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Dynamical systems with translational or rotational symmetry arise frequently in studies of spatially

extended physical systems, such as Navier-Stokes flows on periodic domains. In these cases, it is

natural to express the state of the fluid in terms of a Fourier series truncated to a finite number of

modes. Here, we study a 4-dimensional model with chaotic dynamics and SO(2) symmetry similar

to those that appear in fluid dynamics problems. A crucial step in the analysis of such a system is

symmetry reduction. We use the model to illustrate different symmetry-reduction techniques. The

system’s relative equilibria are conveniently determined by rewriting the dynamics in terms of a

symmetry-invariant polynomial basis. However, for the analysis of its chaotic dynamics, the

“method of slices,” which is applicable to very high-dimensional problems, is preferable. We show

that a Poincar�e section taken on the "slice" can be used to further reduce this flow to what is for all

practical purposes a unimodal map. This enables us to systematically determine all relative periodic

orbits and their symbolic dynamics up to any desired period. We then present cycle averaging

formulas adequate for systems with continuous symmetry and use them to compute dynamical

averages using relative periodic orbits. The convergence of such computations is discussed. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4923742]

Periodic orbit theory provides a way to compute dynami-

cal averages for chaotic flows by means of cycle averaging

formulas that relate the time averages of observables to

the spectra of unstable periodic orbits. Standard cycle

averaging formulas are valid under the assumption that

the stability multipliers of all periodic orbits have a single

marginal direction corresponding to time evolution and

are hyperbolic in all other directions. However, if a

dynamical system has N continuous symmetries, periodic

orbits are replaced by relative periodic orbits, invariant

(Nþ 1)-dimensional tori with marginal stability in

(Nþ 1) directions. Such exact invariant solutions arise in

studies of turbulent flows, such as pipe flow or plane

Couette flow, which have continuous symmetries. In

practice, the translational invariance of these flows is

approximated in numerical simulations by using periodic

domains so that the state of the fluid is conveniently

expressed as a Fourier series, truncated to a large but

finite number (from tens to thousands) of Fourier modes.

This paper is a tutorial on how such problems can be

analyzed using periodic orbit theory. We illustrate all the

necessary steps using a simple “two-mode” model as an

example.

I. INTRODUCTION

Recent experimental observations of traveling waves in

pipe flows have confirmed the intuition from dynamical sys-

tems theory that invariant solutions of Navier-Stokes equa-

tions play an important role in shaping the state space of

turbulent flows.1 When one casts fluid flow equations in a par-

ticular basis, the outcome is an infinite dimensional dynamical

system that is often equivariant under transformations such as

translations, reflections, and rotations. For example, when per-

iodic boundary conditions are imposed along the streamwise

direction, the equations for pipe flow retain their form under

the action of streamwise translations, azimuthal rotations, and

reflections about the central axis, i.e., they are equivariant

under the actions of the SO(2)�O(2) symmetry group. In this

case, it is natural to express the state of the fluid in a Fourier

basis. However, as the system evolves, the nonlinear terms in

the equations mix the various modes, so that the state of the

system evolves not only along the symmetry directions, but

also along directions transverse to them. This complicates the

dynamics and gives rise to high dimensional coherent solu-

tions such as relative equilibria and relative periodic orbits.

These take on the roles played by equilibria and periodic

orbits in flows without symmetry.

There is an extensive literature on equivariant dynamics,

which can be traced back to Poincar�e’s work on the 3-body

problem.2 Early references in the modern dynamical systems

literature that we know of are the works of Smale,3 Field,4

and Ruelle.5 Our goal here is not to provide a comprehensive

review of this literature, or study its techniques in generality.

For those, we refer the reader to monographs by Golubitsky

and Stewart,6 and by Field.7 Our aim here is much more

modest: We would like to provide a hands-on introduction to

some of the concepts from equivariant dynamical systems

theory, with an emphasis on those aspects relevant to the

application of the periodic orbit theory to these systems. To

this end, we undertake a step-by-step tutorial approach and

illustrate each concept on a two-mode SO(2) equivarianta)Electronic mail: budanur3@gatech.edu
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normal form that has the minimal dimensionality required

for chaotic dynamics. We provide visualizations of geometri-

cal concepts, whenever possible. While the example studied

here has no physical significance, such an analysis should

ultimately be applicable to numerical solutions of turbulent

flows on periodic domains, once sufficiently many exact

invariant solutions become numerically accessible.

The rest of the paper is organized as follows: In Section

II, we define basic concepts and briefly review the relevant

symmetry reduction literature. In Section III, we introduce

the two-mode model system, discuss several of its

symmetry-reduced representations, and utilize a symmetry-

reduced polynomial representation to find the only relative

equilibrium of the system. In Section IV, we show how the

method of slices can be used to quotient the symmetry and

reduce the dynamics onto a symmetry-reduced state space or

"slice." A Poincar�e section taken on the slice then reduces

the 4-dimensional chaotic dynamics in the full state space to

an approximately one-dimensional, unimodal Poincar�e
return map. The return map is then used to construct a finite

grammar symbolic dynamics for the flow and determine all
relative periodic orbits up to a given period. In Section V,

we present cycle averaging formulas adequate for systems

with continuous symmetries and use the relative periodic

orbits calculated in Section IV to calculate dynamically

interesting observables. Finally, in Section VI, we discuss

possible applications of the method of slices to various spa-

tially extended systems.

The main text is supplemented by two Appendices.

Appendix A describes the multi-shooting method used to

calculate the relative periodic orbits. Appendix B discusses

how periodic Schur decomposition can be used to determine

their Floquet multipliers, which can differ by 100s of orders

of magnitude even in a model as simple as the two-mode

system.

II. CONTINUOUS SYMMETRIES

A dynamical system _a ¼ vðaÞ is said to be equivariant
under the group G of symmetry transformations if

vðaÞ ¼ DðgÞ�1vðDðgÞaÞ; (1)

for every point a in the state space M and every element

g2G, where g is an abstract group element and D(g) is its

[d� d] matrix representation. Infinitesimally, the equivar-

iance condition (1) can be expressed as a vanishing Lie

derivative8

T vðaÞ � AðaÞ tðaÞ ¼ 0 ; (2)

where A(a) is the [d� d] stability matrix with elements

AijðaÞ ¼ @vi=@aj; tðaÞ ¼ Ta is the group tangent at a, and T
is the [d� d] generator of infinitesimal transformations, such

that DðhÞ ¼ expðhTÞ, where the phase h 2 [0, 2p) parametr-

izes the group action. (We shall interchangeably use

notations D(g) and D(h).) In general, there is a generator

associated with each continuous symmetry. For the simple

model considered here, which has a single SO(2)

symmetry, there is only one parameter h, so we only have

one generator T.

If the trajectory of a point aq coincides with its group

orbit, i.e., for every s there is a group transformation such

that

aðsÞ ¼ aq þ
ðs

0

ds0vðaðs0ÞÞ ¼ DðhðsÞÞ aq ; (3)

aq is a point on relative equilibrium q. In our case, this is a

1-torus in state space. Expanding both sides of Eq. (3) for in-

finitesimal time verifies that the group tangent and the veloc-

ity vector are parallel, i.e., vðaqÞ ¼ _hð0Þ tðaqÞ. By symmetry,

this must hold for all a(s) 2 q, so for relative equilibria the

phase velocity is constant, _hðsÞ ¼ c. Multiplying the equivar-

iance condition (2) by c, we find that velocity is a marginal

stability eigenvector in the reference frame co-moving with

the relative equilibrium,

ðAðaÞ � cTÞvðaÞ ¼ 0 ; a 2Mq : (4)

A state space point ap lies on a relative periodic orbit of

period Tp if its trajectory first intersects its group orbit after a

finite time Tp,

aðTpÞ ¼ ap þ
ðTp

0

ds0vðaðs0ÞÞ ¼ DðhpÞ ap ; (5)

with a phase hp. In systems with SO(2) symmetry, relative

periodic orbits are topologically 2-tori, where the trajectory

of ap generically traces out the torus ergodically by repeating

the same path shifted by the group action D(hp) after each

prime period Tp. As we will see in Section IV, these tori can

be very convoluted and difficult to visualize. In special

cases where hp¼ 0, the solution is a periodic orbit, a

1-dimensional loop in state space and the 2-torus is gener-

ated by all actions of the symmetry group on this loop.

The linear stability of relative periodic orbits is captured

by their Floquet multipliers Kp, j, the eigenvalues of the

Jacobian Ĵ p of the time-forward map a(s)¼ fs(a(0)). Ĵ p is

defined as

Ĵ p ¼ D �hpð ÞJT
p apð Þ; where Js

ij a 0ð Þð Þ ¼ @ai sð Þ
@aj 0ð Þ

: (6)

The magnitude of Kp, j determines whether a small perturba-

tion along its corresponding eigendirection (or Floquet

vector) will expand or contract after one period. If the mag-

nitude of Kp, j is greater than 1, the perturbation expands; if it

is less than 1, the perturbation contracts. In systems with N
continuous symmetries, relative periodic orbits have (Nþ 1)

marginal directions (jKp; jj ¼ 1), which correspond to the

temporal evolution of the flow and the N symmetries. By

applying symmetry reduction, the marginal Floquet multi-

pliers corresponding to the symmetries are replaced by 0, so

that periodic orbit theory, which requires that the flow have

only one marginal direction, becomes applicable.

Symmetry reduction is a coordinate transformation that

maps all the points on a group orbit D(h)a, which are equiva-

lent from a dynamical perspective, to a single representative
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point in a symmetry reduced space. After symmetry reduc-

tion, relative equilibria and relative periodic orbits are con-

verted to equilibria and periodic orbits in a reduced state

space without loss of dynamical information; the full state

space trajectory can always be retrieved via a reconstruction

equation.

One well-studied technique for symmetry reduction,

which works well for low-dimensional dynamical systems,

such as the Lorenz system, is to recast the dynamical equa-

tions in terms of invariant polynomials.9 However, there are

multiple difficulties associated with using these techniques.

