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Symmetry-breaking fluid flows. a, Thermal convection currents between two plates at different 
temperature (T. > T1). b, Eddy pattern around a cylindrical obstruction. c, Taylor vortices in a 
plane perpendicular to that of rotating central cylinder. d, Asymmetrical flow pattern of a non
newtonian fluid undergoing constricted flow. 

pattern must be smaller than the smallest 
dimension of the model cell to avoid dis
tortions caused by the periodic boundary 
conditions. Therefore, the size of the cell 
and the number of particles must increase 
with the Reynolds and Rayleigh numbers. 
The computer time increases at least in 
proportion to the number of particles con
sidered, and the real time during which 
the particles are followed is typically less 
than 1 nanosecond. 

Despite these temporary limitations, 
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molecular dynamics offers the ability, on 
one level, to generate molecularly based 
constitutive equations as a basis for 
macroscopic-flow calculations using 
finite-difference or cellular-automata 
algorithms (sec Wolfram, S. Nature 311 , 
419; 1984). In the long term, it could be 
used to investigate these phenomena 
directly. □ 

David Heyes is in the Departmem of Chemis
try, Royal Holloway and Bedford New College, 
University of London, Egham TW200EX, UK. 

Chaos is good news for physics 
Tomas Bohr and Predrag Cvitanovic 

IN a recent paper, E.G. Gwinn and R.M. 
Westervelt (Phys. Rev. Lett. 59, 157- 160; 
1987) explore a route from regular to 
chaotic behaviour in electronic transport 
in cooled p-type germanium. The same 
route to chaos has also been explored by 
A. Libchaber and co-workers in a very 
different physical system: the convective 
flow of mercury (Jensen, M.H. eta/. Phys. 
Rev. Lett. 55,2798 -2801; 1985). The new 
experiment is interesting as a study of 
semiconductor physics and for its many 
technological ramifications; but both 
experiments illustrate the high precision 
with which experimentalists can now test 
the theory of transitions to chaos. 

Chaos has become a cover name for an 
active branch of physics, describing the 
highly irregular, unpredictable behaviour 
that occurs in most deterministic, non
linear dynamical systems. Many math
ematical concepts dating back to the last 
century-and, until recently, regarded by 
physicists as irrelevant to the description 
of natural phenomena - have suddenly 
become important. Notions such as the 
'Hausdorff dimension' and 'fractals' have 
replaced Euclid's dimensions and straight 
lines , because schoolbook geometry is of 
little use when confronted with the 
bewildering complexity generated by 
nonlinear dynamical systems. The work of 
B.B. Mandelbrot and especially his book 
The Fractal Geometry of Nature (Free
man, New York, 1982) has been instru
mental in turning physicists' attention to 

such fractal structures and introducing the 
relevant mathematical concepts. 

A decade ago, M.J. Feigenbaum (J. 
stat. Phys. 21, 669-706; 1979) conjectured 
that many physical systems should make 
the transition from regular (periodic) to 
chaotic motion in a qualitatively and 
quantitatively universal fashion, through 
sequences of period doublings. His 
approach was very unconventional: 
instead of modelling a realistic dynamical 
system he used a computer to iterate a 
simple map. The regime where chaos 
occurs is quite inaccessible by standard 
approximation techniques; but the map 
reduces the problem to its essence, 
making it possible to follow the strongly 
nonlinear behaviour with a minimum of 
effort and still extract universal quantities. 
The theory has been confirmed experi
mentally in many physical systems, 
ranging from convective flows in liquids 
to cardiac arrhythmias in chicken hearts. 
Original articles are collected in two re
print collections: Hao Bai-Lin (ed.), 
Chaos (World Scientific, Singapore , 
1984); and Universality in Chaos (Hilger, 
Bristol, 1984; edited by P.C.). 

