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Chapter 2. Go with the flow

Solution 2.1: Trajectories do not intersect. Suppose that two trajectories Cx

and Cy intersect at some point z. We claim that any points x̃ on Cx is also a point
on Cy and vice versa. We only need to prove the first part of the statement.
According to the definition of Cx, there exist tx , ty , t1 ∈ R such that f tx(x) =
z , f ty(y) = z , f t1(x) = x̃. It is easy to check that f ty−tx+t1(y) = x̃. So, x̃ ∈ Cy .
Therefore, if two trajectories intersect, then they are the same trajectory.

(Yueheng Lan)

Solution 2.2: Evolution as a group. Let’s check the basic defining properties
of a group. The members of the set are f t , t ∈ R and the “product law” is given by
’◦’.

• As f t+s = f t ◦ fs, the set is closed, i.e., the product of any two members
generates another member of the set.

• It is associative, as (f t ◦ fs) ◦ f r = f t+s+r = f t ◦ (fs ◦ f r).

• I = f0 is the identity, as f t ◦ f0 = f t.

• f−t is the inverse of f t, as f−t ◦ f t = I.

So, {f t, ◦}t∈R forms a group. As f t ◦ fs = f t+s = fs ◦ f t, it is a commutative
(Abelian) group.

Any Abelian group can replace the continuous time. For example, R can be
replaced by Z6. To mess things up try a non-commutative group.

(Yueheng Lan)

Solution 2.3: Almost ode’s. What is an ODE on R ? An ODE is an equality
which reveals explicitly the relation between function x(t) and its time derivatives
ẋ, ẍ, · · ·, i.e., F (t, x, ẋ, ẍ, · · ·) = 0 for some given function F . Let’s check the equations
given in the exercise.
(a) ẋ = exp(ẋ) is an ODE.
(b) ẋ = x(x(t)) is not an ODE, as x(x(t)) is not a known function acting on x(t).
(c) ẋ = x(t + 1) is not an ODE, as x(t + 1) is not a value at current time. Actually,
it is a difference-differential equation.

(Yueheng Lan)

Solution 2.4: All equilibrium points are fixed points. Given a vector field
v(x), the state space dynamics is defined by

d

dt
x(t) = v(x(t)) . (S.3)

An equilibrium point a of v is defined by v(a) = 0, so x(t) = a is a constant solution
of (S.3). For the flow f t defined by (S.3), this solution satisfies f t(a) = a , t ∈ R .
So, it is a fixed point of the dynamics f t.

(Yueheng Lan)

Solution 2.5: Gradient systems.
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1. The directional derivative

d

dn
φ = n · ∇φ

produces the increasing rate along the unit vector n. So, along the gradient
direction ∇φ/|∇φ|, φ has the largest increasing rate. The velocity of the particle
has the opposite direction to the gradient, so φ deceases most rapidly in the
velocity direction.

2. An extremum a of φ satisfies ∇φ(a) = 0. According to exercise 2.4, a is a fixed
point of the flow.

3. Two arguments lead to the same conclusion here.

First, near an equilibrium point, the equation is always linearizable. For gra-
dient system, after orthogonal transformation it is even possible to write the
linearized equation in diagonal form so that we need only to consider one
eigendirection. The corresponding scalar equation is ẋ = λx. Notice that
we moved the origin to the equilibrium point. The solution of this equation is
x(t) = x(0) exp(λt), for λ �= 0. if x(0) �= 0, it will take infinite amount of time
(positive or negative) for x(t) → 0. For λ = 0, the approach to zero is even
slower as then only higher orders of x take effect.

The second argument seems easier. We know that the solution curve through an
equilibrium point is the point itself. According to exercise 2.1, no other solution
curve will intersect it, which means that if not starting from the equilibrium
point itself, other point can never reach it.

4. On a periodic orbit, the velocity is bounded away from zero. So φ is always
decreasing on a periodic orbit, but in view of the periodicity, we know that this
can not happen (at each point, there is only one value of φ.). So, there is no
periodic orbit in a gradient system.

(Yueheng Lan)

Solution 2.8: Rössler system. You will probably want the matlab function
ode45 to do this. There are several others which perform better in different situations
(for example ode23 for stiff ODEs), but ode45 seems to be the best for general use.

To use ode45 you must create a function, say ’rossler’, which will take in a
time and a vector of [x,y,z] and return [xdot, ydot, zdot]. Then the command
would be something like

ode45([tmin, tmax], [x0 y0 z0], @rossler)

(Jonathan Halcrow)

Solution 2.9: Equilibria of the Rössler system.

1. Solve ẋ = ẏ = ż = 0, to get x = az, y = −z and x2 − cx+ ab = 0. There are
two solutions of a quadratic equation, hence there are two equilibrium points:

x± = az± = −ay± = (c±
√
c2 − 4ab)/2 . (S.4)

2. That above expressions are exact. However, it pays to think of ε = a/c as a
small parameter in the problem. By subsitution from (2.19),

x± = cp±, y± = −p±/ε, z± = p±/ε. (S.5)
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helium!collinearExpanding
√
D in ε yields p− = ε2 + o(ε3), and p+ = 1 − ε2 + o(ε3). Hence

x− = a2/c+ o(ε3), x+ = c− a2/c+ o(ε3),
y− = −a/c+ o(ε2), z+ = c/a+ a/c+ o(ε2),
z− = a/c+ o(ε2), z+ = c/a− a/c+ o(ε2).

(S.6)

For a = b = 0.2, c = 5.7 in (2.15), ε ≈ 0.035, so

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 ) ,
(x+, y+, z+) = ( 5.6929, −28.464, 28.464 ) . (S.7)

(Rytis Paškauskas)

Solution 2.11: Classical collinear helium dynamics. An example of a solution

are A. Prügel-Bennett’s programs, available at ChaosBook.org/extras.
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