Computing invariants is a non-trivial problem, and even for

the simple case of SO(2), computer algebra methods for

finding invariants become impractical for systems with more

than a dozen dimensions.10 Moreover, the projection of a lin-

ear equivariant vector field onto orbit space is not necessarily

a linear operation.11 This means that even when conducting

basic operations such as the linearization of nonlinear vector

fields, special attention has to be paid to the choice of invari-

ants, even when it is possible to find them. In contrast, the

method of slices,12–18 which we study in detail here, is a

symmetry reduction scheme applicable to high-dimensional

flows like the Navier-Stokes equations.19

A. Method of slices

In a system with N continuous symmetries, a slice M̂ is a

codimension N submanifold of M that cuts every group orbit

once and only once. In the method of slices, the solution of a d-

dimensional dynamical system is represented as a symmetry-

reduced trajectory âðsÞ within the (d – N-dimensional) slice

and N time dependent group parameters h(s), which map âðsÞ
to the full state space by the group action D(h(s)) that defines a

moving frame.

The idea goes back to Cartan,20 and there is a rich litera-

ture on the method of slices (in variety of guises) and its

applications to problems in dynamical systems theory: nota-

ble examples include the work of Field,21 Krupa,22 and

Ashwin and Melbourne,23 who used slicing to prove rigorous

results for equivariant systems. Fels and Olver24,25 used the

method of moving frames to compute invariant polynomials.

Haller and Mezić26 used the method of slices, under the

name “orbit projection map,” to study three-dimensional

volume-preserving flows. Our presentation closely follows

that of Refs. 12 and 13, the former of which derives the

“reconstruction equation” for the template fitting method of

Ref. 27.

A general definition of a slice puts no restriction on its

shape and offers no guidance on how to construct it. For Lie

groups, it is computationally convenient to use a local, linear

approximation to the slice (a slice hyperplane) constructed

in the neighborhood of a point â0. (For a general discussion

of how a local slice is defined with the help of the tubular

neighborhood theorem, the reader is referred to Refs. 7, 28,

and 29). The point â0 is called the slice template and the slice

hyperplane is then defined as the hyperplane that contains â0

and is perpendicular to its group tangent t0 ¼ Tâ0. The

relationship between a template, its slice hyperplane, and

symmetry-reduced trajectories is illustrated in Fig. 1.

Reduced trajectories âðtÞ can be obtained in two ways:

by post-processing data or by reformulating the dynamics

and integrating directly in the slice hyperplane. The post-

processing method (also called the method of moving
frames24,30) can be applied to both numerical and experimen-

tal data. Here, one takes the data in the full state space and

looks for the time dependent group parameter that brings the

trajectory a(s) onto the slice. That is, one finds h(s) such that

âðsÞ ¼ Dð�hðsÞÞaðsÞ satisfies the slice condition

hâðsÞ � â0jt0i ¼ 0 : (7)

In the second implementation (valid only for abelian groups),

one reformulates the dynamics as

v̂ðâÞ ¼ vðâÞ � _hðâÞ tðâÞ; (8a)

_hðâÞ ¼ hvðâÞjt0i=htðâÞjt0i ; (8b)

which can then be directly integrated to get the symmetry-

reduced trajectory âðsÞ and the reconstruction angle h(s). In

Eq. (8), v̂ is the projection of the full state space velocity v(a)

onto the slice hyperplane. For a derivation, see Ref. 8.

While early studies12,13,31 applied the method of slices

to a single solution at a time, studying the nonlinear dynam-

ics of extended systems requires symmetry reduction of

global objects, such as strange attractors and inertial mani-

folds. In this spirit, Ref. 14 used the method of slices to quo-

tient the SO(2) symmetry from the chaotic dynamics of

complex Lorenz flow. They showed that the singularity of

the reconstruction equation that occurs when the denomina-

tor in Eq. (8b) vanishes (e.g., when the group tangents of the

trajectory and the template are orthogonal) causes the

reduced flow to make discontinuous jumps. The set of points

â� where this occurs satisfies

htðâ�Þjt0i ¼ 0; (9)

and make up the slice border (studied in detail in Ref. 15).

FIG. 1. The slice hyperplane M̂ is a hyperplane that contains the template

point â 0 and is normal to its group tangent t0. It intersects all group orbits

(dotted lines) in an open neighborhood of â 0. The full state space trajectory

a(s) (solid black line) and the reduced state space trajectory âðsÞ (thick

green line) belong to the same group orbitMaðsÞ and are equivalent up to a

group rotation D(h(s)). Adapted from Ref. 8.
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Two strategies have been proposed in order to handle

this problem: The first attempts to try to identify a template

such that slice singularities are not visited by the dynamics.14

The second uses multiple "charts" of connected slice hyper-

planes,12,15 switching between charts when the dynamics

approach the border of a particular chart. The latter approach

was applied to complex Lorenz flow by Cvitanović et al.16

and to pipe flow by Willis, Cvitanović, and Avila.17

However, neither approach is straightforward to apply, par-

ticularly in high-dimensional systems.

B. First Fourier mode slice

A third strategy has recently been proposed by

Budanur et al.,18 who considered Fourier space discretiza-

tions of partial differential equations (PDEs) with SO(2)

symmetry. They showed that in these cases a simple choice

of slice template, associated with the first Fourier mode,

results in a slice in which it is highly unlikely that generic

dynamics visit the neighborhood of the singularity. If the

dynamics do occasionally come near the singularity, these

close passages can be regularized by means of a time

rescaling. Here, we shall illustrate this approach, which

we call the “first Fourier mode slice,” and apply it to a

model system with two modes that will be described in

Section III.

In the discussion so far, we have not specified any con-

straints on the symmetry group to be quotiented beyond the

requirement that it be abelian as required for Eq. (8) to be

valid. Since we are interested in spatially extended systems

with translational symmetry, and in order to keep the nota-

tion compact, we restrict our discussion to one dimensional

PDEs describing the evolution of a field u(x, t) in a periodic

domain. By expressing the solutions in terms of a Fourier

series

uðx; sÞ ¼
X1

k¼�1
ukðsÞeikx; uk ¼ xk þ iyk; (10)

the translationally invariant PDE can be replaced by a system

of coupled nonlinear ordinary differential equations (ODEs)

for the Fourier coefficients equivariant under the 1-

parameter compact group of SO(2) rotations.

Truncating the expansion to m modes, we write the real

and imaginary parts of the Fourier coefficients with k� 1 as

the state vector a¼ (x1, y1, x2, y2,…, xm, ym). The action of

the SO(2) group on this vector can then be expressed as a

block diagonal matrix

DðhÞ ¼

RðhÞ 0 � � � 0

0 Rð2hÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � RðmhÞ

0
BBBBB@

1
CCCCCA ; (11)

where

RðnhÞ ¼
cos nh �sin nh

sin nh cos nh

 !
(12)

is the rotation matrix for nth Fourier mode. The Lie algebra

element for D(h) is given by

T ¼

0 �1 0 0 � � � 0 0

1 0 0 0 � � � 0 0

0 0 0 �2 � � � 0 0

0 0 2 0 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � 0 �m

0 0 0 0 � � � m 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (13)

In order to construct a slice hyperplane for such a sys-

tem, we choose the following slice template:

â0 ¼ ð1; 0;…; 0Þ: (14)

The slice condition (7) then constrains points on the reduced

trajectory to the hyperplane given by

â ¼ ðx̂1; 0; x̂2; ŷ2;…; x̂m; ŷmÞ: (15)

As discussed earlier, group orbits should cross the slice once

and only once, which we achieve by restricting the slice

hyperplane to the half-space where x̂1 > 0. In general, a slice

hyperplane can be constructed by following a similar proce-

dure for any choice of template. However, the power of

choosing template (14) becomes apparent by computing the

border (9) of its slice hyperplane. The points on Eq. (15) lie

on the slice border only if x̂1 ¼ 0. This means that as long

the dynamics are such that the magnitude of the first mode

never vanishes, every group orbit is guaranteed to have a

unique representative point on the slice hyperplane. By sym-

metry, any template of the form â0 ¼ ðx̂01; ŷ01; 0;…; 0Þ would

work just as well. The slice template (14) was chosen for

notational and computational convenience.

More insight can be gained by writing the symmetry-

reduced evolution equations (8) explicitly for template (14)

v̂ âð Þ ¼ v âð Þ � _y1 âð Þ
x̂1

t âð Þ ; (16a)

_h âð Þ ¼ _y1 âð Þ
x̂1

: (16b)

Since the argument /1 of a point (x1, y1) in the first

Fourier mode plane is given by /1 ¼ tan�1 y1

x1
, its velocity is

_/1 ¼
x1

r2
1

_y1 �
y1

r2
1

_x1 ; (17)

where r2
1 ¼ x2

1 þ y2
1. Therefore, on the slice hyperplane (15),

where ŷ1 ¼ 0,

_hðâÞ ¼ _/1ðâÞ : (18)

That is, for our choice of template (14), the reconstruction

phase coincides with the phase of the first Fourier mode.

This makes this choice of template more natural from a

group-theoretic point of view than the physically motivated

templates used in Refs. 12–17.
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In general, additional care must be taken when the

dynamics approach the slice border x̂1 ¼ 0. Whenever this

happens, the near-divergence of v̂ can be regularized

by introducing a rescaled time coordinate18 such that

dŝ ¼ ds=x̂1. However, in our analysis of the two-mode sys-

tem that we introduce below, we omit this step since points

with a vanishing first mode are in an invariant subspace of

the flow and, hence, are never visited by the dynamics.

C. Geometric interpretation of the first Fourier mode
slice

Before moving on to our analysis of the two-mode

model, we first discuss the geometrical interpretation of the

first Fourier mode slice. The slice defined by Eq. (14), along

with the directional constraint x̂1 > 0, fixes the phase of the

first complex Fourier mode to 0. This can also be seen from

Eq. (18), which shows that if the first Fourier mode slice (14)

is used as a template, the reconstruction phase is the same as

the phase of the first Fourier mode (18).