In their experiment, Gwinn and 
Westervelt apply a time-varying voltage to 
a crystal of p-type germanium and record 
the current passing through it. The system 
has an oscillatory instability so that even 
a static (d.c.) voltage larger than some 
threshold value induces a periodic oscill
ation of the current, with an extremely 

stable frequency. When the additional 
time-varying component is added to the 
voltage, the two frequencies compete, 
and if the amplitude of the driving fre
quency is large enough, chaotic behaviour 
develops. The interaction of pairs of 
frequencies is of considerable theoretical 
interest because of the generality of the 
phenomenon. As the energy input into a 
dissipative dynamical system is increased, 
typically first one and then another intrin
sic mode of the system is excited, and their 
interaction can give rise to chaos. Com
peting modes usually give rise to mode
lockings: the frequencies adjust slightly to 
fall into step, making their ratio a rational 
number. In that case the response is 
periodic; an irrational ratio corresponds 
to quasiperiodic behaviour - the motion 
never quite repeats itself. 

The aim of the experiment was to test 
the theory of the transition from quasi
periodicity to chaos. Mode-lockings 
(which have interesting properties of their 
own) are avoided by tuning the external 
frequency so that its ratio to the internal 
frequency equalled the golden mean, 
(V5- 1)/2. The choice of this ratio does 
not represent a return to mediaeval 
alchemy, but is dictated by number 
theory: the golden mean belongs to a 
family of irrational numbers for which it is 
hardest to give good rational approxi
mants. As experimental measurements 
have limited accuracy , physicists usually 
do not expect number-theoretic subtle
ties, such as how irrational a number is, to 
be of any physical interest. In the theory of 
transitions to chaos, however, the starting 
point is the enumeration of asymptotic 
motions of a dynamical system, and it is 
through this enumeration that number 
theory enters and comes to have a central 
role. 

The output of the experiment is the 
time variation of the current, the full record 
of which contains much superfluous 
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Fig. I The strange attractor at the onset of 
chaos. The current ( a constant current of 5 mA 
has been deducted) is plotted for each cycle of 
the external drive. T and n, respectively, are 
the period and number of drive cycles and the 
current at cycle n + I is plotted against the value 
at cycle,,. (From Gwinn. E.G. & Westervelt , 
R.M. Phys. Rev. Lett. 59, 157-160; 1987.) 
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Fig. 2 The function of /(a) quantifying how 
often a given scaling index or pointwise dimen
sion occurs on the attractor. The error bars 
indicate the standard deviation of the mean of 
three data sets. The universal circle-map pre
diction is shown as a dotted curve. (From 
Gwinn, E.G. & Westervelt, R.M. Phys. Rev. 
L!'rt. 59, 157- 160; 1987.) 

information. Previously, the results would 
have been presented as a frequency power 
spectrum. Today the data (50,()()() data 
points would be typical) are manipulated 
in the way that a theorist analyses a 
numerical simulation. First, the system is 
reduced from a continuous time recording 
to a discrete series of stroboscopic flashes. 
This method, devised a century ago by 
H. Poincare, makes it possible to survey 
the dynamics visually. The experimen1al 
Poincare map is shown in Fig. 1. The value 
of the current at each period of the 
external drive is plotted against its value at 
the next period. (The first hundred or so 
cycles, the transients, are not plotted.) 
The fact that the response is quasiperiodic 
implies that the dots on the figure would 
eventually fill up some closed curve. If the 
transients had been shown on Fig. I , we 
would see points initially far away rapidly 
approaching that curve, which is therefore 
an 'attractor'. Precisely at the onset of 
chaos - which was reached in the experi
ment by varying the amplitude of the drive 
- the kinky structure visible on the figure 
emerges. It is called a 'strange attractor' 
because of the unusual way points are 
distributed on it and this distribution 
contains information about universal 
features of the transition to chaos. 

The strangeness of the attractor can be 
probed by looking at the distribution of 
points around some reference point. For a 
reference point, P, on the attractor we 
define N,.(r) as the number of neighbours 
within distance r along the attractor. On a 
usual (non-strange) quasiperiodic attrac
tor, the points are distributed smoothly; a 
segment of the attractor looks like a line. 
Thus, N, (r) scales with r as N.(r) oc r for 
any point P. For the strange attractor 
in the figure this is not necessarily true. 
If we pick a point at random, the theoiy 
predicts N,(r) oc ,a with a varying 
between 0.6326 ... and 1.8980 ... , and 
the point P is said to have the 

