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Renormalixation, Unstable Manifolds, and the Fractal Structure of Mode Locking
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The apparent universality of the fractal dimension of the set of quasiperiodic windings at the on-
set of chaos in a wide class of circle maps is described by construction of a universal one-parameter
family of maps which lies along the unstable manifold of the renormalization group. The manifold
generates a universal "devil's staircase" whose dimension agrees with direct numerical calculations.
Applications to experiments are discussed.

PACS numbers: 05.45.+b, 03.20.+i, 47.20.+m, 74.50.+r

In the context of the transition to chaos via quasi-
periodicity, most attention has been paid to the local
scaling behavior at a particular irrational winding
number. ' Although universal behavior has been
theoretically predicted, ' ' its experimental verification
has not followed, simply because minute changes in
winding numbers lead to large changes in scaling
behavior. It appears that of greater interest and ex-
perimental accessability are those universal properties
that are globa/ in the sense of pertaining to a range of
winding numbers. Indeed, such a property has been
found and reported by Jensen, Bak, and Bohr, and
has to do with the set complementary to the
"tongues" on which the dynamical system is mode
locked. This set of unlocked or irrational windings has
at the onset of chaos Lebesgue measure zero, and ap-
parent universal fractal dimension D. Recent experi-
ments on Josephson junction simulators and charge
density waves7 have indicated the existence of this
phenomenon and revealed results in agreement with
the findings in Ref. 3.

For the simple circle map 0„+&

——0„+0
—(K/2n. ) sin(2n. H„) this transition occurs at K =1;
see Fig. 1. On the plotted intervals the winding
number 8'is locked on a rational value as shown. The
gaps between the locked states are "full" of locked
states that add up to Lebesgue measure l. The set of
irrational winding numbers is the complement of the
locked intervals. We calculated the dimension D of
this set in a way slightly different from Ref. 3. We be-
lieve that D is the same for all regions of gaps. Thus
we can start with any pair of locked intervals P/Q and
P'/Q'. The length of the gap between them is denoted
by s. Next the locked interval (P+P')/(Q+Q') is
found, and the gaps of length s& and s2 between the
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FIG. 1. The mode-locking structure at K = 1 for the map
(1). The "devil's staircase" is complete, and the comple-
ment of the mode-locked windings is of Lebesgue measure
zero and universal fractal dimension D (Ref. 3).

new interval and the preceding one are found. This
"Farey tree" construction is continued until a large
number of gap sizes s; are found. The fractal dimen-
sion D is then estimated from the formula9 g;R; = 1,
where R; = s;/s. Denoting the result from the n th
Farey level as D„, and the quantity min;(R;") as R",
we fitted a power law D„=D' + a (R")". An excellent
fit with eleven Farey levels (n = 1, . . . , 11) starting
with P/Q = —„and P'/Q'= 2, was obtained. The
number D, which is our direct numerical estimate of
the dimension of the set, was found to be
0.868 + 0.002, in agreement with Ref. 3. Surprisingly,
the value of D&, an estimate based on only two gaps,
was always very close to D" (the deviation less than
1%). The result was invariant to the choice of P/Q
and P'/Q' and can be applied to any interval of the
staircase on Fig. 1. Moreover, the result is invariant to
the choice of dynamical system 0„+t f (iI„) as long——
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as f'(8) has a cubic inflection point.
To understand the apparent universality we turned

to a renormalization-group formulation. The analysis
given below will provide convincing evidence that all
the D's constructed in a small neighborhood of any
"golden" winding number —one whose continued
fraction ends in an infinite string of ones —will have
the very same value of D. Since these numbers are
dense in the interval [0, 1], one has the first step in an
argument that D is truly universal.