In complex representation, we can express the relation-

ship between Fourier modes (zn¼ xnþ iyn) and their repre-

sentative points (ẑ ¼ x̂n þ iŷn) on the slice hyperplane by the

U(1) action

ẑn ¼ e�in/1 zn : (19)

This relation provides another interpretation for the slice bor-

der: For template (14), the slice border condition (9) defines

the slice border as those points where jẑ1j ¼ jz1j ¼ 0. At

these points, the phase of the first Fourier mode is not well-

defined and hence neither is the transformation (19).

This is illustrated in Fig. 2, where the first Fourier mode

slice hyperplane is shown along with the group orbits of

points with decreasing jz1j. When the magnitude of the first

mode is small relative to that of the second (pink curve), the

group tangent at the representative point for the group orbit

(i.e., where the group orbit and the slice hyperplane inter-

sect) has a larger component parallel to the slice hyperplane.

If the magnitude of the first mode was exactly 0, the group

tangent would lie entirely on the slice hyperplane, satisfying

the slice border condition.

In Ref. 32, a polar coordinate representation of a two

Fourier mode normal form is obtained by defining the G-

invariant phase: U ¼ /2 � 2/1 and three symmetry invariant

coordinates fr1; r2 cos U; r2 sin Ug. One can see by direct

comparison with Eq. (19), which yields ẑ1 ¼ r1 and

ẑ2 ¼ r2eiU, that this representation is a special case (m¼ 2),

of the slice defined by Eq. (14). Corresponding ODEs for the

polar representation for this two-mode system were obtained

in Ref. 32 by chain rule and substitution. Note that the

method of slices provides a general form (16a) for symmetry

reduced time evolution.

III. TWO-MODE SO(2)-EQUIVARIANT FLOW

Dangelmayr,33 Armbruster, Guckenheimer and

Holmes,34 Jones and Proctor,35 and Porter and Knobloch32

(for more details, see Sect. XX.1 in Golubitsky et al.36) have

previously investigated bifurcations in 1:2 resonance ODE

normal form models to third order in the amplitudes. Here,

we use this model as a starting point from which we derive

what may be one of the simplest chaotic systems with contin-

uous symmetry. We refer to this as the two-mode system

_z1 ¼ ðl1 � i e1Þ z1 þ a1 z1jz1j2 þ b1 z1jz2j2 þ c1 z1 z2

_z2 ¼ ðl2 � i e2Þ z2 þ a2 z2jz1j2 þ b2 z2jz2j2 þ c2 z2
1 ;

(20)

where z1 and z2 are complex and all parameters real-valued.

The parameters {e1, e2} break the reflectional symmetry of

the O(2)-equivariant normal form studied by Dangelmayr33

leading to an SO(2)-equivariant system. This complex two

mode system can be expressed as a 4-dimensional system of

real-valued first order ODEs by substituting z1¼ x1þ iy1,

z2¼ x2þ iy2, so that

_x1 ¼ ðl1 þ a1r2
1 þ b1r2

2 þ c1x2Þx1 þ c1y1y2 þ e1y1 ;

_y1 ¼ ðl1 þ a1r2
1 þ b1r2

2 � c1x2Þy1 þ c1x1y2 � e1x1 ;

_x2 ¼ ðl2 þ a2r2
1 þ b2r2

2Þx2 þ c2ðx2
1 � y2

1Þ þ e2y2 ;

_y2 ¼ ðl2 þ a2r2
1 þ b2r2

2Þy2 þ 2c2x1y1 � e2x2 ;

where r2
1 ¼ x2

1 þ y2
1 ; r2

2 ¼ x2
2 þ y2

2 : (21)

The large number of parameters (l1, l2, a1, a2, b1, b2,

c1, c2, e1, e2) in this system makes full exploration of the

parameter space impractical. Following in the tradition of

Lorenz,37 H�enon,38 and R€ossler,39 we have tried various

choices of parameters until settling on the following set of

values, which we will use in all numerical calculations pre-

sented here:

l1 l2

�2:8 1

e1 e2

0 1

a1 a2

�1 �2:66

b1 b2

1 �0

c1 c2

�7:75 1
:

(22)

FIG. 2. SO(2) group orbits of state space points (0.75, 0, 0.1, 0.1) (orange),

(0.5, 0, 0.5, 0.5) (green), (0.1, 0, 0.75, 0.75) (pink), and the first mode (15)

slice hyperplane (blue). The group tangents at the intersections with the slice

hyperplane are shown as red arrows. As the magnitude of the first Fourier

mode decreases relative to the magnitude of the second one, so does the

group tangent angle to the slice hyperplane.
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This choice of parameters is far from the bifurcation values

studied by previous authors,32–35 so that the model has no

physical interpretation. However, these parameters yield cha-

otic dynamics, making the two-mode system a convenient

minimal model for the study of chaos in the presence of a

continuous symmetry: It is a 4-dimensional SO(2)-equivar-

iant model, whose symmetry-reduced dynamics are chaotic

and take place on a three-dimensional manifold. For another

example of parameter values that result in chaotic dynamics,

see Ref. 32.

It can be checked by inspection that Eq. (20) is equivar-

iant under the U(1) transformation

ðz1; z2Þ ! ðeihz1; e
i2hz2Þ : (23)

In the real representation (21), the SO(2) group action (23)

on a state space point a is given exp ðhTÞa, where a>¼ (x1,

y1, x2, y2) and T is the Lie algebra element

T ¼

0 �1 0 0

1 0 0 0

0 0 0 �2

0 0 2 0

0
BBBB@

1
CCCCA : (24)

One can easily check that the real two-mode system (21) sat-

isfies the equivariance condition (2).

From Eq. (20), it is obvious that the equilibrium point

ðz1; z2Þ ¼ ð0; 0Þ is an invariant subspace and that z1¼ 0,

z2 6¼ 0 is a 2-dimensional flow-invariant subspace

_z1 ¼ 0 ; _z2 ¼ ðl2 � i e2 þ b2jz2j2Þ z2; (25)

with a single circular relative equilibrium of radius r2 ¼ kz2k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2=b2

p
with phase velocity c¼ –e2 /2. At the origin, the

stability matrix A commutes with T, and so, can be block-

diagonalized into two [2� 2] matrices. The eigenvalues of A
at (0, 0, 0, 0) are k1¼ l1 with multiplicity 2 and k2¼ l2 6 ie2.

In the (x1, y1, x2, y2) coordinates, the eigenvectors for k1 are

(1, 0, 0, 0) and (0, 1, 0, 0) and the eigenvectors for k2 are

(0, 0, 1, 0) and (0, 0, 0, 1).

In contrast, z2¼ 0 is not, in general, a flow-invariant

subspace since the dynamics

_z1 ¼ ðl1 � i e1Þ z1 þ a1 z1jz1j2 ; _z2 ¼ c2 z2
1

take the flow out of the z2¼ 0 plane.

A. Invariant polynomial bases

Before continuing our tutorial on the use of the method

of slices using the first Fourier mode slice, we briefly discuss

the symmetry reduction of the two-mode system using invar-

iant polynomials. While representations of our model in

terms of invariant polynomials and polar coordinates are use-

ful for cross-checking our calculations in the full state space

a>¼ (x1, x2, y1, y2), their construction requires a bit of

algebra even for this simple 4-dimensional flow. For very

high-dimensional flows, such as Kuramoto-Sivashinsky and

Navier-Stokes flows, we do not know how to carry out such

constructions. As discussed in Refs. 32–34, for the two-

mode system, it is easy to construct a set of four real-valued

SO(2) invariant polynomials

u ¼ z1z1 ; v ¼ z2z2

w ¼ z2
1z2 þ z2

1z2 ; q ¼ ðz2
1z2 � z2

1z2Þ=i : (26)

The polynomials [u, v, w, q] are linearly independent, but

related through one syzygy,

w2 þ q2 � 4 u2v ¼ 0 (27)

that confines the dynamics to a 3-dimensional manifold

M̂ ¼M=SOð2Þ, which is a symmetry-invariant representa-

tion of the 4-dimensional SO(2) equivariant dynamics. We

call this the reduced state space. By construction, u� 0,

v� 0, but w and q can be of either sign. That is explicit if we

express z1 and z2 in polar coordinates (z1 ¼ juj1=2ei/1 ;
z2 ¼ jvj1=2ei/2 ), so that w and q take the form

w ¼ 2 Re ðz2
1z2Þ ¼ 2 ujvj1=2

cos w;

q ¼ 2 Im ðz2
1z2Þ ¼ 2 ujvj1=2

sin w ;
(28)

where w ¼ 2/1 � /2.

