ ∞

0

dx e2πimxh(x)zx. (22.38)

The continuous variable x corresponds to the discrete summation index
n and it is convenient to write z = r exp(iσ) from now on. The integrals
are still not convergent for r > 0, but an analytical continuation can
be found by considering the contour integral, where the contour goes
out along the real axis, makes a quarter circle to either the positive or
negative imaginary axis and goes back to zero. By letting the radius
of the circle go to infinity, we essentially rotate the line of integration
from the real onto the imaginary axis. For the m = 0 term in (22.38), we
transform x→ ix and the integral takes on the form∫ ∞

0

dxh(x) rx eixσ = i

∫ ∞

0

dxh(ix) rixe−xσ.

The integrand is now exponentially decreasing for all r > 0 and σ �= 0
or 2π. The last condition reminds us again of the existence of a branch
cut at �z ≥ 1. By the same technique, we find the analytic continua-
tion for all the other integrals in (22.38). The real axis is then rotated
according to x→ sign(m)ix where sign(m) refers to the sign of m.∫ ∞

0

dx e±2πi|m|xh(x) rxeixσ = ±i
∫ ∞

0

dxh(±ix) r±ixe−x(2π|m|±σ).

Changing summation and integration, we can carry out the sum over
|m| explicitly and one finally obtains the compact expression

f(z) =
1
2
h(0) + i

∫ ∞

0

dxh(ix) rixe−xσ (22.39)

+ i

∫ ∞

0

dx
e−2πx

1 − e−2πx

[
h(ix)rixe−xσ − h(−ix)r−ixexσ

]
.

The transformation from the original sum to the two integrals in (22.39)
is exact for r ≤ 1, and provides an analytic continuation for r > 0. The
expression (22.39) is especially useful for an efficient numerical calcu-
lations of a dynamical zeta function for |z| > 1, which is essential when
searching for its zeros and poles.

22.3.3 Curvature contributions

So far, we have discussed only the fundamental term
∑∞

n=1 tn in (22.31),
and showed how to deal with such power series with algebraically
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decreasing coefficients. The fundamental term determines the main
structure of the zeta function in terms of the leading order branch cut.
Corrections to both the zeros and poles of the dynamical zeta function
as well as the leading and subleading order terms in expansions like
(22.33) are contained in the curvature terms in (22.31). The first curva-
ture correction is the 2-cycle sum

∞∑
m=1

∞∑
n=1

1
2
(tmn − tmtn) ,

with algebraically decaying coefficients which again diverge for |z| >
1. The analytically continued curvature terms have as usual branch
cuts along the positive real z axis. Our ability to calculate the higher
order curvature terms depends on how much we know about the cycle
weights tmn. The form of the cycle stability (22.5) suggests that tmn

decrease asymptotically as

tmn ∼ 1
(nm)1+1/s

(22.40)

for 2-cycles, and in general for n-cycles as

tm1m2...mn ∼ 1
(m1m2 . . .mn)1+1/s

.

If we happen to know the cycle weights tm1m2...mn analytically, we may
proceed as in Section 22.3.2, transform the multiple sums into multiple
integrals and rotate the integration contours.

We have reached the edge of what has been accomplished so far in
computing and what is worth the dynamical zeta functions from peri-
odic orbit data. In the next section, we describe a probabilistic method
applicable to intermittent maps which does not rely on periodic orbits.

22.4 BER zeta functions

So far we have focused on 1-d models as the simplest setting in
which to investigate dynamical implications of marginal fixed points.
We now take an altogether different track and describe how probabilis-
tic methods may be employed in order to write down approximate dyn-
amical zeta functions for intermittent systems.

We will discuss the method in a very general setting, for a flow in
arbitrary dimension. The key idea is to introduce a surface of section
P such that all trajectories traversing this section will have spent some
time both near the marginal stable fixed point and in the chaotic phase.
An important quantity in what follows is (3.5), the first return time τ(x),
or the time of flight of a trajectory starting in x to the next return to the
surface of section P . The period of a periodic orbit p intersecting the P
section np times is

Tp =
np−1∑
k=0

τ(fk(xp)),
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where f(x) is the Poincaré map, and xp ∈ P is a cycle point. The dyn-
amical zeta function (17.15)

1/ζ(z, s, β) =
∏
p

(
1 − znpeβAp−sTp

|Λp|

)
, Ap =

np−1∑
k=0

a(fk(xp)),

(22.41)
associated with the observable a(x) captures the dynamics of both theChapter 15

flow and the Poincaré map. The dynamical zeta function for the flow
is obtained as 1/ζ(s, β) = 1/ζ(1, s, β), and the dynamical zeta function
for the discrete time Poincaré map is 1/ζ(z, β) = 1/ζ(z, 0, β).

