Chapter 13. Counting

Solution 13.1: A transition matrix for 3-disk pinball. a) As the disk is convex, the transition to itself is forbidden. Therefore, the Markov diagram is

with the corresponding transition matrix

$$\mathbb{T} = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right) \,.$$

Note that $\mathbb{T}^2 = \mathbb{T} + 2$. Suppose that $\mathbb{T}^n = a_n \mathbb{T} + b_n$, then

$$\mathbb{T}^{n+1} = a_n \mathbb{T}^2 + b_n \mathbb{T} = (a_n + b_n) \mathbb{T} + 2a_n.$$

So
$$a_{n+1} = a_n + b_n$$
, $b_{n+1} = 2a_n$ with $a_1 = 1$, $b_1 = 0$.

b) From a) we have $a_{n+1}=a_n+2a_{n-1}$. Suppose that $a_n \propto \lambda^n$. Then $\lambda^2=\lambda+2$. Solving this equation and using the initial condition for n=1, we obtain the general formula

$$a_n = \frac{1}{3}(2^n - (-1)^n),$$

 $b_n = \frac{2}{3}(2^{n-1} + (-1)^n).$

c) \mathbb{T} has eigenvalue 2 and -1 (degeneracy 2). So the topological entropy is $\ln 2$, the same as in the case of the binary symbolic dynamics. (Yueheng Lan)

Solution 13.2: Sum of A_{ij} is like a trace. Suppose that $A\phi_k=\lambda_k\phi_k$, where λ_k , ϕ_k are eigenvalues and eigenvectors, respectively. Expressing the vector $v=(1,1,\cdots,1)^t$ in terms of the eigenvectors ϕ_k , i.e., $v=\Sigma_k d_k\phi_k$, we have

$$\Gamma_n = \Sigma_{ij} [A^n]_{ij} = v^t A^n v = \Sigma_k v^t A^n d_k \phi_k = \Sigma_k d_k \lambda_k^n (v^t \phi_k)$$
$$= \Sigma_k c_k \lambda_k^n ,$$

where $c_k = (v^t \phi_k) d_k$ are constants.

a) As $\operatorname{tr} A^n = \Sigma_k \lambda_k^n$, it is easy to see that both $\operatorname{tr} A^n$ and Γ_n are dominated by the largest eigenvalue λ_0 . That is

$$\frac{\ln|\operatorname{tr} A^n|}{\ln|\Gamma_n|} = \frac{n\ln|\lambda_0| + \ln|\Sigma_k(\frac{\lambda_k}{\lambda_0})^n|}{n\ln|\lambda_0| + \ln|\Sigma_k d_k(\frac{\lambda_k}{\lambda_0})^n|} \to 1 \quad \text{as } n \to \infty \,.$$

b) The nonleading eigenvalues do not need to be distinct, as the ratio in a) is controlled by the largest eigenvalues only.

(Yueheng Lan)

Solution 13.4: Transition matrix and cycle counting. a) According to the definition of \mathbb{T}_{ij} , the transition matrix is

$$\mathbb{T} = \left(\begin{array}{cc} a & c \\ b & 0 \end{array} \right) .$$

b) All walks of length three 0000,0001,0010,0100,0101,1000,1001,1010 (four symbols!) with weights aaa,aac,acb,cba,cbc,baa,bac,bcb. Let's calculate \mathbb{T}^3 ,

$$\mathbb{T}^3 = \left(\begin{array}{cc} a^3 + 2abc & a^2c + bc^2 \\ a^2b + b^2c & abc \end{array} \right) .$$

There are altogether 8 terms, corresponding exactly to the terms in all the walks.

c) Let's look at the following equality

$$\mathbb{T}_{ij}^n = \sum_{k_1, k_2, \dots, k_{n-1}} \mathbb{T}_{ik_1} \mathbb{T}_{k_1 k_2} \dots \mathbb{T}_{k_{n-1} j}$$
.

Every term in the sum is a possible path from i to j, though the weight could be zero. The summation is over all possible intermediate points (n-1 of them). So, \mathbb{T}^n_{ij} gives the total weight (probability or number) of all the walks from i to j in n steps.

- d) We take a=b=c=1 to just count the number of possible walks in n steps. This is the crudest description of the dynamics. Taking a,b,c as transition probabilities would give a more detailed description. The eigenvlues of $\mathbb T$ is $(1\pm\sqrt{5})/2$, so we get $N(n) \propto (\frac{1+\sqrt{5}}{2})^n$.
- e) The topological entropy is then $\ln \frac{1+\sqrt{5}}{2}$. (Yueheng Lan)

Solution 13.6: "Golden mean" pruned map. It is easy to write the transition matrix \mathbb{T}

$$\mathbb{T} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right) .$$

The eigenvalues are $(1\pm\sqrt{5})/2$. The number of periodic orbits of length n is the trace

$$\mathbb{T}^n = \frac{(1+\sqrt{5})^n + (1-\sqrt{5})^n}{2^n} \,.$$

(Yueheng Lan)

Solution 13.5: 3-disk prime cycle counting. The formula for arbitrary length cycles is derived in sect. 13.4.