The dynamical equations for [u, v, w, q] follow from the

chain rule, which yields

_u ¼ z1 _z1 þ z1
_z1 ; _v ¼ z2 _z2 þ z2

_z2;

_w ¼ 2 z2z1 _z1 þ 2 z2z1
_z1 þ z2

1
_z2 þ z2

1 _z2;

_q ¼ ð2 z2z1 _z1 � 2 z2z1
_z1 þ z2

1
_z2 � z2

1 _z2Þ=i:

(29)

Substituting Eq. (20) into Eq. (29), we obtain a set of four

SO(2)-invariant equations,

_u ¼ 2 l1 uþ 2 a1 u2 þ 2 b1 u vþ c1 w;

_v ¼ 2 l2 vþ 2 a2 u vþ 2 b2 v2 þ c2 w;

_w ¼ ð2 l1 þ l2Þwþ ð2a1 þ a2Þ u wþ ð2b1 þ b2Þ v w

þ4c1 u vþ 2c2 u2 þ ð2e1 � e2Þ q;
_q ¼ ð2l1 þ l2Þ qþ ð2a1 þ a2Þ u q

þð2b1 þ b2Þ v q� ð2e1 � e2Þw :

(30)

Note that the O(2)-symmetry breaking parameters {e1, e2} of

the Dangelmayr normal form system33 appear only in the rel-

ative phase combination (2e1 – e2), so one of the two can be

set to zero without loss of generality. This consideration

motivated our choice of e1¼ 0 in Eq. (22). Using the syzygy

(27), we can eliminate q from Eq. (30) to get

_u ¼ 2 l1 uþ 2 a1 u2 þ 2 b1 u vþ c1 w;

_v ¼ 2 l2 vþ 2 a2 u vþ 2 b2 v2 þ c2 w;

_w ¼ ð2 l1 þ l2Þwþ ð2a1 þ a2Þ u wþ ð2b1 þ b2Þ v w

þ 4c1 u vþ 2c2 u2 þ ð2e1 � e2Þð4u2v� w2Þ1=2:

(31)

This invariant basis can be used either to investigate the

dynamics directly or to visualize solutions9 computed in the

full equivariant basis (20).
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B. Equilibria of the symmetry-reduced dynamics

The first step in elucidating the geometry of attracting

sets is the determination of their equilibria. We shall now

show that the problem of determining the equilibria of the

symmetry-reduced two-mode (30) system [u*, v*, w*, q*]

can be reduced to finding the real roots of a multinomial

expression. First, we define

A1 ¼ l1 þ a1 uþ b1 v ; A2 ¼ l2 þ a2 uþ b2 v; (32)

and rewrite Eq. (30) as

0 ¼ 2 A1 uþ c1 w ; 0 ¼ 2 A2 vþ c2 w;

0 ¼ ð2 A1 þ A2Þwþ 2 ðc2 uþ 2 c1 vÞ u
þð2e1 � e2Þ q;

0 ¼ ð2 A1 þ A2Þ q� ð2e1 � e2Þ w:

(33)

We already know that [0, 0, 0, 0] and [0, –l2/b2, 0, 0] are the

only roots in the u¼ 0 and v¼ 0 subspaces, so we are look-

ing only for the u> 0, v> 0, w; q 2 R solutions; there could

be non-generic roots with either w¼ 0 or q¼ 0, but not both

simultaneously, since the syzygy (27) precludes that. Either

w or q can be eliminated by obtaining the following relations

from Eq. (33):

w ¼ � 2 u

c1

A1 ¼ �
2 v
c2

A2;

q ¼ 2 �2e1 þ e2ð Þ u v
c2 uþ 2 c1 v

:

(34)

Substituting Eq. (34) into Eq. (33), we get two bivariate

polynomials whose roots are the equilibria of system (30)

f ðu; vÞ ¼ c2 u A1 � c1 v A2 ¼ 0 ;

gðu; vÞ ¼ ð4 A2
1u2 � 4 c2

1 u2vÞðc2 uþ 2 c1 vÞ2

þ4 c2
1 ð�2e1 þ e2Þ2 u2 v2 ¼ 0 :

(35)

We divide the common multiplier u2 from the second equa-

tion and by doing so, eliminate one of the two roots at the

origin, as well as the [0, –l2/b2, 0, 0] root within the invari-

ant subspace (25). Furthermore, we scale the parameters and

variables as ~u ¼ c2 u; ~v ¼ c1 v; ~a1 ¼ a1=c2; ~b1 ¼ b1=c1;
~a2 ¼ a2=c2; ~b2 ¼ b2=c1 to get

~f ð~u;~vÞ ¼ ~u ~A1 � ~v ~A2 ¼ 0 ; (36)

~gð~u;~vÞ ¼ ð ~A2

1 � c1 ~vÞð~u þ 2 ~vÞ2 þ e2
2 ~v2 ¼ 0 ; (37)

where ~A1 ¼ l1 þ ~a1 ~u þ ~b1 ~v and ~A2 ¼ l2 þ ~a2 ~u þ ~b2 ~v.

Solving coupled bivariate polynomials such as Eqs. (36)

and (37) is not, in general, a trivial task. However, for the

choice of parameters given by Eq. (22), Eq. (36) yields

~v ¼ ðl1 þ ~a1 ~uÞ=ðl2 þ ~a2~uÞ. Substituting this into Eq. (37)

makes it a fourth order polynomial in u, which we can solve.

Only the non-negative, real roots of this polynomial corre-

spond to relative equilibria in the two-mode state space since

u and v are the squares of first and second mode amplitudes,

respectively. Two roots satisfy this condition, the equilib-

rium at the origin

pEQ ¼ ½0; 0; 0; 0� ; (38)

and the relative equilibrium

pTW ¼ ½0:193569; 0:154131;�0:149539;�0:027178� : (39)

Note that by setting b2¼ 0, we send the relative equilibrium

at [0, –l2/b2, 0, 0] to infinity. Thus, Eq. (39) is the only rela-

tive equilibrium of the two-mode system for our choice of

parameters. While this is an equilibrium in the invariant

polynomial basis, in the SO(2)-equivariant, real-valued state

space this is a 1-dimensional relative equilibrium group

orbit. The point on this orbit that lies in first Fourier mode

slice is (see Fig. 4(c))

ðx1; y1; x2; y2Þ ¼ ð0:439966; 0;�0:386267; 0:070204Þ : (40)

We computed the linear stability eigenvalues and eigenvec-

tors of this relative equilibrium by analyzing the stability

matrix within the first Fourier mode slice ÂijðâÞ
¼ @v̂i=@âjjâ , resulting in linear stability eigenvalues

k1;2 ¼ 0:05073 6 i 2:4527; k3 ¼�5:5055; k4 ¼ 0 : (41)

The 0 eigenvalue corresponds to the direction transverse to

the slice. We expect this since the reduced trajectory evolu-

tion equation (8a) keeps the solution within the slice. The

imaginary part of the expanding complex pair sets the

“winding time” in the neighborhood of the equilibrium to

Tw¼ 2p/Im (k1)¼ 2.5617. The large magnitude of the con-

tracting eigenvalue k3 yields a very thin attractor in the

reduced state space, so that in a planar Poincar�e section, the

two-mode flow is almost one dimensional, as shown in Figs.

5(a) and 5(b).

C. No chaos when the reflection symmetry is restored

Before finishing our discussion of invariant polyno-

mials, we make an important observation regarding the case

when both of the reflection symmetry breaking parameters,

e1 and e2 are set to 0. In this case, z1;2 ! z1;2 symmetry

is restored and the evolution equations for u, v, and w in

Eq. (30) become independent of q. Furthermore, the time

evolution equation for q becomes linear in q itself, so that it

can be expressed as

_q ¼ nðu; vÞq : (42)

Hence, the time evolution of q can be written as

qðsÞ ¼ e
Ð s

0
ds0nðuðs0Þ;vðs0ÞÞ

qð0Þ : (43)

If we assume that the flow is bounded, then we can also

assume that a long time average of n exists. The sign of this

average determines the long term behavior of q(s); it will

either diverge or vanish depending on the sign of hni being

positive or negative, respectively. The former case leads to a

contradiction: If q(s) diverges, the symmetry-invariant flow

cannot be bounded since the syzygy (27) must be satisfied at

all times. If q(t) vanishes, there are three invariant polyno-

mials left, which are still related to each other by the syzygy.

Thus, the flow is confined to a two dimensional manifold and
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cannot exhibit chaos. We must stress that this is a special

result that holds for the two-mode normal form with terms

up to third order.

D. Visualizing two-mode dynamics

We now present visualizations of the dynamics of the

two-mode system in four different representations: as 3D

projections of the four-dimensional real-valued state space,

as 3D projections in the invariant polynomial basis, as dy-

namics in the 3D slice hyperplane, and as two-dimensional

spacetime diagrams of the color-coded field u(x, s), which is

defined as follows:

uðx; sÞ ¼
X2

k¼�2

zkðsÞ eikx ;

where z�k ¼ zk ; z0 ¼ 0, and x 2 [�p, p]. We can also define

the symmetry reduced configuration space representation as

the inverse Fourier transform of the symmetry reduced

Fourier modes

ûðx; sÞ ¼
X2

k¼�2

ẑkðsÞeikx ;

where ẑ�k ¼ ẑ k; ẑ0 ¼ 0 and x 2 [�p, p]. Figures 3(a) and

3(b) show the sole relative equilibrium TW of the two-mode

system in the symmetry-equivariant and symmetry-reduced

configuration spaces, respectively. After symmetry reduc-

tion, the relative equilibrium becomes an equilibrium.

Figures 3(c) and 3(d) show the relative periodic orbit 01

again, respectively, in the symmetry-equivariant and

symmetry-reduced configuration space representations.

Similar to the relative equilibrium, the relative periodic orbit

becomes a periodic orbit after symmetry reduction. Finally,

Figs. 3(e) and 3(f) show a typical ergodic trajectory of the

two-mode system in symmetry-equivariant and symmetry-

reduced configuration space representations. Note that in

each case, symmetry reduction cancels the "drifts" along the

symmetry (x) direction.

As can be seen clearly in Fig. 4(a), these drifts show up

in the Fourier mode representation as SO(2) rotations. The

relative equilibrium TW traces its SO(2) group orbit (green

curve in Fig. 4(a)) as it drifts in the configuration space. The

relative periodic orbit 01 (red) and the ergodic trajectory

(blue) rotate in the same fashion as they evolve. Figures 4(b)

and 4(c) show a three dimensional projection onto the invari-

ant polynomial basis and the 3-dimensional trajectory on the

slice hyperplane for the same orbits. In both figures, the rela-

tive equilibrium is reduced to an equilibrium and the relative

periodic orbit is reduced to a periodic orbit.

