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No endeavor that is worthwhile is simple in prospect; if it is
right, it will be simple in retrospect.
Edward Teller

The utility of discrete symmetries in reducing spectrum calculations
is familiar from quantum mechanics. Here we show that the classical
spectral determinants factor in essentially the same way as the quan-
tum ones. In the process we 1.) learn that the classical dynamics, once
recast into the language of evolution operators, is much closer to quan-
tum mechanics than is apparent in the Newtonian, ODE formulation
(linear evolution operators/PDEs, group-theoretical spectral decompo-
sitions, . . .), 2.) that once the symmetry group is quotiented out, the
dynamics simplifies, and 3.) it’s a triple home run: simpler symbolic
dynamics, fewer cycles needed, much better convergence of cycle ex-
pansions. Once you master this, going back is unthinkable.

The main result of this chapter can be stated as follows:
If the dynamics possesses a discrete symmetry, the contribution of a

cycle p of multiplicity mp to a dynamical zeta function factorizes into a
product over the dα-dimensional irreducible representations Dα of the
symmetry group,

(1 − tp)mp =
∏
α

det (1 − Dα(hp̃)tp̃)
dα , tp = t

g/mp

p̃ ,

where tp̃ is the cycle weight evaluated on the relative periodic orbit p̃,
g = |G| is the order of the group, hp̃ is the group element relating the
fundamental domain cycle p̃ to a segment of the full space cycle p, and
mp is the multiplicity of the p cycle. As dynamical zeta functions have
particularly simple cycle expansions, a geometrical shadowing inter-
pretation of their convergence, and suffice for determination of leading
eigenvalues, we shall use them to explain the group-theoretic factoriza-
tions; the full spectral determinants can be factorized using the same
techniques. p-cycle into a cycle weight tp.

This chapter is meant to serve as a detailed guide to the computation
of dynamical zeta functions and spectral determinants for systems with
discrete symmetries. Familiarity with basic group-theoretic notions is
assumed, with the definitions relegated to Appendix C.1. We develop
here the cycle expansions for factorized determinants, and exemplify
them by working two cases of physical interest: C2 = D1, C3v = D3

symmetries. C2v = D2×D2 and C4v = D4 symmetries are discussed in
Appendix 24.
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19.1 Preview

As we saw in Chapter 9, discrete symmetries relate classes of periodic
orbits and reduce dynamics to a fundamental domain. Such symme-
tries simplify and improve the cycle expansions in a rather beautiful
way; in classical dynamics, just as in quantum mechanics, the sym-
metrized subspaces can be probed by linear operators of different sym-
metries. If a linear operator commutes with the symmetry, it can be
block-diagonalized, and, as we shall now show, the associated spectral
determinants and dynamical zeta functions factorize.

19.1.1 Reflection symmetric 1-d maps

Consider f , a map on the interval with reflection symmetry f(−x) =
−f(x). A simple example is the piecewise-linear sawtooth map of Fig. 9.1.

Denote the reflection operation by Rx = −x. The symmetry of the
map implies that if {xn} is a trajectory, than also {Rxn} is a trajectory
because Rxn+1 = Rf(xn) = f(Rxn) . The dynamics can be restricted
to a fundamental domain, in this case to one half of the original in-
terval; every time a trajectory leaves this interval, it can be mapped
back using R. Furthermore, the evolution operator commutes with R,
L(y, x) = L(Ry, Rx). R satisfies R2 = e and can be used to decompose
the state space into mutually orthogonal symmetric and antisymmetric
subspaces by means of projection operators

PA1 =
1
2
(e + R) , PA2 =

1
2
(e − R) ,

LA1(y, x) = PA1L(y, x) =
1
2

(L(y, x) + L(−y, x)) ,

LA2(y, x) = PA2L(y, x) =
1
2

(L(y, x) − L(−y, x)) . (19.1)

To compute the traces of the symmetrization and antisymmetrization
projection operators (19.1), we have to distinguish three kinds of cycles:
asymmetric cycles a, symmetric cycles s built by repeats of irreducible
segments s̃, and boundary cycles b. Now we show that the spectral det-
erminant can be written as the product over the three kinds of cycles:
det (1 − L) = det (1 − L)adet (1 − L)s̃det (1 − L)b.