Our basic assumption will be probabilistic. We assume that the chaotic
interludes render the consecutive return (or recurrence) times T (xi), T (xi+1)
and observables a(xi), a(xi+1) effectively uncorrelated. Consider the
quantity eβA(x0,n)−sT (x0,n) averaged over the surface of section P . With
the above probabilistic assumption the large n behavior is

〈eβA(x0,n)−sT (x0,n)〉P ∼
(∫

P
eβa(x)−sτρ(x)dx

)n

,

where ρ(x) is the invariant density of the Poincaré map. This type of be-
havior is equivalent to there being only one zero z0(s, β) =

∫
eβa(x)−sτ(x)ρ(x)dx

of 1/ζ(z, s, β) in the z-β plane. In the language of Ruelle-Pollicott reso-
nances this means that there is an infinite gap to the first resonance.
This in turn implies that 1/ζ(z, s, β) may be written asRemark 15.3.2

1/ζ(z, s, β) = z −
∫
P
eβa(x)−sτ(x)ρ(x)dx , (22.42)

where we have neglected a possible analytic and non-zero prefactor.
The dynamical zeta function of the flow is now

1/ζ(s, β) = 1/ζ(1, s, β) = 1 −
∫
P
eβa(x)ρ(x)e−sτ(x)dx . (22.43)

Normally, the best one can hope for is a finite gap to the leading res-
onance of the Poincaré map. with the above dynamical zeta function
only approximatively valid. As it is derived from an approximation
due to Baladi, Eckmann, and Ruelle, we shall refer to it as the BER zeta
function 1/ζBER(s, β) in what follows.

A central role is played by the probability distribution of return times

ψ(τ) =
∫
P
δ(τ − τ(x))ρ(x)dx (22.44)

The BER zeta function at β = 0 is then given in terms of the Laplace23.6, page 389

transform of this distribution

1/ζBER(s) = 1 −
∫ ∞

0

ψ(τ)e−sτdτ.

22.5, page 368
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Example 22.1 Return times for the Bernoulli map.
For the Bernoulli shift map (21.6)

x �→ f(x) = 2x mod 1,

one easily derives the distribution of return times

ψn =
1

2n
n ≥ 1.

The BER zeta function becomes (by the discrete Laplace transform (16.9))

1/ζBER(z) = 1 −
∞∑

n=1

ψnz
n = 1 −

∞∑
n=1

zn

2n

=
1 − z

1 − z/2
= ζ−1(z)/(1 − z/Λ0) . (22.45)

Thanks to the uniformity of the piecewise linear map measure (15.19) the
“approximate” zeta function is in this case the exact dynamical zeta function,
with the cycle point 0 pruned.

Example 22.2 Return times for the model of Section 22.2.1.
For the toy model of Section 22.2.1 one gets ψ1 = |M1|, and ψn = |Mn|(1 −
b)/(1 − a), for n ≥ 2, leading to a BER zeta function

1/ζBER(z) = 1 − z|M1| −
∞∑

n=2

|Mn|zn,

which again coincides with the exact result, (22.10).

It may seem surprising that the BER approximation produces exact
results in the two examples above. The reason for this peculiarity is that
both these systems are piecewise linear and have complete Markov par-
titions. As long as the map is piecewise linear and complete, and the
probabilistic approximation is exactly fulfilled, the cycle expansion cur-
vature terms vanish. The BER zeta function and the fundamental part
of a cycle expansion discussed in Section 18.1.1 are indeed intricately
related, but not identical in general. In particular, note that the BER
zeta function obeys the flow conservation sum rule (20.11) by construc-
tion, whereas the fundamental part of a cycle expansion as a rule does
not.