Solution 13.44: Alphabet {0,1}, prune _1000_, _00100_, _01100_.

step 1. $_1000_$ prunes all cycles with a $_000_$ subsequence with the exception of the fixed point $\overline{0}$; hence we factor out $(1-t_0)$ explicitly, and prune $_000_$ from the rest. Physically this means that x_0 is an isolated fixed point - no cycle stays in its vicinity for more than 2 iterations. In the notation of exercise 13.18, the alphabet is $\{1, 2, 3; \overline{0}\}$, and the remaining pruning rules have to be rewritten in terms of symbols 2=10, 3=100:

step 2. alphabet $\{1, 2, 3; \overline{0}\}$, prune _33_, _213_,_313_. Physically, the 3-cycle $\overline{3} = \overline{100}$ is pruned and no long cycles stay close enough to it for a single _100_ repeat. As in exercise 13.7, prohibition of _33_ is implemented by dropping the symbol "3" and extending the alphabet by the allowed blocks 13, 23:

step 3. alphabet $\{1, 2, \underline{13}, \underline{23}; \overline{0}\}$, prune $\underline{213}$, $\underline{23}13$, $\underline{13}13$, where $\underline{13}=13$, $\underline{23}=23$ are now used as single letters. Pruning of the repetitions $\underline{13}13$. (the 4-cycle $\overline{13}=\overline{1100}$ is pruned) yields the

Result: alphabet $\{1, 2, \underline{23}, \underline{113}; \overline{0}\}$, unrestricted 4-ary dynamics. The other remaining possible blocks $\underline{213}$, $\underline{2313}$ are forbidden by the rules of step 3. The topological zeta function is given by

$$1/\zeta = (1 - t_0)(1 - t_1 - t_2 - t_{23} - t_{113}) \tag{S.44}$$

for unrestricted 4-letter alphabet {1, 2, 23, 113}.

Solution 13.8: Spectrum of the "golden mean" pruned map.

- 1. The idea is that with the redefinition 2 = 10, the alphabet $\{1,2\}$ is unrestricted binary, and due to the piecewise linearity of the map, the stability weights factor in a way similar to (16.10).
- 2. As in (17.10), the spectral determinant for the Perron-Frobenius operator takes form (17.12)

$$\det (1 - z\mathcal{L}) = \prod_{k=0}^{\infty} \frac{1}{\zeta_k}, \qquad \frac{1}{\zeta_k} = \prod_p \left(1 - \frac{z^{n_p}}{|\Lambda_p| \Lambda_p^k} \right).$$

The mapping is piecewise linear, so the form of the topological zeta function worked out in (13.16) already suggests the form of the answer. The alphabet $\{1,2\}$ is unrestricted binary, so the dynamical zeta functions receive contributions only from the two fixed points, with all other cycle contributions cancelled exactly. The $1/\zeta_0$ is the spectral determinant for the transfer operator like the one in (15.19) with the $T_{00}=0$, and in general

$$\frac{1}{\zeta_k} = \left(1 - \frac{z}{|\Lambda_1|\Lambda_1^k}\right) \left(1 - \frac{z^2}{|\Lambda_2|\Lambda_2^k}\right) \left(1 - \frac{z^3}{|\Lambda_{12}|\Lambda_{12}^k}\right) \cdots
= 1 - (-1)^k \left(\frac{z}{\Lambda^{k+1}} + \frac{z^2}{\Lambda^{2k+2}}\right).$$
(S.45)

The factor $(-1)^k$ arises because both stabilities Λ_1 and Λ_2 include a factor $-\Lambda$ from the right branch of the map.

Solution 13.11: Whence Möbius function? Written out f(n) line-by-line for a few values of n, (13.38) yields

$$f(1) = g(1)$$

$$f(2) = g(2) + g(1)$$

$$f(3) = g(3) + g(1)$$

$$f(4) = g(4) + g(2) + g(1)$$
...
$$f(6) = g(6) + g(3) + g(2) + g(1)$$
...
(S.46)

Now invert recursively this infinite tower of equations to obtain

$$\begin{array}{rcl} g(1) & = & f(1) \\ g(2) & = & f(2) - f(1) \\ g(3) & = & f(3) - f(1) \\ g(4) & = & f(4) - [f(2) - f(1)] - f(1) = f(4) - f(2) \\ & & \cdots \\ g(6) & = & f(6) - [f(3) - f(1)] - [f(2) - f(1)] - f(1) \\ & & \cdots \end{array}$$

We see that f(n) contributes with factor -1 if n prime, and not at all if n contains a prime factor to a higher power. This is precisely the raison d'etre for the Möbius function, with whose help the inverse of (13.38) can be written as the Möbius inversion formula [29.29] (13.39).