Asymmetric cycles: A periodic orbits is not symmetric if {xa}∩{Rxa} =
∅, where {xa} is the set of periodic points belonging to the cycle a. Thus
R generates a second orbit with the same number of points and the
same stability properties. Both orbits give the same contribution to the
first term and no contribution to the second term in (19.1); as they are
degenerate, the prefactor 1/2 cancels. Resuming as in the derivation of
(17.15) we find that asymmetric orbits yield the same contribution to
the symmetric and the antisymmetric subspaces:

det (1 − L±)a =
∏
a

∞∏
k=0

(
1 − ta

Λk
a

)
, ta =

zna

|Λa| .
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Symmetric cycles: A cycle s is reflection symmetric if operating with R
on the set of cycle points reproduces the set. The period of a symmetric
cycle is always even (ns = 2ns̃) and the mirror image of the xs cycle
point is reached by traversing the irreducible segment s̃ of length ns̃,
fns̃(xs) = Rxs. δ(x − fn(x)) picks up 2ns̃ contributions for every even
traversal, n = rns̃, r even, and δ(x + fn(x)) for every odd traversal,
n = rns̃, r odd. Absorb the group-theoretic prefactor in the stability
eigenvalue by defining the stability computed for a segment of length
ns̃,

Λs̃ = − ∂fns̃(x)
∂x

∣∣∣∣
x=xs

.

Restricting the integration to the infinitesimal neighborhood Ms of the
s cycle, we obtain the contribution to trLn

±:

zntrLn
± →

∫
Ms

dx zn 1
2

(δ(x − fn(x)) ± δ(x + fn(x)))

= ns̃

(
even∑
r=2

δn,rns̃

trs̃
1 − 1/Λr

s̃

±
odd∑
r=1

δn,rns̃

trs̃
1 − 1/Λr

s̃

)

= ns̃

∞∑
r=1

δn,rns̃

(±ts̃)r

1 − 1/Λr
s̃

.

Substituting all symmetric cycles s into det (1 − L±) and resuming we
obtain:

det (1 − L±)s̃ =
∏
s̃

∞∏
k=0

(
1 ∓ ts̃

Λk
s̃

)

Boundary cycles: In the example at hand there is only one cycle which
is neither symmetric nor antisymmetric, but lies on the boundary of
the fundamental domain, the fixed point at the origin. Such cycle con-
tributes simultaneously to both δ(x − fn(x)) and δ(x + fn(x)):

zntrLn
± →

∫
Mb

dx zn 1
2

(δ(x − fn(x)) ± δ(x + fn(x)))

=
∞∑

r=1

δn,r trb
1
2

(
1

1 − 1/Λr
b

± 1
1 + 1/Λr

b

)

zn trLn
+ →

∞∑
r=1

δn,r
trb

1 − 1/Λ2r
b

; zn trLn
− →

∞∑
r=1

δn,r
1
Λr

b

trb
1 − 1/Λ2r

b

.

Boundary orbit contributions to the factorized spectral determinants
follow by resummation:

det (1−L+)b =
∞∏

k=0

(
1 − tb

Λ2k
b

)
, det (1−L−)b =

∞∏
k=0

(
1 − tb

Λ2k+1
b

)

Only the even derivatives contribute to the symmetric subspace, and
only the odd ones to the antisymmetric subspace, because the orbit lies
on the boundary.
ChaosBook.org version11.9.2, Aug 21 2007 symm - 15sep2007



292 CHAPTER 19. DISCRETE FACTORIZATION

Finally, the symmetry reduced spectral determinants follow by col-
lecting the above results:

F+(z) =
∏
a

∞∏
k=0

(
1 − ta

Λk
a

)∏
s̃

∞∏
k=0

(
1 − ts̃

Λk
s̃

) ∞∏
k=0

(
1 − tb

Λ2k
b

)

F−(z) =
∏
a

∞∏
k=0

(
1 − ta

Λk
a

)∏
s̃

∞∏
k=0

(
1 +

ts̃

Λk
s̃

) ∞∏
k=0

(
1 − tb

Λ2k+1
b

)
(19.2)

We shall work out the symbolic dynamics of such reflection symmet-
ric systems in some detail in Section 19.5. As reflection symmetry is
essentially the only discrete symmetry that a map of the interval can
have, this example completes the group-theoretic factorization of de-
terminants and zeta functions for 1-d maps. We now turn to discussion
of the general case.19.1, page 303

19.2 Discrete symmetries

A dynamical system is invariant under a symmetry group G = {e, g2, . . . , g|G|}
if the equations of motion are invariant under all symmetries g ∈ G.
For a map xn+1 = f(xn) and the evolution operator L(y, x) defined by
(15.23) this means

f(x) = g−1f(gx)
L(y, x) = L(gy,gx) . (19.3)

Bold face letters for group elements indicate a suitable representation
on state space. For example, if a 2-dimensional map has the symmetry
x1 → −x1, x2 → −x2, the symmetry group G consists of the identity
and C, a rotation by π around the origin. The map f must then com-
mute with rotations by π, f(Rx) = Cf(x), with R given by the [2 × 2]
matrix

R =
( −1 0

0 −1

)
. (19.4)