IV. PERIODIC ORBITS

The simple structure of the symmetry-reduced dynamics

allows us to determine the relative periodic orbits of the two-

FIG. 3. The relative equilibrium TW in (a) the system’s configuration space becomes an equilibrium in (b) the symmetry-reduced configuration space. Two

cycles of the relative periodic orbit 01 in the (c) symmetry-equivariant configuration space become a periodic orbit in (d) the symmetry-reduced configuration

space. (e) A typical ergodic trajectory of the two-mode system in the system’s configuration space, (f) in the symmetry-reduced configuration space. The color

scale used in each figure is different to enhance contrast.

FIG. 4. The trajectories as in Figs. 3(a), 3(c), and 3(e) are colored green, red, and blue, respectively, (a) in a 3D projection of the 4-dimensional state space, (b)

in terms of 3 invariant polynomials, and (c) in the 3-dimensional first Fourier mode slice hyperplane. Note that in the symmetry reduced representations ((b)

and (c)), the relative equilibrium TW is reduced to an equilibrium, the green point; and the periodic orbit 01 (red) closes onto itself after one repeat. In contrast

to the invariant polynomial representation (b), in the first Fourier mode slice hyperplane (c), the qualitative difference between shifts by �p and ��p in near

passages to the slice border is very clear, and it leads to the unimodal Poincar�e return map of Fig. 5.
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mode system by means of a Poincar�e section and a return

map. We illustrate this procedure in Fig. 5. Starting with an

initial point close to the TW, we compute a long, symmetry-

reduced ergodic trajectory by integrating Eq. (16a) and re-

cord where it crosses the Poincar�e section, which we define

as the plane that contains TW and is spanned the imaginary

part of its unstable stability eigenvector and ŷ2. We then pro-

ject these points onto a basis (v1, v2), which spans the

Poincar�e section and fit cubic splines to the data as shown in

Fig. 5(b). This allows us to construct a return map along this

curve, which can be expressed in terms of the distance s
from TW as measured by the arc length along the cubic

spline fit. The resulting map, which is shown in Fig. 5(c), is

unimodal with a sharp cusp located at its critical point. Note

that the region s 2 (0, 0.6) corresponds to the neighborhood

of the relative equilibrium and is only visited transiently.

Once the dynamics fall onto the chaotic attractor, this region

is never visited again. Removing this region from the return

map, we obtain the return map shown in Fig. 5(d), which we

can then use to determine the accessible relative periodic

orbits with their respective binary symbol sequences.

The unimodal return map of Fig. 5 diverges around

s� 0.98 and this neighborhood is visited very rarely by the

flow. We took the pre-image of the furthest point visited by

the ergodic flow, sC¼ 0.98102264 as the critical point of this

map and coded points to the left and right hand sides of this

point as “0” and “1,” respectively, and constructed a binary

symbolic dynamics. Accessible periodic orbits are then those

with the topological coordinates less than that of this critical

point. We skip the technical details regarding symbolic dy-

namics and kneading theory in this tutorial since there is a

rich literature on these topics and we do not employ any

novel symbolic dynamics technique here. For a pedagogical

introduction to the subject, we refer the reader to Refs. 8

and 40.

We are now going to summarize the procedure of locat-

ing relative periodic orbits in the state space: Suppose the bi-

nary itinerary I0I1… In�1 , where Ij¼ 0, 1 corresponds to an

admissible “n-cycle,” i.e., a relative periodic orbit that inter-

sects our Poincar�e section n-times. We first find arc-lengths

{s0, s1,… sn} that constitute this cycle on the return map Fig.

5(d). We then find corresponding reduced state space points

fâ0; â1; … ân�1g. Finally, we integrate the reduced flow and

the phase (8) starting from each point âj until it returns to the

Poincar�e section, and divide this trajectory into N small

pieces. As a result, we obtain n�N state space points, dura-

tions, and phase shifts fað0Þi ; sð0Þi ; hð0Þi g, where i¼ 1, 2,…

n�N, which we feed into the multiple shooting Newton

solver (see Appendix A) to precisely determine the relative

periodic orbit, its period, and the associated phase shift.

After finding n�N state space points (ai), flight times (si),

and phase shifts (hi) associated with the n cycle, we can com-

pute the stability of the orbit. We do this by computing the

flow Jacobian associated with each segment of the orbit

JsiðaiÞ, so that the Jacobian associated with the relative peri-

odic orbit is then

Ĵ ¼Dð�hn�NÞJsn�N ðan�NÞ…
Dð�h2ÞJs2ða2ÞDð�h1ÞJs1ða1Þ : (44)

This construction (44) of the Jacobian is equivalent to our defi-

nition in Eq. (6), since the group action g and the flow

Jacobian J are both multiplicative and commute with each

other as a consequence of g-equivariance of the flow. The form

(44) is essential in determining the eigenvalues of the Jacobian

(Floquet multipliers) precisely, since it allows us to use

periodic Schur decomposition, as described in Appendix B.

We found the admissible cycles of the two-mode system

up to the topological length 12. The binary itineraries of the

seven shortest relative periodic orbits (with topological

lengths up to 5), along with their periods, phase shifts,

FIG. 5. (a) A symmetry-reduced ergodic trajectory within the slice hyper-

plane (blue). Green arrows indicate the real and imaginary parts of the com-

plex eigenvectors vu that span the unstable manifold of TW. The Poincar�e
section, which contains TW and is spanned by Im [vu] and ŷ2, is visualized

as a transparent plane. Points where the flow crosses the section are marked

in red. (b) A closer look at the Poincar�e section shows that the attractor is

very thin. Note that the vertical axis, which corresponds to the direction par-

allel to ŷ2, is magnified by 100. All (blue) points are located relative to the

TW, which is at the origin. The black curve is a cubic spline interpolation of

the data. (c) By measuring arclengths s along the interpolation curve, a

return map of the Poincar�e section can be constructed. Note that once the

flow exits the neighborhood of the TW (s< 0.6) it stays on the attractor and

never comes back. Thus, the data up to this point is transient. (d) The return

map without the transient points framed by orbit of the critical point.

Dashed lines show the 3-cycles 001 (red) and 011 (cyan).
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Floquet multipliers, and Floquet exponents are listed in Table

I. In Fig. 6, we show the shortest four relative periodic orbits

of the two-mode system within the first Fourier mode slice

hyperplane. As seen from Fig. 6, trajectories of 001 (red) and

011 (cyan) almost overlap in a large region of the state space.

This behavior is also manifested in the return map of Fig.

5(d), where we have shown cycles 001 and 011 with red and

cyan, respectively. This is a general property of the two-mode

cycles with odd topological lengths: They come in pairs with

almost equal leading (largest) Floquet exponents, see Fig. 7.

Floquet exponents (kj) characterize the rate of expansion/con-

traction of nearby perturbations to the relative periodic orbits

and are related to Floquet multipliers (Kj) by

kp; j ¼
1

Tp
lnjKp; jj ; j ¼ 1; 2;…; d ; (45)

where the subscript p associates kp, j and Kp, j with the "prime

relative periodic orbit" p and its period Tp. Having computed

periods, phase shifts, and Floquet multipliers of relative peri-

odic orbits, we are now ready to calculate dynamical aver-

ages and other statistical moments of observables using

cycle averaging formulas.

V. CYCLE AVERAGES

So far, we have explained how to find the relative peri-

odic orbits of the two-mode system and compute their stabil-

ity. However, we have not yet said anything about what to

do with these numbers. We begin this section with an over-

view of the main results of the periodic orbit theory. Our

review starts by recapitulating the presentation of Ref. 8, but

then, in Section V B, explains how the theory is modified in

the presence of continuous symmetries.41 In Section V C, we

present cycle expansions and explain how to approximate

the Poincar�e section in Fig. 5(d), in order to obtain a better

convergence of the spectral determinants. The numerical

results are discussed in Section V D.

A. Classical trace formula

Consider the evolution operator Lt, the action of which

evolves a weighted density q(a, t) in the state space,

qða0; tÞ ¼ ½Ltq�ða0Þ ¼
ð

daLtða0; aÞ qða; 0Þ

Ltða0; aÞ ¼ dða0 � f tðaÞÞ ebXtðaÞ ;

(46)

where b is an auxiliary variable and Xt(a) is the integrated

value of an observable x(a) along the trajectory a(t)¼ f t(a),

XtðaÞ ¼
ðt

0

dt0xðf t0ðaÞÞ : (47)

When b¼ 0, the evolution operator (46) evolves the initial

density of state space points to its new form after time t; this

form of the evolution operator is known as the Perron-

Frobenius operator. The multiplicative weight expðbXtðaÞÞ
will enable us to compute the value of the observable x aver-

aged over the natural measure.

As the integrated observable Xt(a), additive along the

trajectory, is exponentiated in Eq. (46), the evolution opera-

tor is multiplicative along the trajectory

Lt1þt2ða0; aÞ ¼
ð

da00Lt2ða0; a00ÞLt1ða00; aÞ : (48)

This semigroup property allows us to define the evolution

operator as the formal exponential of its infinitesimal genera-

tor A

Lt ¼ eAt : (49)

Let qb(a) be the eigenfunction of Eq. (46) corresponding to

the leading eigenvalue of A (i.e., the one with the largest

real part) for a given b,

½Ltqb�ðaÞ ¼ etsðbÞqbðaÞ : (50)

TABLE I. Itinerary, period (T), phase shift (h), Floquet multiplier (K), and

Floquet exponent (k) of the found two-mode relative periodic orbits with

topological lengths up to n¼ 5, more (up to n¼ 12) available upon request.

Itinerary T h K k

1 3.64151221 0.08096967 �1.48372354 0.10834917

01 7.34594158 �2.94647181 �2.00054831 0.09439516

001 11.07967801 �5.64504385 �55.77844510 0.36295166

011 11.07958924 �2.50675871 54.16250810 0.36030117

0111 14.67951823 �2.74691247 �4.55966852 0.10335829

01011 18.39155417 �5.61529803 �30.00633820 0.18494406

01111 18.38741006 �2.48213868 28.41893870 0.18202976

FIG. 6. Shortest four relative periodic orbits of the two-mode system: 1

(dark blue), 01 (green), 001 (red), and 011 (cyan). Note that relative peri-

odic orbits 001 and 011 almost overlap everywhere except x̂1 � 0.