Summary

The presence of marginally stable fixed points and cycles changes the
analytic structure of dynamical zeta functions and the rules for con-
structing cycle expansions. The marginal orbits have to be omitted,
and the cycle expansions now need to include families of infinitely
many longer and longer unstable orbits which accumulate toward the
marginally stable cycles. Correlations for such non-hyperbolic systems
may decay algebraically with the decay rates controlled by the branch
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cuts of dynamical zeta functions. Compared to pure hyperbolic sys-
tems, the physical consequences are drastic: exponential decays are re-
placed by slow power-law decays, and transport properties, such as the
diffusion may become anomalous.
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Further reading

What about the evolution operator formalism? The
main virtue of evolution operators was their semigroup
property (15.25). This was natural for hyperbolic sys-
tems where instabilities grow exponentially, and evolu-
tion operators capture this behavior due to their multi-
plicative nature. Whether the evolution operator formal-
ism is a good way to capture the slow, power law instabil-
ities of intermittent dynamics is less clear. The approach
taken here leads us to a formulation in terms of dynamic-
al zeta functions rather than spectral determinants, circum-
venting evolution operators altogether. It is not known
if the spectral determinants formulation would yield any
benefits when applied to intermittent chaos. Some re-
sults on spectral determinants and intermittency can be
found in [2]. A useful mathematical technique to deal
with isolated marginally stable fixed point is that of in-
ducing, that is, replacing the intermittent map by a com-
pletely hyperbolic map with infinite alphabet and redefin-
ing the discrete time; we have used this method implicitly
by changing from a finite to an infinite alphabet. We refer
to Refs. [3,19] for detailed discussions of this technique, as
well as applications to 1-dimensional maps.

Intermittency. Intermittency was discovered by Man-
neville and Pomeau [1] in their study of the Lorentz sys-
tem. They demonstrated that in neighborhood of param-
eter value rc = 166.07 the mean duration of the periodic
motion scales as (r − rc)

1/2. In Ref. [5] they explained
this phenomenon in terms of a 1-dimensional map (such

as (22.1)) near tangent bifurcation, and classified possible
types of intermittency.

Piecewise linear models like the one considered here
have been studied by Gaspard and Wang [6]. The es-
cape problem has here been treated following Ref. [7],
resummations following Ref. [8]. The proof of the
bound (22.27) can be found in P. Dahlqvist’s notes on
ChaosBook.org/PDahlqvistEscape.ps.gz.

Farey map (18.31) has been studied widely in the con-
text of intermittent dynamics, for example in Refs. [16, 17,
3,18,?,14,2]. The Fredholm determinant and the dynamic-
al zeta functions for the Farey map (18.31) and the related
Gauss shift map (??) have been studied by Mayer [16]. He
relates the continued fraction transformation to the Rie-
mann zeta function, and constructs a Hilbert space on
which the evolution operator is self-adjoint, and its eigen-
values are exponentially spaced, just as for the dynamical
zeta functions [23] for “Axiom A” hyperbolic systems.

Tauberian theorems. In this chapter we used Taube-
rian theorems for power series and Laplace transforms:
Feller’s monograph [9] is a highly recommended intro-
duction to these methods.

Probabilistic methods, BER zeta functions. Prob-
abilistic description of intermittent chaos was introduced
by Geisal and Thomae [10]. The BER approximation stud-
ied here is inspired by Baladi, Eckmann and Ruelle [14],
with further developments in Refs. [13, 15].

Exercises

(22.1) Integral representation of Jonquière functions.
Check the integral representation

J(z, α) =
z

Γ(α)

∫ ∞

0

dξ
ξα−1

eξ − z
for α > 0 .

(22.46)
Note how the denominator is connected to Bose-
Einstein distribution. Compute J(x+ iε)−J(x− iε)
for a real x > 1.

(22.2) Power law correction to a power law. Expand
(22.20) further and derive the leading power law

correction to (22.23).

(22.3) Power-law fall off. In cycle expansions the stabil-
ities of orbits do not always behave in a geometric
fashion. Consider the map f
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This map behaves as f → x as x→ 0. Define a sym-
bolic dynamics for this map by assigning 0 to the
points that land on the interval [0, 1/2) and 1 to the
points that land on (1/2, 1]. Show that the stability
of orbits that spend a long time on the 0 side goes
as n2. In particular, show that

Λ00···0︸︷︷︸
n

1 ∼ n2

(22.4) Power law fall-off of stability eigenvalues in the
stadium billiard∗∗. From the cycle expansions
point of view, the most important consequence
of the shear in Jn for long sequences of rotation
bounces nk in (8.13) is that the Λn grows only as
a power law in number of bounces:

Λn ∝ n2
k . (22.47)

Check.