R satisfies R2 = e and can be used to decompose the state space into
mutually orthogonal symmetric and antisymmetric subspaces by means
of projection operators (19.1). More generally the projection operator
onto the α irreducible subspace of dimension dα is given by Pα =
(dα/|G|)∑χα(h)h−1, where χα(h) = tr Dα(h) are the group charac-
ters, and the transfer operator L splits into a sum of inequivalent irre-
ducible subspace contributions

∑
α trLα,

Lα(y, x) =
dα

|G|
∑
h∈G

χα(h)L(h−1y, x) . (19.5)

The prefactor dα in the above reflects the fact that a dα-dimensional
representation occurs dα times.
symm - 15sep2007 ChaosBook.org version11.9.2, Aug 21 2007



19.3. DYNAMICS IN THE FUNDAMENTAL DOMAIN 293

19.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler product (17.15) takes
the form ∏

p

(1 − tp) =
∏
p̂

(1 − tp̂)mp̂ . (19.6)

The Euler product (17.15) for the C3v symmetric 3-disk problem is
given in (18.36).

19.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discrete symmetry, the state space
M can be completely tiled by the fundamental domain M̃ and its im-
ages aM̃ , bM̃ , . . . under the action of the symmetry group G = {e, a, b, . . .},

M =
∑
a∈G

Ma =
∑
a∈G

aM̃ .

In the above example (19.4) with symmetry group G = {e, C}, the state
space M = {x1-x2 plane} can be tiled by a fundamental domain M̃ =
{half-plane x1 ≥ 0}, and CM̃ = {half-plane x1 ≤ 0}, its image under
rotation by π.

If the space M is decomposed into g tiles, a function φ(x) over M
splits into a g-dimensional vector φa(x) defined by φa(x) = φ(x) if x ∈
Ma, φa(x) = 0 otherwise. Let h = ab−1 conflicts with be the symmetry
operation that maps the endpoint domain Mb into the starting point
domain Ma, and let D(h)ba, the left regular representation, be the [g×g]
matrix whose b, a-th entry equals unity if a = hb and zero otherwise;
D(h)ba = δbh,a. Since the symmetries act on state space as well, the
operation h enters in two guises: as a [g × g] matrix D(h) which simply
permutes the domain labels, and as a [d × d] matrix representation h
of a discrete symmetry operation on the d state space coordinates. For
instance, in the above example (19.4) h ∈ C2 and D(h) can be either the
identity or the interchange of the two domain labels,

D(e) =
(

1 0
0 1

)
, D(C) =

(
0 1
1 0

)
. (19.7)

Note that D(h) is a permutation matrix, mapping a tile Ma into a dif-
ferent tile Mha �= Ma if h �= e. Consequently only D(e) has diagonal
elements, and tr D(h) = gδh,e. However, the state space transformation
h �= e leaves invariant sets of boundary points; for example, under re-
flection σ across a symmetry axis, the axis itself remains invariant. The
boundary periodic orbits that belong to such point-wise invariant sets
will require special care in trL evaluations.

One can associate to the evolution operator (15.23) a [g × g] matrix
evolution operator defined by

Lba(y, x) = D(h)baL(y, x) ,
ChaosBook.org version11.9.2, Aug 21 2007 symm - 15sep2007



294 CHAPTER 19. DISCRETE FACTORIZATION

if x ∈ Ma and y ∈ Mb, and zero otherwise. Now we can use the in-
variance condition (19.3) to move the starting point x into the funda-
mental domain x = ax̃, L(y, x) = L(a−1y, x̃), and then use the relation
a−1b = h−1 to also relate the endpoint y to its image in the fundamental
domain, L̃(ỹ, x̃) := L(h−1ỹ, x̃). With this operator which is restricted to
the fundamental domain, the global dynamics reduces to

Lba(y, x) = D(h)baL̃(ỹ, x̃) .

While the global trajectory runs over the full space M , the restricted
trajectory is brought back into the fundamental domain M̃ any time it
crosses into adjoining tiles; the two trajectories are related by the sym-
metry operation h which maps the global endpoint into its fundamental
domain image.

Now the traces (17.3) required for the evaluation of the eigenvalues
of the transfer operator can be evaluated on the fundamental domain
alone

trL =
∫

M

dxL(x, x) =
∫

M̃

dx̃
∑

h

tr D(h) L(h−1x̃, x̃) (19.8)

The fundamental domain integral
∫

dx̃ L(h−1x̃, x̃) picks up a contri-
bution from every global cycle (for which h = e), but it also picks up
contributions from shorter segments of global cycles. The permutation
matrix D(h) guarantees by the identity tr D(h) = 0, h �= e, that only
those repeats of the fundamental domain cycles p̃ that correspond to
complete global cycles p contribute. Compare, for example, the con-
tributions of the 12 and 0 cycles of Fig. 11.2. tr D(h)L̃ does not get a
contribution from the 0 cycle, as the symmetry operation that maps
the first half of the 12 into the fundamental domain is a reflection, and
tr D(σ) = 0. In contrast, σ2 = e, tr D(σ2) = 6 insures that the repeat of
the fundamental domain fixed point tr (D(h)L̃)2 = 6t20, gives the cor-
rect contribution to the global trace trL2 = 3 · 2t12.