FIG. 7. Distribution of the expanding Floquet exponents of all two-mode

cycles with topological lengths n from 2 to 12.
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If the system under study is ergodic, then an invariant "natu-

ral measure" q0(a) with eigenvalue s(0)¼ 0 exists, and the

long time average of an observable is then its state space av-

erage over the natural measure

hxi ¼
ð

da xðaÞq0ðaÞ : (51)

By evaluating the action of the evolution operator (46) for

infinitesimal times, one finds that the long-time averages of

observables, as well as of their higher moments, are given by

derivatives of s(b)

hxi ¼ lim
t!1

1

t
hXti ¼ @s bð Þ

@b

����
b¼0

;

D ¼ lim
t!1

1

t
h Xtð Þ2 � hXti2i ¼ @

2s bð Þ
@b2

����
b¼0

:

..

.
(52)

For example, if the observable x is a velocity _a ¼ vðaÞ, the

integrated observable Xt is the displacement a(t) in d dimen-

sions, and D/2d is Einstein’s diffusion coefficient.

In order to obtain s(b), we construct the resolvent of A,

by taking the Laplace transform of Eq. (49)ð1
0

dt e�stLt ¼ ðs�AÞ�1 ; (53)

the trace of which peaks at the eigenvalues of A. By taking

the Laplace transform of Lt and computing its trace by

trLt ¼
Ð

daLtða; aÞ, one obtains the classical trace

formula42

X1
a¼0

1

s� sa
¼
X

p

Tp

X1
r¼1

er bXp�sTpð Þ

jdet 1�Mr
p

� �j (54)

that relates the spectrum of the evolution operator to the spec-

trum of periodic orbits. Here, s is the auxiliary variable of the

Laplace transform and sa are the eigenvalues of A. The outer

sum on the right hand side runs over the “prime cycles” p of

the system, i.e., the shortest periodic orbits of period Tp. Xp is

the value of the observable integrated along the prime cycle

and Mp is the transverse monodromy matrix, the eigenvalues

Xt(a) of which are the Floquet multipliers of p with the mar-

ginal ones excluded. In the derivation of Eq. (54), one

assumes that the flow has a single marginal direction, namely,

the v(a) tangent to the periodic orbit, and evaluates the contri-

bution of each periodic orbit to the trace integral by trans-

forming to a local coordinate system where one of the

coordinates is parallel to the flow, while the rest are trans-

verse. The integral along the parallel direction contributes the

factors of Tp in Eq. (54). The transverse integral over the

delta function (46) contributes the factor of 1=jdet ð1�Mr
pÞj.

B. Decomposition of the trace formula over irreducible
representations

The classical trace formula (54) accounts for contribu-

tions from periodic orbits to long time dynamical averages.

However, relative periodic orbits of equivariant systems are

almost never periodic in the full state space. In order to com-

pute the contributions of relative periodic orbits to the trace

of the evolution operator, one has to factorize the evolution

operator into the irreducible subspaces of the symmetry

group. For discrete symmetries, this procedure is studied in

Ref. 43. For the quantum systems with continuous symme-

tries (abelian and 3D rotations), the factorization of the semi-

classical Green’s operator is carried out in Ref. 44.

Reference 41 addresses the continuous factorization of the

evolution operator and its trace; we provide a sketch of this

treatment here.

We start by stating, without proof, that a square-

integrable field w(a) over a vector space can be factorized

into its projections over the irreducible subspaces of a

group G

wðaÞ ¼
X

m

PmwðaÞ ; (55)

where the sum runs over the irreducible representations of G
and the projection operator onto the mth irreducible sub-

space, for a continuous group, is

Pm ¼ dm

ð
G

dlðgÞvmðgðhÞÞDðhÞ : (56)

Here, dm is the dimension of the representation, dl(g) is the

normalized Haar measure, vm(g) is the character of mth irre-

ducible representation, and DðhÞ is the operator that trans-

forms a scalar field defined on the state space as

DðhÞqðaÞ ¼ qðDðhÞ�1aÞ. For our specific case of a single

SO(2) symmetry,

dm ! 1 ; (57)ð
G

dl gð Þ !
þ

dh
2p

; (58)

vmðgðhÞÞ ! e�imh : (59)

Because the projection operator (56) decomposes scalar

fields defined over the state space into their irreducible sub-

spaces under action of G, it can be used to factorize the evo-

lution operator. Thus, the kernel of the evolution operator

transforms under the action of DðhÞ as

DðhÞLtða0; aÞ ¼ LtðDðhÞ�1a0; aÞ ;
¼ Ltða0;DðhÞaÞ ;
¼ dða0 � DðhÞf tðaÞÞebXtðaÞ ; (60)

where the second step follows from the equivariance of the

system under consideration. Relative periodic orbits contrib-

ute to PmLt ¼ Lt
m since when its kernel is modified as in Eq.

(60), the projection involves an integral over the group pa-

rameters that is non-zero when h¼�hp, the phase shifts of

the relative periodic orbits. By computing the trace of Lt
m,

which in addition to the integral over state space, now

involves another integral over the group parameters, one

obtains the mth irreducible subspace contribution to the clas-

sical trace as
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X1
a¼0

1

s� sm;a
¼
X

p

Tp

X1
r¼1

vm gr hpð Þð Þer bXp�sTpð Þ

jdet ð1� M̂
r

pÞj
: (61)

The reduced trace formula (61) differs from the classical

trace formula (54) by the group character term, which is

evaluated at the relative periodic orbit phase shifts, and

the reduced monodromy matrix M̂, which is the

(d�N� 1)� (d�N� 1) reduced Jacobian for the relative

periodic orbit evaluated on a Poincar�e section in the reduced

state space. The eigenvalues of M̂ are those of the relative

periodic orbit Jacobian (6) excluding the marginal ones, i.e.,

the ones corresponding to time evolution and evolution along

the continuous symmetry directions.

Since we are only interested in the leading eigenvalue of

the evolution operator, we only consider contributions to the

trace (54) from the projections (61) of the 0th irreducible

subspace. For the SO(2) case at hand, these can be written

explicitly as

X1
a¼0

1

s� s0;a
¼
X

p

Tp

X1
r¼1

er bXp�sTpð Þ

jdet ð1� M̂
r

pÞj
: (62)

This form differs from the classical trace formula (54) only

by the use of the reduced monodromy matrix instead of the

full monodromy matrix since the 0th irreducible representa-

tion of SO(2) has character 1. For this reason, cycle expan-

sions,45 which we cover next, are applicable to Eq. (62) after

the replacement M! M̂.

C. Cycle expansions

While the classical trace formula (54) and its factoriza-

tion for systems with continuous symmetry (61) manifest the

essential duality between the spectrum of an observable and

that of the periodic orbits and relative periodic orbits, in

practice, they are hard to work with since the eigenvalues are

located at the poles of Eqs. (54) and (61). The dynamical

zeta function (65), which we derive below, provides a pertur-

bative expansion form that enables us to order terms in

decreasing importance while computing spectra for the

two-mode system. As stated earlier, Eq. (62) is equivalent to

Eq. (54) via substitution M ! M̂, so this derivation works

for either.

We start by defining the "spectral determinant"

det s�Að Þ ¼ exp �
X

p

X1
r¼1

1

r

er bXp�sTpð Þ

jdet 1�Mr
p

� �j
 !

; (63)

whose logarithmic derivative (ðd=dsÞln detðs�AÞ) gives the

classical trace formula (54). The spectral determinant (63) is

easier to work with since the spectrum of A is now located at

the zeros of Eq. (63). The convergence of Eq. (63) is, how-

ever, still not obvious. More insight is gained by approximat-

ing jdet ð1�Mr
pÞj by the product of expanding Floquet

multipliers and then carrying out the sum over r in Eq. (63).

This approximation yields

jdet ð1�MpÞj ¼ jð1� Ke;1Þð1� Ke;2Þ � � �
ð1� Kc;1Þð1� Kc;2Þ � � � j
�
Y

e

jKej 	 jKpj; (64)

where jKe;ij > 1 and jKc;ij < 1 are expanding and contract-

ing Floquet multipliers, respectively. By making this approx-

imation, the sum over r in Eq. (63) becomes the Taylor

expansion of natural logarithm. Carrying out this sum brings

the spectral determinant (63) to a product (over prime cycles)

known as the dynamical zeta function

1=f ¼
Y

p

1� tpð Þwhere; tp ¼
1

jKpj
ebXp�sTp znp : (65)

Each “cycle weight” tp is multiplied by the “order tracking

term” znp , where np is the topological length of the pth prime

cycle. This polynomial ordering arises naturally in the study

of discrete time systems where the Laplace transform is

replaced by z-transform. Here, we insert the powers of z by

hand, to keep track of the ordering, and then set its value to 1

at the end of calculation. Doing so allows us to write the

dynamical zeta function (65) in the “cycle expansion” form

by grouping its terms in powers of z. For complete binary

symbolic dynamics, where every binary symbol sequence is

accessible, the cycle expansion reads

1=f ¼ 1� t0 � t1 � ðt01 � t0t1Þ
�½ðt011 � t01t1Þ þ ðt001 � t01t0Þ� � � � � ; (66)

¼ 1�
X

f

tf �
X

n

ĉn; (67)

where we labeled each prime cycle by its binary symbol

sequence. In Eq. (67), we grouped the contributions to the

zeta function into two groups: "fundamental" contributions tf
and “curvature” corrections cn. The curvature correction

terms are denoted explicitly by parentheses in Eq. (66) and

correspond to “shadowing” combinations where combina-

tions of shorter cycle weights, also known as “pseudocycle”

weights, are subtracted from the weights of longer prime

cycles. Since the cycle weights in Eq. (65) already decrease

exponentially with increasing cycle period, the cycle expan-

sion (66) converges even faster than exponentially when the

terms corresponding to longer prime cycles are shadowed.

