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Chapter 5. Cycle stability coordinatelchange
stabilitylexact
Solution 5.1: Driven damped harmonic oscillator limit cycle. Driven damped 4qUNIbATRIstability

harmonic oscillator stability is discussed in Chapter 4 of Tél and Gruiz [1.11]. stroboscopic map
map!stroboscopic

Solution 5.2: A limit cycle with analytic stability exponent.  The 2-d fiPRtiv&teistability
flow (5.18) is cooked up so that z(t) = (q(t),p(t)) is separable (check!) in polar
coordinates g = rcos¢, p=rsing :

F=r(l—1r%), $=1. (S.9)

In the (r, $) coordinates the flow starting at any r > 0 is attracted to the r =1 limit
cycle, with the angular coordinate ¢ wraping around with a constant angular velocity
Q = 1. The non-wandering set of this flow consists of the r = 0 equilibrium and the
r =1 limit cycle.

equilibrium stability: As the change of coordinates is defined everywhere except
at the the equilibrium point (r = 0, any @), the equilibrium stability matrix (4.28) has
to be computed in the original (q,p) coordinates,

A= [ A } . (S.10)

The eigenvalues are A\ = 4+ iv = 14 ¢, indicating that the origin is linearly unstable,
with nearby trajectories spiralling out with the constant angular velocity 2 = 1. The
Poincaré section (p = 0, for example) return map is in this case also a stroboscopic
map, strobed at the period (Poincaré section return time) T'= 2w /) = 2. The radial
stability multiplier per one Poincaré return is |A| = e#T = 2™ .

Limit cycle stability: From (5.9) the stability matrix is diagonal in the (r,¢)
coordinates,

A= [ 1_037”2 X } . (S.11)

The vanishing of the angular Ay = 0 eigenvalue is due to the rotational invariance of
the equations of motion along ¢ direction. The expanding A\, = 1 radial eigenvalue
of the equilibrium r = 0 confirms the above equilibrium stability calculation. The
contracting A\, = —2 eigenvalue at r = 1 decreases the radial deviations from r = 1
with the radial stability multiplier A, = e*T = e~*" per one Poincaré return. This
limit cycle is very attracting.

Stability of a trajectory segment: Multiply (S.9) by r to obtain %ré =72 —rt,
set 2 = 1/u, separate variables du/(1 —u) = 2dt, and integrate: In(1 —u) — In(1 —
ug) = —2t. Hence the r(ro,t) trajectory is

rt) 2 =1+ (rg? —1)e 2. (S.12)
The [1 x 1] fundamental matrix

or(t)

0. |ry=r(o)

J(ro,t) = (S.13)
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satisfies (4.9)

%J(r, t)y=A(r)J(r,t) = (1 — 37“(75)2) J(r,t), J(rp,0) =

This too can be solved by separating variables d(In J(r,t)) = dt — 3r(t)%dt , substi-
tuting (5.12) and integrating. The stability of any finite trajectory segment is:

J(ro,t) = (r2 + (1 — r2)e2)73/2¢72 (S.14)

On the r = 1 limit cycle this agrees with the limit cycle multiplier A,.(1,t) = =2,
and with the radial part of the equilibrium instability A, (ro,t) = €' for ro < 1.

P. Cvitanovi¢

Solution 5.3: The other example of a limit cycle with analytic stability
exponent. Email your solution to ChaosBook.org and G.B. Ermentrout.

Solution 5.4: Yet another example of a limit cycle with analytic stability
exponent. Email your solution to ChaosBook.org and G.B. Ermentrout.
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