Let p be the full orbit, p̃ the orbit in the fundamental domain and hp̃

an element of Hp, the symmetry group of p. Restricting the volume
integrations to the infinitesimal neighborhoods of the cycles p and p̃,
respectively, and performing the standard resummations, we obtain the
identity

(1 − tp)mp = det (1 − D(hp̃)tp̃) , (19.9)

valid cycle by cycle in the Euler products (17.15) for det (1 − L). Here
“det” refers to the [g × g] matrix representation D(hp̃); as we shall see,
this determinant can be evaluated in terms of standard characters, and
no explicit representation of D(hp̃) is needed. Finally, if a cycle p is
invariant under the symmetry subgroup Hp ⊆ G of order hp, its weight
can be written as a repetition of a fundamental domain cycle

tp = t
hp

p̃ (19.10)

computed on the irreducible segment that corresponds to a fundamen-
tal domain cycle. For example, in Fig. ?? we see by inspection that
t12 = t20 and t123 = t31.
symm - 15sep2007 ChaosBook.org version11.9.2, Aug 21 2007
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19.3.1 Boundary orbits

Before we can turn to a presentation of the factorizations of dynamical
zeta functions for the different symmetries we have to discuss an effect
that arises for orbits that run on a symmetry line that borders a funda-
mental domain. In our 3-disk example, no such orbits are possible, but
they exist in other systems, such as in the bounded region of the Hénon-
Heiles potential and in 1-d maps. For the symmetrical 4-disk billiard,
there are in principle two kinds of such orbits, one kind bouncing back
and forth between two diagonally opposed disks and the other kind
moving along the other axis of reflection symmetry; the latter exists
for bounded systems only. While there are typically very few bound-
ary orbits, they tend to be among the shortest orbits, and their neglect
can seriously degrade the convergence of cycle expansions, as those are
dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations,
their neighborhoods are not. This affects the stability matrix Mp of
the linearization perpendicular to the orbit and thus the eigenvalues.
Typically, e.g. if the symmetry is a reflection, some eigenvalues of Mp

change sign. This means that instead of a weight 1/det (1 − Mp) as
for a regular orbit, boundary cycles also pick up contributions of form
1/det (1− hMp), where h is a symmetry operation that leaves the orbit
pointwise invariant; see for example Section 19.1.1.

Consequences for the dynamical zeta function factorizations are that
sometimes a boundary orbit does not contribute. A derivation of a
dynamical zeta function (17.15) from a determinant like (17.9) usually
starts with an expansion of the determinants of the Jacobian. The lead-
ing order terms just contain the product of the expanding eigenvalues
and lead to the dynamical zeta function (17.15). Next to leading order
terms contain products of expanding and contracting eigenvalues and
are sensitive to their signs. Clearly, the weights tp in the dynamical zeta
function will then be affected by reflections in the Poincaré surface of
section perpendicular to the orbit. In all our applications it was possible
to implement these effects by the following simple prescription.

If an orbit is invariant under a little group Hp = {e, b2, . . . , bh}, then
the corresponding group element in (19.9) will be replaced by a projec-
tor. If the weights are insensitive to the signs of the eigenvalues, then
this projector is

gp =
1
h

h∑
i=1

bi . (19.11)

In the cases that we have considered, the change of sign may be taken
into account by defining a sign function εp(g) = ±1, with the “-” sign
if the symmetry element g flips the neighborhood. Then (19.11) is re-
placed by

gp =
1
h

h∑
i=1

ε(bi) bi . (19.12)

We have illustrated the above in Section 19.1.1 by working out the full
ChaosBook.org version11.9.2, Aug 21 2007 symm - 15sep2007
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factorization for the 1-dimensional reflection symmetric maps.

19.4 Factorizations of dynamical zeta
functions

In Chapter 9 we have shown that a discrete symmetry induces degen-
eracies among periodic orbits and decomposes periodic orbits into rep-
etitions of irreducible segments; this reduction to a fundamental do-
main furthermore leads to a convenient symbolic dynamics compatible
with the symmetry, and, most importantly, to a factorization of dynam-
ical zeta functions. This we now develop, first in a general setting and
then for specific examples.