Previously, ' ' the renormalization-group formula-
tion has been used in this context to study the local
scaling properties of golden winding numbers like
N"= (JS—1)/2. ' A series of rational approximants
w„= F„/F„+) was constructed by using Fibonacci
numbers F„+1=F„+F„1,Fo=0, F1 = 1. Defining

f (x) =f "+'(x) —F f" =n"f (o. "x)
one finds

f(ll +1) f(N)( f(n —))( —2x))

In the limit n ~ one obtains the fixed-point equa-
tion f'(x) =uf'(nf'(o. 'x)). The solution to this
equation and its linearized version yields the relevant
scaling parameters n and 5, which are the exponents in
x space and in parameter space, respectively. ' ' Un-
fortunately in this formulation the dependence on the
parameter 0 is lost, and the universal mode-locking
structure cannot be investigated. What is needed is a
formulation that maintains the dependence on a
parameter. Such a formulation is achieved by
parametrization of the unstable manifold. "

%'e construct the unstable manifold by starting with
any given one-parameter family of functions fn (x)
which have a cubic inflection point at x = 0. Since we

found empirically that the set of interest was invariant
to the choice of initial P/0 and P'/0' of the Farey-tree
construction, we can as well pick values according to
two Fibonacci-number ratios. In this way we shall
make full use of the work that has been done on the
local scaling properties near the golden mean. Define
now

f(n) f n+1( ) F
Denoting by A„ the value of 0 for which fn(") (x) has
a superstable cycle with winding number F„,/F„, we
define

g()'"' (x) = c„,f("', (x/c„, ).

By construction x = 0 is a superstable fixed point of
go(") (x). We want now the parameter range that spans
the distance between the superstable cycle F„&/F„
and the next one F„/F„+, to be rescaled to the interval
[0, 1]. We do so by turning g(") (x) into a one-param-
eter family by defining

where ~„ is picked such that 0„+1——0„+6„.Ac-
cordingly, for p = 0 g~" has a superstable fixed point.
The value p = 1 corresponds to the next Fibonacci lev-
el (F„+2) superstable cycle of the original map. No-
tice that in Eq. (1) c„+) is an arbitrary scale factor.
We fix it by picking the normalization g,( ) (0) =1.
Writing now the composition

we use Eq. (1) to obtain the exact result

(n) (n —1) l' ( yg
—2)

g& (x) = 0!zgt+~/g (~~ —)g$ ~)/5„&+p/8„&5„(x/on on —1) )~ (3)

g (x) =~g)+ /s(ag, ,/, /, (x/'n')). (4)

The normalization conditions are go(0) = 0, g) (0) = 1.
We use now the universal object g~(x) to investigate
the structure of mode lockings. As noted before, for
p = 0 g~(x) has a superstable fixed point at x = 0. The
range of p around zero for which g~ (x) still has a fixed
point is the range of parameters for which the original
map is locked on some ("infinitely" high) winding ra-

where g„=5„/5„+) and n„=c„+&/c„. After infinitely
many o. rescalings of x space around the inflection
point x = 0, and infinitely many 5 shifts and rescalings
in parameter space, we reach the universal one-
parameter family of maps g~(x) which lies on the un-
stable manifold and is invariant under rescaling and
two-cycle composition. From Eq. (3) we get the exact
result

tio w„. However, around p = 1 there is another locked
state which corresponds to the next locked region in
the sequence and the width of this region is scaled
down by 5 compared to the first (we remember" that
the meaning of 5 is that 0„=OG~+a/5"). Around
p= 1+1/8 there is another, scaled down by 8 com-
pared to the first, etc. Thus, by studying the stability
of the fixed point of g~ we can find an infinity of
mode-locked states which are universally located.
However, these are not ali the locked ranges. In Fig. 2
we plot the largest locking ranges that can be obtained
in the way just described, and also indicate some of
those that do not fall into this category, since they cor-
respond to winding numbers that are not F„/F„+&.
These are indeed needed to determine the fractal
dimension D. How can we get them from the univer-
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will therefore have, for the range of p which falls in th
the Farey constructions that this p falls somewhere betw
written, using Eq. (1), as

qp (x) (c/'4+3)g —a +5„$8„$(p—t) (( ~+3/

The range in p for which (6) has a fixed point is in-
dependent of c; picking c = c„+~ we see that this range
can be obtained from studying, in the limit n

the universal p range of stability of the fixed point of
the function q~, ' which is obtained exactly from the
composition

e desired region, a fixed point of order l. We know from
een p = 0 and p = 1+1/5. The function q~["+3) can also be

cn + 1)gp (cz + tx/c ) ).

Also these lockings will have infinite numbers of
counterparts in the scaled-down regions on the right.
All the universal locking intervals can be found by
composing a pair of universal functions since every ra-
tional number can be expressed as a Farey composition
of its two parent rationals.