pointwise dimension a. 
A powerful formalism for confronting 

the experiment with the predictions of the 
theory was developed recently by T.C. 
Halsey et al. (Phys. Rev. A33, 1141 -
1151; 1986). They look atthe attractor as a 
superposition of 'subfractals'; namely, for 
each a, the set of points with pointwise 
dimension a. A function f(a) is intro
duced to quantify how often a given value 
a appears on the attractor - more pre
cisely,/( a) is the Hausdorff dimension of 
the set of points with pointwise dimension 
a. Figure 2 shows this curve for the 
theory and the experiment. The dots are 
the theoretical prediction computed by 
iterating a so-called circle-map. The 
crosses represent/(a) calculated from the 
experimental attractor shown in Fig. 1. 
Given that there are no adjustable para
meters, the agreement between the theory 
and the experiment is remarkable. (The 
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error bars at the edges of the a-interval 
come from the sparseness of points con
tributing in those limits; here the finite
ness of the data sets and noise play a large 
part.) 

Theory and experiment thus interact in 
a fruitful way, and it is fascinating that the 
fractal properties of strange attractors can 
be measured with such precision in physical 
systems. Theoretically the most striking 
fact , not anticipated until a decade ago, is 
that the dynamical systems approaching 
chaos do so in a universal fashion. Other 
fields of physics, notably those concerned 
with growth or aggregation, reveal all 
kinds of fractal behaviour, but it is not 
yet clear what kind of universality (if 
any) to expect there. D 

Tomas Bohr and Predrag Cvitanovic are at the 
Niels Bohr Institute, University of Copenhagen, 
Blegdamsvej 17, DK-2100 Copenhagen, 
Denmark. 

Looking for a function 
Benjamin Geiger 

STUDIES on the molecular properties of 
the cytoskeleton are largely motivated by 
the desire to understand the functions of 
these cytoplasmic filaments in cells and 
tissues. Physiological studies, morpho
logical observations and biochemical 
characterization of proteins in the cyto
skeleton have allowed molecular models, 
albeit tentative, of the possible cellular 
activities in which the various classes of 
filaments take part. These models, despite 
their tendency to be oversimplified, have 
contributed a great deal to current 
concepts of mechanisms of cell motility, 
mitosis, transcellular transport, adhesion, 
modulation of membrane activity and 
cellular morphogenisis. Now, however, 
experimental work•-• is providing a test 
for many of these ideas about the physio
logical functions of intermediate fila
ments, one class of cytoskeletal filaments. 

Until recently, most information has 
come from the other two classes of cyto
skeletal filaments, microfilaments and 
microtubules, which, together with bat
teries of associated proteins, have been 
extensively characterized. Moreover, the 
availability of excellent and well-studied 
model systems such as the contractile unit 
of skeletal muscle or the interaction of 
dynein with microtubules in cilia and 
flagellae have provided clues about the 
cytoplasmic activities in which actin and 
tubulin are involved . 

The structure -function relationships of 
the third cytoskeletal network, the inter
mediate filaments , are less well character
ized. Despite the fact that the primary 
structure of many intermediate-filament 
subunits is known and their cellular 

distribution extensively documented, only 
limited molecular information has so far 
been available on their behaviour in vivo. 
In the absence of specific data, it has been 
suggested that intermediate filaments are 
involved in mechanical integration of 
cytoplasmic space' or in a skeletal frame
work of the cytomatrix (see refs. 6,7 for 
reviews). Well-controlled experiments 
relating their molecular properties to 
specific cytoplasmic events are, however, 
still needed to understand their functions 
in more detail. 

Inagaki et al.' recently investigated spec
ific phosphorylation events in modulating 
the assembly of vimentin molecules into 
intermediate filaments. These authors show 
that vimentin is an excellent in vitro 
substrate for protein kinase C and cyclic 
AMP-dependent protein kinase. but not 
of several other kinases. Moreover, phos
phorylation by the cyclic-AMP-dependent 
kinase induces the dramatic disassembly 
of vimentin filaments. Analysis of tryptic 
phosphopeptide maps indicates that the 
sites of phosphorylation with the two 
kinases are distinct, and the authors 
suggest that a single, site-specific phos
phorylation of vimentin (as well as its 
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Fig. 1 Intermediate-filament subunit (vimentin 
or desmin) presenting binding sites for plasma
membrane-associated ankyrin at the amino
terminal head domain, and binding sites for 
lamin Bat the carboxy-terminal tail region. 
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