19.4.1 Factorizations of dynamical dynamical zeta
functions

According to (19.9) and (19.10), the contribution of a degenerate class
of global cycles (cycle p with multiplicity mp = g/hp) to a dynamical
zeta function is given by the corresponding fundamental domain cycle
p̃:

(1 − t
hp

p̃ )g/hp = det (1 − D(hp̃)tp̃) (19.13)

Let D(h) =
⊕

α dαDα(h) be the decomposition of the matrix represen-
tation D(h) into the dα dimensional irreducible representations α of a
finite group G. Such decompositions are block-diagonal, so the corre-
sponding contribution to the Euler product (17.9) factorizes as

det (1 − D(h)t) =
∏
α

det (1 − Dα(h)t)dα , (19.14)

where now the product extends over all distinct dα-dimensional irre-
ducible representations, each contributing dα times. For the cycle ex-
pansion purposes, it has been convenient to emphasize that the group-
theoretic factorization can be effected cycle by cycle, as in (19.13); but
from the transfer operator point of view, the key observation is that the
symmetry reduces the transfer operator to a block diagonal form; this
block diagonalization implies that the dynamical zeta functions (17.15)
factorize as

1
ζ

=
∏
α

1
ζdα
α

,
1
ζα

=
∏
p̃

det (1 − Dα(hp̃)tp̃) . (19.15)

Determinants of d-dimensional irreducible representations can be eval-
uated using the expansion of determinants in terms of traces,

det (1 + M) = 1 + tr M +
1
2
(
(tr M)2 − tr M2

)
+

1
6
(
(tr M)3 − 3 (tr M)(tr M2) + 2 tr M3

)
+ · · · + 1

d!
(
(tr M)d − · · ·) , (19.16)

symm - 15sep2007 ChaosBook.org version11.9.2, Aug 21 2007
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(see (??), for example) and each factor in (19.14) can be evaluated by
looking up the characters χα(h) = tr Dα(h) in standard tables [11]. In
terms of characters, we have for the 1-dimensional representations

det (1 − Dα(h)t) = 1 − χα(h)t ,

for the 2-dimensional representations

det (1 − Dα(h)t) = 1 − χα(h)t +
1
2
(
χα(h)2 − χα(h2)

)
t2,

and so forth.
In the fully symmetric subspace tr DA1(h) = 1 for all orbits; hence a

straightforward fundamental domain computation (with no group the-
ory weights) always yields a part of the full spectrum. In practice this is
the most interesting subspectrum, as it contains the leading eigenvalue
of the transfer operator.

19.2, page 303

19.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (17.3) proceeds in essen-
tially the same manner as the factorization of dynamical zeta functions
outlined above. By (19.5) and (19.8) the trace of the transfer operator L
splits into the sum of inequivalent irreducible subspace contributions∑

α trLα, with

trLα = dα

∑
h∈G

χα(h)
∫

M̃

dx̃L(h−1x̃, x̃) .

This leads by standard manipulations to the factorization of (17.9) into

F (z) =
∏
α

Fα(z)dα

Fα(z) = exp

⎛
⎝−

∑
p̃

∞∑
r=1

1
r

χα(hr
p̃)z

np̃r

|det
(
1− M̃ r

p̃

)
|

⎞
⎠ , (19.17)

where M̃p̃ = hp̃Mp̃ is the fundamental domain Jacobian. Boundary
orbits require special treatment, discussed in Section 19.3.1, with exam-
ples given in the next section as well as in the specific factorizations
discussed below.

The factorizations (19.15), (19.17) are the central formulas of this chap-
ter. We now work out the group theory factorizations of cycle expan-
sions of dynamical zeta functions for the cases of C2 and C3v symme-
tries. The cases of the C2v , C4v symmetries are worked out in Ap-
pendix 24 below.

19.5 C2 factorization

As the simplest example of implementing the above scheme consider
the C2 symmetry. For our purposes, all that we need to know here is
ChaosBook.org version11.9.2, Aug 21 2007 symm - 15sep2007



298 CHAPTER 19. DISCRETE FACTORIZATION

that each orbit or configuration is uniquely labeled by an infinite string
{si}, si = +,− and that the dynamics is invariant under the + ↔ −
interchange, i.e., it is C2 symmetric. The C2 symmetry cycles separate
into two classes, the self-dual configurations +−, ++−−, +++−−−,
+ − − + − + +−, · · ·, with multiplicity mp = 1, and the asymmetric
configurations +, −, + + −, − − +, · · ·, with multiplicity mp = 2. For
example, as there is no absolute distinction between the “up” and the
“down” spins, or the “left” or the “right” lobe, t+ = t−, t++− = t+−−,
and so on.19.4, page 303

The symmetry reduced labeling ρi ∈ {0, 1} is related to the standard
si ∈ {+,−} Ising spin labeling by

If si = si−1 then ρi = 1
If si �= si−1 then ρi = 0 (19.18)

For example, + = · · · + + + + · · · maps into · · · 111 · · · = 1 (and so
does −), −+ = · · · − + − + · · · maps into · · · 000 · · · = 0, − + +− =
· · · − − + + −− + + · · · maps into · · · 0101 · · · = 01, and so forth. A list
of such reductions is given in Table 19.1.

