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Chapter 13. Counting

Solution 13.1: A transition matrix for 3-disk pinball. a) As the disk is convex,
the transition to itself is forbidden. Therefore, the Markov diagram is

1 2

3

,

with the corresponding transition matrix

T =

( 0 1 1
1 0 1
1 1 0

)
.

Note that T2 = T + 2. Suppose that Tn = anT + bn, then

T
n+1 = anT

2 + bnT = (an + bn)T + 2an .

So an+1 = an + bn , bn+1 = 2an with a1 = 1 , b1 = 0.

b) From a) we have an+1 = an + 2an−1. Suppose that an ∝ λn. Then λ2 = λ + 2.
Solving this equation and using the initial condition for n = 1, we obtain the general
formula

an =
1
3
(2n − (−1)n) ,

bn =
2
3
(2n−1 + (−1)n) .

c) T has eigenvalue 2 and −1 (degeneracy 2). So the topological entropy is ln 2, the

same as in the case of the binary symbolic dynamics. (Yueheng Lan)

Solution 13.2: Sum of Aij is like a trace. Suppose that Aφk = λkφk,
where λk , φk are eigenvalues and eigenvectors, respectively. Expressing the vector
v = (1, 1, · · · , 1)t in terms of the eigenvectors φk, i.e., v = Σkdkφk, we have

Γn = Σij [An]ij = vtAnv = Σkv
tAndkφk = Σkdkλ

n
k (vtφk)

= Σkckλ
n
k ,

where ck = (vtφk)dk are constants.

a) As trAn = Σkλ
n
k , it is easy to see that both trAn and Γn are dominated by the

largest eigenvalue λ0. That is

ln |trAn|
ln |Γn|

=
n ln |λ0| + ln |Σk(λk

λ0
)n|

n ln |λ0| + ln |Σkdk(λk

λ0
)n|

→ 1 as n → ∞ .
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b) The nonleading eigenvalues do not need to be distinct, as the ratio in a) is controlled
by the largest eigenvalues only.

(Yueheng Lan)

Solution 13.4: Transition matrix and cycle counting. a) According to the
definition of Tij , the transition matrix is

T =
(
a c
b 0

)
.

b) All walks of length three 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010 (four sym-
bols!) with weights aaa, aac, acb, cba, cbc, baa, bac, bcb . Let’s calculate T3,

T
3 =

(
a3 + 2abc a2c+ bc2

a2b+ b2c abc

)
.

There are altogether 8 terms, corresponding exactly to the terms in all the walks.

c) Let’s look at the following equality

T
n
ij = Σk1,k2,···,kn−1Tik1Tk1k2 · · ·Tkn−1j .

Every term in the sum is a possible path from i to j, though the weight could be zero.
The summation is over all possible intermediate points (n− 1 of them). So, Tn

ij gives
the total weight (probability or number) of all the walks from i to j in n steps.

d) We take a = b = c = 1 to just count the number of possible walks in n steps. This
is the crudest description of the dynamics. Taking a, b, c as transition probabilities
would give a more detailed description. The eigenvlues of T is (1 ±

√
5)/2, so we get

N(n) ∝ (1+
√

5
2 )n.

e) The topological entropy is then ln 1+
√

5
2 . (Yueheng Lan)

Solution 13.6: “Golden mean” pruned map. It is easy to write the transition
matrix T

T =
(

0 1
1 1

)
.

The eigenvalues are (1 ±
√

5)/2. The number of periodic orbits of length n is the
trace

T
n =

(1 +
√

5)n + (1 −
√

5)n

2n
.

(Yueheng Lan)

Solution 13.5: 3-disk prime cycle counting. The formula for arbitrary length

cycles is derived in sect. 13.4.
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Solution 13.44: Alphabet {0,1}, prune 1000 , 00100 , 01100 .

step 1. 1000 prunes all cycles with a 000 subsequence with the exception of
the fixed point 0; hence we factor out (1 − t0) explicitly, and prune 000 from the
rest. Physically this means that x0 is an isolated fixed point - no cycle stays in its
vicinity for more than 2 iterations. In the notation of exercise 13.18, the alphabet is
{1, 2, 3; 0}, and the remaining pruning rules have to be rewritten in terms of symbols
2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 . Physically, the 3-cycle
3 = 100 is pruned and no long cycles stay close enough to it for a single 100 repeat.
As in exercise 13.7, prohibition of 33 is implemented by dropping the symbol “3”
and extending the alphabet by the allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 , 13 13 , where 13 = 13,
23 = 23 are now used as single letters. Pruning of the repetitions 13 13 (the 4-cycle
13 = 1100 is pruned) yields the

Result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary dynamics. The other
remaining possible blocks 213 , 2313 are forbidden by the rules of step 3. The
topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (S.44)

for unrestricted 4-letter alphabet {1, 2, 23, 113}.

Solution 13.8: Spectrum of the “golden mean” pruned map.

1. The idea is that with the redefinition 2 = 10, the alphabet {1,2} is unrestricted
binary, and due to the piecewise linearity of the map, the stability weights factor
in a way similar to (16.10).

2. As in (17.10), the spectral determinant for the Perron-Frobenius operator takes
form (17.12)

det (1 − zL) =
∞∏

k=0

1
ζk
,

1
ζk

=
∏
p

(
1 − znp

|Λp|Λk
p

)
.

The mapping is piecewise linear, so the form of the topological zeta function
worked out in (13.16) already suggests the form of the answer. The alphabet
{1,2} is unrestricted binary, so the dynamical zeta functions receive contribu-
tions only from the two fixed points, with all other cycle contributions cancelled
exactly. The 1/ζ0 is the spectral determinant for the transfer operator like the
one in (15.19) with the T00 = 0, and in general

1
ζk

=
(

1 − z

|Λ1|Λk
1

)(
1 − z2

|Λ2|Λk
2

)(
1 − z3

|Λ12|Λk
12

)
· · ·

= 1 − (−1)k

(
z

Λk+1
+

z2

Λ2k+2

)
. (S.45)

The factor (−1)k arises because both stabilities Λ1 and Λ2 include a factor −Λ from

the right branch of the map.
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Solution 13.11: Whence Möbius function? Written out f(n) line-by-line for
a few values of n, (13.38) yields

f(1) = g(1)
f(2) = g(2) + g(1)
f(3) = g(3) + g(1)
f(4) = g(4) + g(2) + g(1)

· · ·
f(6) = g(6) + g(3) + g(2) + g(1)

· · · (S.46)

Now invert recursively this infinite tower of equations to obtain

g(1) = f(1)
g(2) = f(2) − f(1)
g(3) = f(3) − f(1)
g(4) = f(4) − [f(2) − f(1)] − f(1) = f(4) − f(2)

· · ·
g(6) = f(6) − [f(3) − f(1)] − [f(2) − f(1)] − f(1)

· · ·

We see that f(n) contributes with factor −1 if n prime, and not at all if n contains

a prime factor to a higher power. This is precisely the raison d’etre for the Möbius

function, with whose help the inverse of (13.38) can be written as the Möbius inversion

formula [29.29] (13.39).
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