For complete binary symbolic dynamics, the only funda-

mental contributions to the dynamical zeta function are from

the cycles with topological length 1, and all longer cycles

appear in the shadowing pseudocycle combinations. More

generally, if the symbolic dynamics is a subshift of finite

type,8 with the grammar of admissible sequences described

by a finite set of pruning rules, and the flow is uniformly

hyperbolic, cycle expansions of spectral determinants are

guaranteed to converge super-exponentially.46 A generic

unimodal map symbolic dynamics is not a subshift of finite

type. However, we have shown in Section IV that the

Poincar�e return map for the two-mode system (Fig. 5(d))

diverges at s� 0.98 and approximated it as if its tip was

located at the furthest point visited by an ergodic trajectory.
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This brings the question of whether we can approximate the

map in Fig. 5(d) in such a way that corresponding symbolic

dynamics has a finite grammar of pruning rules? The answer

is yes.

As shown in Fig. 5(d), the cycles 001 and 011 pass quite

close to the tip of the cusp. Approximating the map as if its

tip is located exactly at the point where 001 cuts give us

what we are looking for: a single grammar rule, which says

that the symbol sequence “00” is inadmissible. This can be

made rigorous by the help of kneading theory, however, the

simple result is easy to see from the return map in Fig. 5(d):

Cover the parts of the return map, which are outside the bor-

ders set by the red dashed lines, the cycle 001 and then start

any point to the left of the tip and look at images. You will

always land on a point to the right of the tip, unless you start

at the lower left corner, exactly on the cycle 001. As we will

show, this “finite grammar approximation” is reasonable

since the orbits that visit outside the borders set by 001 are

very unstable, and hence, less important for the description

of invariant dynamics.

The binary grammar with only rule that forbids repeats

of one of the symbols is known as the “golden mean” shift,8

because it has a topological entropy of lnðð1þ
ffiffiffi
5
p
Þ=2Þ.

Binary itineraries of golden mean cycles can be easily

obtained from the complete binary symbolic dynamics by

substitution 0! 01 in the latter. Thus, we can write the dy-

namical zeta function for the golden mean pruned symbolic

dynamics by replacing 0s in (66) by 01

1=f ¼ 1� t01 � t1 � ðt011 � t01t1Þ
�½ðt0111 � t011t1Þ þ ðt01011 � t01t011Þ� � � � � : (68)

Note that all the contributions longer than topological length 2

to the golden mean dynamical zeta function are in form of

shadowing combinations. In Section V D, we will compare the

convergence of the cycle averages with and without the finite

grammar approximation, but before moving on to numerical

results, we explain the remaining details of the computation.

While dynamical zeta functions are useful for investigat-

ing the convergence properties, they are not exact, and their

computational cost is same as that of exact spectral determi-

nants. For this reason, we expand the spectral determinant

(63) ordered in the topological length of cycles and pseudo-

cycles. We start with the following form of the spectral

determinant (63):

det s�Að Þ¼
Y

p

exp �
Xnpr<N

r¼1

1

r

er bXp�sTpð Þ

jdet 1�Mr
p

� �jznpr

0
@

1
A ; (69)

where the sum over the prime cycles in the exponential

becomes a product. We also inserted the order tracking term

z and truncated the sum over cycle repeats at the expansion

order N. For each prime cycle, we compute the sum in

Eq. (69) and expand the exponential up to order N. We then

multiply this expansion with the contributions from previous

cycles and drop terms with order greater than N. This

way, after setting z¼ 1, we obtain the spectral determinant

truncated to cycles and pseudo-cycles of topological length

up to np
N,

FNðb; sÞ ¼ 1�
XN

n¼1

Qnðb; sÞ : (70)

In what follows, we shall drop the subscript, FN ! F, but

actual calculations are always done for a range of finite

truncation lengths N. We are searching for the eigenvalues

s(b) of the operator A in order to compute the moments

(52). These are located at the zeros of the spectral determi-

nant, hence as a function of b they satisfy the implicit

equation

Fðb; sðbÞÞ ¼ 0 : (71)

By taking derivative of Eq. (71) with respect to b and apply-

ing chain rule, we obtain

ds

db
¼ � @F

@b

�
@F

@s
: (72)

Higher order derivatives can be evaluated similarly.

Defining

hXi ¼ �@F=@b;

hT i ¼ @F=@s ; hT2i ¼ @2F=@s2;

hX2i ¼ �@2F=@b2 ; hXT i ¼ @2F=@b@s ;

(73)

we write the cycle averaging formulas as

hxi ¼ hXi=hT i ; (74)

D ¼ 1

hT i hX
2i � 2

ds

db
hXT i þ ds

db

� �2

hT2i

 !

¼ 1

hT i h X� T hxið Þ2i ;
(75)

with everything evaluated at b¼ 0, s¼ s(0).

By conservation of probability, we expect that for an

invariant measure q0(a), the eigenvalue s(0) is 0. However,

we did not make this substitution in our derivation of the

cycle averaging formulas since, in practice, our approxima-

tions to the spectral determinant are always based on a finite

number of periodic orbits. This makes the solution of FN(0,

s(0))¼ 0 small, but not exactly 0. This eigenvalue has a spe-

cial meaning: It indicates how well the periodic orbits cover

the strange attractor. Following this interpretation, we define

c¼�s(0) as the “escape rate”: the rate at which the dynam-

ics escape the region that is covered by the periodic orbits.

Specifically, for our finite grammar approximation, the

escape rate tells us how frequently the ergodic flow visits the

part of the Poincar�e map that we cut off by applying our fi-

nite grammar approximation.

We defined hTi in Eq. (73) as a shorthand for a partial

derivative, however, we can also develop an interpretation

for it by looking at the definitions of the dynamical zeta

function (65) and the spectral determinant (63). In both

series, the partial derivative with respect to s turns them into

a sum weighted by the cycle periods; with this intuition, we

define hTi as the “mean cycle period.”
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These remarks conclude our review of periodic orbit

theory and its extension to the equivariant dynamical sys-

tems. We are now ready to present our numerical results and

discuss their quality.

D. Numerical results

We constructed the spectral determinant (70) to differ-

ent orders for two observables: phase velocity _h and the

leading Lyapunov exponent. Remember that Xp appearing

in Eq. (69) is the integrated observable, so in order to obtain

the moments of phase velocity and the leading Lyapunov

exponent from Eqs. (74) and (75), we respectively put

in Xp¼ hp, the phase shift of the prime cycle p, and

Xp ¼ lnjKp;ej, the logarithm of its expanding Floquet

multiplier of Kp,e.

In Section III D, we explained that SO(2) phase shifts

correspond to the drifts in configuration space. We define the

corresponding diffusion coefficient as

D ¼ 1

2d
lim
t!1

1

t
hh tð Þ2 � hh tð Þi2i ; (76)

where d¼ 1 since the configuration space is one dimensional.

Tables II and III, respectively, show the cycle averages

of the escape rate c, mean period hTi, leading Lyapunov

exponent k, mean phase velocity h _hi, and the diffusion coef-

ficient D with and without the finite grammar approximation.

In the latter, we input all the relative periodic orbits we have

found into expansion (69), whereas in the former, we dis-

carded the cycles with symbol sequence "00."

In Section V C, we motivated the finite grammar

approximation by claiming that it would lead to faster con-

vergence of dynamical averages due to the nearly exact

shadowing combinations of the golden mean zeta function

(68). This claim is supported by the data in Tables II and

III. Take, for example, the Lyapunov exponent. This con-

verges to 7 digits for the 12th order expansion when using

the finite grammar approximation in Table II, but only con-

verges to 4 digits at this order in Table III. Other

observables compare similarly in terms of their conver-

gence in both cases. Note, however, that the escape rate in

Table II converges to c¼ 0.000727889, whereas in Table

III it gets smaller and smaller with an oscillatory behavior.

This is due to the fact that in the finite grammar approxi-

mation, we threw out the part of attractor that corresponds

to the cusp of the return map in Fig. 5(d) above the point

cut by 001.

In order to compare with the cycle averages, we numeri-

cally estimated the leading Lyapunov exponent of the

two-mode system using the method of Wolf et al.47 This pro-

cedure was repeated 100 times for different initial condi-

tions, yielding a numerical mean estimate of k ¼ 0:1198

60:0008. While the finite grammar estimate kFG¼ 0.1183 is

within 0.6% range of this value, the full cycle expansion

agrees with the numerical estimate. This is not surprising

since in the finite grammar approximation, we discard

the most unstable cycles to obtain faster convergence, and

so can expect a slight underestimate of the Lyapunov

exponent.

VI. CONCLUSIONS AND DISCUSSION

In this tutorial, we have studied a simple dynamical

system that exhibits chaos and is equivariant under a continu-

ous symmetry transformation. We have shown that reducing

this symmetry simplifies the qualitative dynamics to a great

extent and enables one to find all relative periodic orbits of

the systems via standard techniques such as Poincar�e sections

and return maps. In addition, we have shown that one can

extract quantitative information from the relative periodic

orbits by computing cycle averages.

We motivated our study of the two-mode system by the

resemblance of its symmetry structure to that of spatially

extended systems. The steps outlined here are, in principle,

applicable to physical systems that are described by

N-Fourier mode truncations of PDEs such as 1D Kuramoto-

Sivashinsky,48 3D pipe flows,19 etc.

In Section IV, we showed that the dynamics of our two-

mode model can be completely described by a unimodal

return map of the Poincar�e section that we constructed after

TABLE II. Cycle expansion estimates for the escape rate c, average cycle

period hTi, Lyapunov exponent k, average phase velocity h _hi, and the diffu-

sion coefficient D, using cycles up to length N in the golden mean approxi-

mation (68) of the symbolic dynamics.