Depending on the maximal symmetry group Hp that leaves an orbit
p invariant (see Sections 19.2 and 19.3 as well as Section 19.1.1), the
contributions to the dynamical zeta function factor as

A1 A2

Hp = {e} : (1 − tp̃)2 = (1 − tp̃)(1 − tp̃)
Hp = {e, σ} : (1 − t2p̃) = (1 − tp̃)(1 + tp̃) , (19.19)

For example:

H++− = {e} : (1 − t++−)2 = (1 − t001)(1 − t001)
H+− = {e, σ} : (1 − t+−) = (1 − t0) (1 + t0), t+− = t20

This yields two binary cycle expansions. The A1 subspace dynamic-
al zeta function is given by the standard binary expansion (18.7). The
antisymmetric A2 subspace dynamical zeta function ζA2 differs from
ζA1 only by a minus sign for cycles with an odd number of 0’s:

1/ζA2 = (1 + t0)(1 − t1)(1 + t10)(1 − t100)(1 + t101)(1 + t1000)
(1 − t1001)(1 + t1011)(1 − t10000)(1 + t10001)
(1 + t10010)(1 − t10011)(1 − t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0) − (t100 − t10t0) + (t101 − t10t1)
−(t1001 − t1t001 − t101t0 + t10t0t1) − . . . . . . (19.20)

Note that the group theory factors do not destroy the curvature correc-
tions (the cycles and pseudo cycles are still arranged into shadowing
combinations).

If the system under consideration has a boundary orbit (cf. Section 19.3.1)
with group-theoretic factor hp = (e + σ)/2, the boundary orbit does not
symm - 15sep2007 ChaosBook.org version11.9.2, Aug 21 2007
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p̃ p mp

1 + 2
0 −+ 1

01 −− ++ 1

001 − + + 2
011 −−− + ++ 1

0001 − + −− + − ++ 1
0011 − + ++ 2
0111 −−−− + + ++ 1

00001 − + − + − 2
00011 − + −−− + − + ++ 1
00101 − + + −− + −− ++ 1
00111 − + −−− + − + ++ 1
01011 −− + + + 2
01111 −−−−− + + + ++ 1

001011 − + + −−− + −− + ++ 1
001101 − + + + −− + −−− ++ 1

Table 19.1 Correspondence between the C2 symmetry reduced cycles p̃ and the
standard Ising model periodic configurations p, together with their multiplici-
ties mp. Also listed are the two shortest cycles (length 6) related by time rever-
sal, but distinct under C2.
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300 CHAPTER 19. DISCRETE FACTORIZATION

contribute to the antisymmetric subspace

A1 A2

boundary: (1 − tp) = (1 − tp̃)(1 − 0tp̃) (19.21)

This is the 1/ζ part of the boundary orbit factorization of Section 19.1.1.

19.6 C3v factorization: 3-disk game of pinball

The next example, the C3v symmetry, can be worked out by a glance
at Fig. ??a. For the symmetric 3-disk game of pinball the fundamental
domain is bounded by a disk segment and the two adjacent sections
of the symmetry axes that act as mirrors (see Fig. ??b). The three sym-
metry axes divide the space into six copies of the fundamental domain.
Any trajectory on the full space can be pieced together from bounces
in the fundamental domain, with symmetry axes replaced by flat mir-
ror reflections. The binary {0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collision of type
0 reflects the projectile to the disk it comes from (back–scatter), whereas
after a collision of type 1 projectile continues to the third disk. For ex-
ample, 23 = · · · 232323 · · · maps into · · · 000 · · · = 0 (and so do 12 and
13), 123 = · · · 12312 · · · maps into · · · 111 · · · = 1 (and so does 132), and
so forth. A list of such reductions for short cycles is given in Table ??.

C3v has two 1-dimensional irreducible representations, symmetric
and antisymmetric under reflections, denoted A1 and A2, and a pair
of degenerate 2-dimensional representations of mixed symmetry, de-
noted E. The contribution of an orbit with symmetry g to the 1/ζ Euler
product (19.14) factorizes according to

det (1 −D(h)t) = (1 − χA1(h)t) (1 − χA2(h)t)
(
1 − χE(h)t + χA2(h)t2

)2
(19.22)

with the three factors contributing to the C3v irreducible representa-
tions A1, A2 and E, respectively, and the 3-disk dynamical zeta function
factorizes into ζ = ζA1ζA2ζ