In practice, an approximation to the function g~(x)
can be found relatively easily, straight from the defini-
tion (1) and any starting function fn(x). We picked

q)"(x) = (I/n')g, ,2[» (n2g~ (x) ). (7)

Once this range of p is found, another will occur
between p = 1+1/5 and p = 1, self-similarly placed but
scaled down by 5 etc. , etc.

Similarly the locking between F„+2/F„+ 3 and
(F„+F„+2)/(F„+[+F„+3),which on the universal
plot appears between [2] and [3],' can be found by
studying the stability of the fixed point of

f'n(x) =x+ 0 —(I/2m) sin(2mx) and the value
Q „+t = Q.606 657 620 1, which corresponds to winding
number 233 Using the procedure described above we

found the universal interval of p with the mode-locked
structure shown in Fig. 2. The estimates of the fractal
dimension were performed as before. With two gaps
we find s = 0.6326, s t ——0.3425, s2 ——0.2232, and

D, =0.858. Continuing this process we divided the
universal set into more and more gaps and found D„
for four Farey levels from g;R; = 1. Fitting as before

D„by D„=D'+ a (R")"we obtained D' = Q. 867 in ex-
cellent agreement with the direct estimate. In this
universal construction we know that min; {R,") always
comes from the gap closest to the golden mean and is
asymptotically scaled down by 5 compared to
min; {R;" '

) . Accordingly this implies D„=D'
+ a'/5 . Notice that this amounts to a geometric con-
vergence of D„. However, the convergence is rather
slow (5"( 1.1) and therefore a very precise statement
about the rate of convergence cannot be made at this
point.

A few comments are now in order. (i) More accu-
rate results can probably be obtained by representation
of g (x) as a double series expansion g, ~a;~
xp'x J.s" "' For our purpose it was sufficient to
work with g~(x) obtained directly from Eq. (6) and
use the previously determined' values of the ex-
ponents n and 5 as "input" for the calculation.

(ii) In analyzing experiments we suggest that the
same procedure of estimating D would be taken. Two
locked states with windings P/Q and P'/Q' should be
identified, and the lockings which correspond to a
Farey tree should be considered. g, R,D= 1 and the fit
can then be used to estimate the dimension. In fact,
preliminary results in the context of convection exper-
iments in an electrically conducting fluid appear to

q
[2 2] (I/(x2)g (~2q [3](x))

whereas that between F„/F„+t([Q]) and (F„+F„+2)/
(F„+,+ F„~,) ([3]) from q)4'(x) = q)3'(g~ (x) ).
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FIG. 2. The universal "devil's staircase" as generated
from the unstable manifold. Locked ranges denoted by a
thin line can be obtained directly from the stability of g~ (x).
The locked ranges shown by thick lines are obtained by com-
posing the universal objects. The notation F„/F„+~ is arbi-
trary in the sense that n is "very high. " In fact, we use the
notation [0] for F„/F„+~, [1] for F„+~/F„+2, etc. (Ref. 11).

sal object g~(x) '?

Consider for example the range denoted (F„+F„+2)/(F„+ t + F„+3) . There the original map has
(F + t + F +3) order cycle. The function

(5)
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Libchaber, Boris Shraiman, and Joel Stavans.
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FIG. 3. Mode locking in the complexified circle map.
Plotted is the complex 0 plane and in the black regions the
iterations are mode locked. The real axis has the same
structure as Fig. 1.

agree with our predictions (private communication
from A. Libchaber and J. Stavans).

(iii) The universality of the mode-locking structure
discussed here can be continued to the complex plane,
yielding a set analogous to the Mandelbrot set for the
map z' =z2+ c.'4 In Fig. 3 we show the set of complex
parameters 0 for which the complexified map f (z)
= z+ 0 —(I/2m) sin(2n. z) has locked solutions. We
convinced ourselves numerically that this set has simi-
lar universal properties to the ones discussed above.
In particular, the regions obtained by stretching up the
set contained between winding numbers F„/F„+t and

F„+t/F„+q seem to result in an invariant set. One can
also see that the shape of any "egg" has a degree of
universality. In particular the ratio of the width on the
real axis to the height as measured by the point linking
the "egg" to its largest leaf is apparently constant
( —1.1).
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