(22.5) Probabilistic zeta function for maps. Derive
the probabilistic zeta function for a map with recur-
rence distribution ψn.

(22.6) Accelerated diffusion. Consider a map h,
such that ĥ = f̂ , but now running branches are
turner into standing branches and vice versa, so that
1, 2, 3, 4 are standing while 0 leads to both positive
and negative jumps. Build the corresponding dyn-
amical zeta function and show that

σ2(t) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

(22.7) Anomalous diffusion (hyperbolic maps).
Anomalous diffusive properties are associated to
deviations from linearity of the variance of the
phase variable we are looking at: this means the
the diffusion constant (15.13) either vanishes or di-
verges. We briefly illustrate in this exercise how

the local local properties of a map are crucial to ac-
count for anomalous behavior even for hyperbolic
systems.
Consider a class of piecewise linear maps, relevant
to the problem of the onset of diffusion, defined by

fε(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Λx for x ∈

[
0, x+

1

]
a− Λε,γ |x− x+| for x ∈

[
x+

1 , x
+
2

]
1 − Λ′(x− x+

2 ) for x ∈
[
x+

2 , x
−
1

]
1 − a+ Λε,γ |x− x−| for x ∈

[
x−

1 , x
−
2

]
1 + Λ(x− 1) for x ∈

[
x−

2 , 1
]

(22.48)
where Λ = (1/3 − ε1/γ)−1, Λ′ = (1/3 − 2ε1/γ),
Λε,γ = ε1−1/γ , a = 1+ ε, x+ = 1/3, x+

1 = x+ − ε1/γ ,
x+

2 = x+ + ε1/γ , and the usual symmetry properties
(23.11) are satisfied.
Thus this class of maps is characterized by two
escaping windows (through which the diffusion
process may take place) of size 2ε1/γ : the expo-
nent γ mimicks the order of the maximum for
a continuous map, while piecewise linearity, be-
sides making curvatures vanish and leading to fi-
nite cycle expansions, prevents the appearance of
stable cycles. The symbolic dynamics is easily de-
scribed once we consider a sequence of parame-
ter values {εm}, where εm = Λ−(m+1): we then
partition the unit interval though the sequence of
points 0, x+

1 , x
+, x+

2 , x
−
1 , x

−, x−
2 , 1 and label the cor-

responding sub–intervals 1, sa, sb, 2, db, da, 3: sym-
bolic dynamics is described by an unrestricted
grammar over the following set of symbols

{1, 2, 3, s#·1i, d#·3k} # = a, b i, k = m,m+1,m+2, . . .

This leads to the following dynamical zeta function:

ζ−1
0 (z, α) = 1−2z

Λ
− z

Λ′−4 cosh(α)ε1/γ−1
m

zm+1

Λm

(
1 − z

Λ

)−1

from which, by (23.8) we get

D =
2ε

1/γ−1
m Λ−m(1 − 1/Λ)−1

1 − 2
Λ
− 1

Λ′ − 4ε
1/γ−1
m

(
m+1

Λm(1−1/Λ)
+ 1

Λm+1(1−1/Λ)2

)
(22.49)

The main interest in this expression is that it allows
exploring how D vanishes in the ε �→ 0 (m �→ ∞)
limit: as a matter of fact, from (22.49) we get the
asymptotic behavior D ∼ ε1/γ , which shows how
the onset of diffusion is governed by the order of the
map at its maximum. Onset of diffusion for con-
tinuous maps. The zoology of behavior for con-
tinuous maps at the onset of diffusion is described
in Refs. [11, 12, 24]: our treatment for piecewise lin-
ear maps was introduced in Ref. [25].
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Fig. 22.3 (a) A tent map trajectory. (b) A Farey map trajectory.
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Fig. 22.5 The survival probability Γn calculated by contour integration; integrating
(22.17) inside the domain of convergence |z| < 1 (shaded area) of 1/ζ(z) in periodic
orbit representation yields (16.26). A deformation of the contour γ−

r (dashed line) to a
larger circle γ−

R gives contributions from the poles and zeros (x) of 1/ζ(z) between the
two circles. These are the only contributions for hyperbolic maps (a), for intermittent sys-
tems additional contributions arise, given by the contour γcut running along the branch
cut (b).
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