2
E . Substituting the C3v characters [11]

C3v A1 A2 E

e 1 1 2
C3, C

2
3 1 1 −1

σv 1 −1 0

into (19.22), we obtain for the three classes of possible orbit symmetries
(indicated in the first column)

hp̃ A1 A2 E
symm - 15sep2007 ChaosBook.org version11.9.2, Aug 21 2007



19.6. C3V FACTORIZATION: 3-DISK GAME OF PINBALL 301

e : (1 − tp̃)6 = (1 − tp̃)(1 − tp̃)(1 − 2tp̃ + t2p̃)
2

C3, C
2
3 : (1 − t3p̃)

2 = (1 − tp̃)(1 − tp̃)(1 + tp̃ + t2p̃)
2

σv : (1 − t2p̃)
3 = (1 − tp̃)(1 + tp̃)(1 + 0tp̃ − t2p̃)

2. (19.23)

where σv stands for any one of the three reflections.
The Euler product (17.15) on each irreducible subspace follows from

the factorization (19.23). On the symmetric A1 subspace the ζA1 is given
by the standard binary curvature expansion (18.7). The antisymmetric
A2 subspace ζA2 differs from ζA1 only by a minus sign for cycles with
an odd number of 0’s, and is given in (19.20). For the mixed-symmetry
subspace E the curvature expansion is given by

1/ζE = (1 + zt1 + z2t21)(1 − z2t20)(1 + z3t100 + z6t2100)(1 − z4t210)
(1 + z4t1001 + z8t21001)(1 + z5t10000 + z10t210000)
(1 + z5t10101 + z10t210101)(1 − z5t10011)2 . . .

= 1 + zt1 + z2(t21 − t20) + z3(t001 − t1t
2
0)

+z4
[
t0011 + (t001 − t1t

2
0)t1 − t201

]
+z5

[
t00001 + t01011 − 2t00111 + (t0011 − t201)t1 + (t21 − t20)t100

]
+ · · ·(19.24)

We have reinserted the powers of z in order to group together cycles
and pseudocycles of the same length. Note that the factorized cycle
expansions retain the curvature form; long cycles are still shadowed by
(somewhat less obvious) combinations of pseudocycles.

Referring back to the topological polynomial (13.31) obtained by set-
ting tp = 1, we see that its factorization is a consequence of the C3v

factorization of the ζ function:

1/ζA1 = 1 − 2z , 1/ζA2 = 1 , 1/ζE = 1 + z , (19.25)

as obtained from (18.7), (19.20) and (19.24) for tp = 1.
Their symmetry is K = {e, σ}, so according to (19.11), they pick up

the group-theoretic factor hp = (e + σ)/2. If there is no sign change in
tp, then evaluation of det (1 − e+σ

2 tp̃) yields

A1 A2 E

boundary: (1 − tp)3 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)2 , tp = tp̃ .(19.26)

However, if the cycle weight changes sign under reflection, tσp̃ = −tp̃,
the boundary orbit does not contribute to the subspace symmetric un-
der reflection across the orbit;

A1 A2 E

boundary: (1 − tp)3 = (1 − 0tp̃)(1 − tp̃)(1 − tp̃)2 , tp = tp̃ .(19.27)

Summary

If a dynamical system has a discrete symmetry, the symmetry should
be exploited; much is gained, both in understanding of the spectra and
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ease of their evaluation. Once this is appreciated, it is hard to conceive
of a calculation without factorization; it would correspond to quantum
mechanical calculations without wave–function symmetrizations.

While the reformulation of the chaotic spectroscopy from the trace
sums to the cycle expansions does not reduce the exponential growth
in number of cycles with the cycle length, in practice only the short
orbits are used, and for them the labor saving is dramatic. For example,
for the 3-disk game of pinball there are 256 periodic points of length 8,
but reduction to the fundamental domain non-degenerate prime cycles
reduces the number of the distinct cycles of length 8 to 30.

In addition, cycle expansions of the symmetry reduced dynamical
zeta functions converge dramatically faster than the unfactorized dyn-
amical zeta functions. One reason is that the unfactorized dynamical
zeta function has many closely spaced zeros and zeros of multiplicity
higher than one; since the cycle expansion is a polynomial expansion in
topological cycle length, accommodating such behavior requires many
terms. The dynamical zeta functions on separate subspaces have more
evenly and widely spaced zeros, are smoother, do not have symmetry-
induced multiple zeros, and fewer cycle expansion terms (short cycle
truncations) suffice to determine them. Furthermore, the cycles in the
fundamental domain sample state space more densely than in the full
space. For example, for the 3-disk problem, there are 9 distinct (sym-
metry unrelated) cycles of length 7 or less in full space, corresponding
to 47 distinct periodic points. In the fundamental domain, we have 8
(distinct) periodic orbits up to length 4 and thus 22 different periodic
points in 1/6-th the state space, i.e., an increase in density by a factor 3
with the same numerical effort.