N c hTi k h _hi D

1 0.249829963 3.6415122 0.10834917 0.0222352 0.000000

2 �0.011597609 5.8967605 0.10302891 �0.1391709 0.143470

3 0.027446312 4.7271381 0.11849761 �0.1414933 0.168658

4 �0.004455525 6.2386572 0.10631066 �0.2141194 0.152201

5 0.000681027 5.8967424 0.11842700 �0.2120545 0.164757

6 0.000684898 5.8968762 0.11820050 �0.1986756 0.157124

7 0.000630426 5.9031596 0.11835159 �0.1997353 0.157345

8 0.000714870 5.8918832 0.11827581 �0.1982025 0.156001

9 0.000728657 5.8897511 0.11826873 �0.1982254 0.156091

10 0.000728070 5.8898549 0.11826788 �0.1982568 0.156217

11 0.000727891 5.8898903 0.11826778 �0.1982561 0.156218

12 0.000727889 5.8898908 0.11826780 �0.1982563 0.156220

TABLE III. Cycle expansion estimates of the escape rate c, average cycle

period hTi, Lyapunov exponent k, average phase velocity h _hi, and the diffu-

sion coefficient D using all cycles found up to length N.

N c hTi k h _hi D

1 0.249829963 3.6415122 0.10834917 0.0222352 0.000000

2 �0.011597609 5.8967605 0.10302891 �0.1391709 0.143470

3 0.022614694 4.8899587 0.13055574 �0.1594782 0.190922

4 �0.006065601 6.2482261 0.11086469 �0.2191881 0.157668

5 0.000912644 5.7771642 0.11812034 �0.2128347 0.168337

6 0.000262099 5.8364534 0.11948918 �0.2007615 0.160662

7 0.000017707 5.8638210 0.12058951 �0.2021046 0.160364

8 0.000113284 5.8511045 0.12028459 �0.2006143 0.159233

9 0.000064082 5.8587350 0.12045664 �0.2006756 0.158234

10 0.000093124 5.8536181 0.12035185 �0.2007018 0.158811

11 0.000153085 5.8417694 0.12014700 �0.2004520 0.158255

12 0.000135887 5.8455331 0.12019940 �0.2005299 0.158465
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continuous symmetry reduction. In a high-dimensional

system, finding such an easy symbolic dynamics or any

symbolic dynamics at all is a challenging problem on its

own. In Ref. 49, the authors found that for the desymme-

trized (confined in the odd subspace) 1D spatio-temporally

chaotic Kuramoto-Sivashinsky system a bimodal return

map could be obtained after reducing the discrete symmetry

of the problem. However, we do not know any study that

has been able to simplify turbulent fluid flow to such an

extent.

In Section V, we showed that symbolic dynamics and

their associated grammar rules greatly affect the conver-

gence of cycle averaging formulas. In general, finding a

finite symbolic description of a flow is rarely as easy as it is

in our model system. There exist other methods of ordering

cycle expansion terms, for example, ordering pseudo-cycles

by their stability and discarding terms that are above a

threshold.50 In this case, one expects the remaining terms to

form shadowing combinations and converge exponentially.

Whichever method of term ordering is employed, the cycle

expansions are only as good as the least unstable cycle that

one fails to find. Symbolic dynamics solves both problems at

once since it puts the cycles in order by topological length so

that one cannot miss any accessible cycle and shadowing

combinations occur naturally. The question one might then

ask is: When there is no symbolic dynamics, how can you

make sure that you have found all the periodic orbits of a

flow up to some cycle period?

In searching for cycles in high-dimensional flows, one

usually looks at the near recurrences of the ergodic flow

and then runs Newton searches starting near these recur-

rences to find if they are influenced by a nearby exactly

recurrent solution. Such an approach does not answer the

question we just asked with full confidence, although one

might argue that the dynamically important cycles influ-

ence the ergodic flow, leading to recurrences, and thus,

cycles found this way are those that are relevant for com-

puting averages.

To sum up, we have shown that periodic orbit theory

successfully extends to systems with continuous symme-

tries. When dealing with high dimensional systems, one still

needs to think about some of the remaining challenges out-

lined above. Once these are overcome, it should become

possible to extract quantitative information about turbulence

by using exact unstable solutions of the Navier-Stokes

equations.
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APPENDIX A: MULTIPLE SHOOTING METHOD FOR
FINDING RELATIVE PERIODIC ORBITS

Let us assume that we have a set of good guesses for a

set of state space points, flight times, and 1D symmetry

group parameter increments fað0Þi ; sð0Þi ; hð0Þi g such that the

points fað0Þi g lie close to the relative periodic orbit p such

that

a
ð0Þ
iþ1 � Dð�hð0Þi Þf sð0Þi ðað0Þi Þ cyclic in i ¼ 1;…; n : (A1)

Here, the period and the shift of the relative periodic orbit p
are Tp �

P
si and hp �

P
hi. The Lagrangian description of

the flow is then a(s)¼ f s(a(0)). We want to determine correc-

tions ðDai ; Dsi ; DhiÞ so that

aiþ1 þ Daiþ1 ¼ Dð�hi � DhiÞf siþDsiðai þ DaiÞ
cyclic in i ¼ 1;…; n : (A2)

To linear order in

ðDa
ðmþ1Þ
i ; Dsðmþ1Þ

i ; Dhðmþ1Þ
i Þ

¼ ðaðmþ1Þ
i � a

ðmÞ
i ; sðmþ1Þ

i � sðmÞi ; hðmþ1Þ
i � hðmÞi Þ (A3)

the improved Newton guess ðaðmþ1Þ
i ; sðmþ1Þ

i ; hðmþ1Þ
i Þ is

obtained by minimizing the effect of perturbations along the

spatial, time, and phase directions,

a0iþ1 � Diþ1f siðaiÞ
¼ Diþ1ðJiþ1Dai þ viþ1Dsi � tiþ1DhiÞ ; (A4)

where, for brevity, a
ðmþ1Þ
i ¼ a

ðmÞ
i þ Da

ðmÞ
i ¼ a0i; a

ðmÞ
i ¼ ai;

Dð�hiÞ ¼ Diþ1, vðaiðsiÞÞ ¼ viþ1; JsiðaiÞ ¼ Jiþ1; tðaiðsiÞÞ
¼ TaiðsiÞ ¼ tiþ1, etc. For sufficiently good initial guesses,

the improved values converge under Newton iterations to the

exact values ðDai ; Dsi ; DhiÞ ¼ ðDa
ð1Þ
i ; Dsð1Þi ; Dhð1Þi Þ at a

super-exponential rate.

In order to deal with the marginal multipliers along the

time and group orbit directions, one needs to apply a pair of

constraints, which eliminate variations along the marginal

directions on the relative periodic orbit’s 2D torus. These

can be formulated as a local Poincar�e section orthogonal to

the flow and a local slice orthogonal to the group orbit at

each point along the orbit,

hvðaiÞjDaii ¼ 0 ; htðaiÞjDaii ¼ 0 : (A5)

We can rewrite everything as one matrix equation

AD ¼ E ; (A6)

where
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A ¼

D2J2 D2v2 �TD2 f s1ða1Þ �1 0 0 0 � � � 0 0 0

vða1Þ 0 0 0 0 0 0 � � � 0 0 0

tða1Þ 0 0 0 0 0 0 � � � 0 0 0

0 0 0 D3J3 D3v3 �TD3 f s2ða2Þ �1 � � � 0 0 0

0 0 0 vða2Þ 0 0 0 � � � 0 0 0

0 0 0 tða2Þ 0 0 0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

.

�1 0 0 0 0 0 0 � � � D1J1 D1v1 �TD1 f s1ða1Þ
0 0 0 0 0 0 0 � � � vðanÞ 0 0

0 0 0 0 0 0 0 � � � tðanÞ 0 0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

; (A7)

D ¼ ðDa1; Ds1; Dh1; Da2; Ds2; Dh2; …; Dan; Dsn; DhnÞT ; (A8)

E ¼ ða2 � D2 f s1ða1Þ; 0; 0; a3 � D3 f s2ða2Þ; 0; 0; …; a1 � D1 f snðanÞ; 0; 0ÞT : (A9)

We then solve Eq. (A6) for D and update our initial

guess by adding the vector of the computed D values to it

and iterate.

APPENDIX B: PERIODIC SCHUR DECOMPOSITION

Here, we briefly summarize the periodic eigen decompo-

sition51 needed for the evaluation of Floquet multipliers for

two-mode periodic orbits. Due to the non-hyperbolicity of

the return map of Fig. 5(d), Floquet multipliers can easily

differ by 100s of orders of magnitude even in a model as

simple as the two-mode system.

We obtain the Jacobian of the relative periodic orbit as a

multiplication of short-time Jacobians from the multiple

shooting computation of Appendix A, so that

Ĵ ¼ DnJnDn�1Jn�1 … D1J1

¼ Ĵ nĴ n�1 … Ĵ1;

where; Ĵi ¼ DiJi 2 R4�4; i ¼ 1; 2;…; n : (B1)

This Jacobian is the same as the definition in Eq. (6) since Ji

and Di commute with each other and are multiplicative in

time and phase, respectively. In order to determine the eigen-

values of Ĵ , we bring each term appearing in the product

(B1) into periodic, real Schur form as follows:

Ĵ i ¼ QiRiQ
T
i�1 ; (B2)

where Qi are orthogonal matrices that satisfy the cyclic prop-

erty: Q0¼Qn. After this similarity transformation, we can

define R¼RkRk�1…R1 and re-write the Jacobian as

Ĵ ¼ QnRQT
n : (B3)

The matrix R is, in general, block-diagonal with 1� 1 blocks

for real eigenvalues and 2� 2 blocks for the complex pairs.

It also has the same eigenvalues as Ĵ . In our case, it is

diagonal since all Floquet multipliers are real for relative

periodic orbits of the two-mode system. For each relative

periodic orbit, we have two marginal Floquet multipliers cor-

responding to the time evolution direction and the continu-

ous symmetry direction, as well as one expanding and one

contracting eigenvalue.
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