We emphasize that the symmetry factorization (19.23) of the dynam-
ical zeta function is intrinsic to the classical dynamics, and not a special
property of quantal spectra. The factorization is not restricted to the
Hamiltonian systems, or only to the configuration space symmetries;
for example, the discrete symmetry can be a symmetry of the Hamil-
tonian phase space [2]. In conclusion, the manifold advantages of the
symmetry reduced dynamics should thus be obvious; full state space
cycle expansions, such as those of Exercise 18.8, are useful only for cross
checking purposes.

Further reading

Symmetry reductions in periodic orbit theory. This chap-
ter is based on long collaborative effort with B. Eckhardt,
Ref. [1]. The group-theoretic factorizations of dynamic-
al zeta functions that we develop here were first intro-
duced and applied in Ref. [3]. They are closely related

to the symmetrizations introduced by Gutzwiller [?] in
the context of the semiclassical periodic orbit trace formu-
las, put into more general group-theoretic context by Rob-
bins [2], whose exposition, together with Lauritzen’s [3]
treatment of the boundary orbits, has influenced the pre-
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sentation given here. The symmetry reduced trace for-
mula for a finite symmetry group G = {e, g2, . . . , g|G|}
with |G| group elements, where the integral over Haar
measure in projection (??) is replaced by a finite group
discrete sum |G|−1∑

g∈G = 1 , was derived in Ref. [1].
A related group-theoretic decomposition in context of hy-
perbolic billiards was utilized in Ref. [4], and for the Sel-
berg’s zeta function in Ref. [12]. One of its loftier an-
tecedents is the Artin factorization formula of algebraic
number theory, which expresses the zeta-function of a fi-
nite extension of a given field as a product of L-functions
over all irreducible representations of the corresponding
Galois group.

Computations. The techniques of this chapter
have been applied to computations of the 3-disk classi-

cal and quantum spectra in Refs. [6, ?], and to a “Zeeman
effect” pinball and the x2y2 potentials in Refs. [?, 12]. In
a larger perspective, the factorizations developed above
are special cases of a general approach to exploiting the
group-theoretic invariances in spectra computations, such
as those used in enumeration of periodic geodesics [4,4,14]
for hyperbolic billiards [?] and Selberg zeta functions [?].

Other symmetries. In addition to the symmetries
exploited here, time reversal symmetry and a variety of
other non-trivial discrete symmetries can induce further
relations among orbits; we shall point out several of ex-
amples of cycle degeneracies under time reversal. We do
not know whether such symmetries can be exploited for
further improvements of cycle expansions.

Exercises

(19.1) Sawtooth map desymmetrization. Work out the
some of the shortest global cycles of different sym-
metries and fundamental domain cycles for the
sawtooth map of Fig. 9.1. Compute the dynamic-
al zeta function and the spectral determinant of the
Perron-Frobenius operator for this map; check ex-
plicitly the factorization (19.2).

(19.2) 2-d asymmetric representation. The above ex-
pressions can sometimes be simplified further using
standard group-theoretical methods. For example,
the 1

2

(
(trM)2 − trM2

)
term in (19.16) is the trace

of the antisymmetric part of the M ×M Kronecker
product. Show that if α is a 2-dimensional represen-
tation, this is the A2 antisymmetric representation,
and

2-dim: det (1−Dα(h)t) = 1− χα(h)t+ χA2(h)t
2.

(19.28)

(19.3) 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization
for the 0 and 1 cycles, i.e. which symmetry
do they have, what is the degeneracy in full
space and how do they factorize (how do they
look in the A1, A2 and the E representations).

b) Find the shortest cycle with no symmetries
and factorize it as in a)

c) Find the shortest cycle that has the property
that its time reversal is not described by the
same symbolic dynamics.

d) Compute the dynamical zeta functions and
the spectral determinants (symbolically) in the
three representations; check the factorizations
(19.15) and (19.17).

(Per Rosenqvist)

(19.4) C2 factorizations: the Lorenz and Ising systems.
In the Lorenz system [1, 2] the labels + and − stand
for the left or the right lobe of the attractor and the
symmetry is a rotation by π around the z-axis. Sim-
ilarly, the Ising Hamiltonian (in the absence of an
external magnetic field) is invariant under spin flip.
Work out the factorizations for some of the short cy-
cles in either system.

(19.5) Ising model. The Ising model with two states
εi = {+,−} per site, periodic boundary condition,
and Hamiltonian

H(ε) = −J
∑

i

δεi,εi+1 ,

is invariant under spin-flip: + ↔ −. Take advan-
tage of that symmetry and factorize the dynamical
zeta function for the model, i.e., find all the peri-
odic orbits that contribute to each factor and their
weights.
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(19.6) One orbit contribution. If p is an orbit in the
fundamental domain with symmetry h, show that
it contributes to the spectral determinant with a fac-

tor
det

(
1 −D(h)

tp
λk

p

)
,

where D(h) is the representation of h in the regular
representation of the group.
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