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Abstract. Periodic eigendecomposition algorithm for calculating eigenvectors of a periodic
product of a sequence of matrices, an extension of the periodic Schur decomposition, is formulated
and compared with the recently proposed covariant vectors algorithms. In contrast to those, periodic
eigendecomposition requires no power iteration and is capable of determining not only the real
eigenvectors, but also the complex eigenvector pairs. Its effectiveness, and in particular its ability
to resolve eigenvalues whose magnitude differs by hundreds of orders, is demonstrated by applying
the algorithm to computation of the full linear stability spectrum of periodic solutions of Kuramoto-
Sivashinsky system.
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1. Introduction. In this paper we implement the periodic Schur decomposition
algorithm for computation of eigenspectra and eigenvectors of periodic products of
matrices [2, 17], adopt it to the problem of determining the linear stability of periodic
solutions of high-dimensional nonlinear dynamical systems, and compare it to the
recently introduced algorithms [31, 15, 14] for calculating the linear stability spectra
and the associated ‘covariant vectors’ for ergodic, hyperbolically unstable trajectories
of such flows. A critical re-examination of these algorithms is necessitated by the fact
that in nonlinear dynamics the matrices typically act on 10 to 106-dimensional vector
spaces, the matrix elements can easily vary over 100’s or 1000’s orders of magnitude,
and yet in the applications one sometimes needs to determine their eigenspectra and
eigenvectors to a very high accuracy.

Covariant vectors algorithm [14] is a combination of forward iteration and back-
ward iteration that relies on the convergence to the Gram-Schmidt vectors in the
transient evolution [9]. When applied to unstable periodic solutions of a nonlinear dy-
namical system, it is implemented as a combination of simultaneous iteration and pure
power iteration such that covariant vectors converge to Floquet vectors or subspaces
spanned by complex Floquet vector pairs. Applied to periodic orbits, the algorithm
has several drawbacks. First, it assumes that all eigenvalues have distinct magnitudes,
but a periodic orbit can have complex eigenvalue pairs of the same magnitude. They
cannot be separated by power iteration, and thus require special attention. Second,
the convergence rate of the backward iteration is linearly dependent on the ratio of
magnitudes of eigenvalues, so the algorithm is not efficient if eigenvalues cluster.

An algorithm for computation of eigenvalues of the periodic Schur decomposition

of a product of matrices was given by Bojanczyk et al. [2], as an extension to the stan-
dard QR iteration (Francis algorithm [12]). The eigenvectors can then be obtained by
Granat et al. [17] reordering algorithm for a given periodic real Schur form (PRSF).
The algorithm can switch any two diagonal blocks and relies on the periodic QR algo-
rithm to restore PRSF. For our purposes, it suffices to consider two special cases and
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the relation between the solution of periodic Sylvester equation and its eigenvectors
in order to obtain periodic eigendecomposition.

Here we implement and compare these two different approaches to calculating
Floquet vectors: the covariant vectors algorithm and the periodic eigendecomposition
algorithm. There are two stages in the process of calculating Floquet vectors, each of
which can be accomplished by two different methods, so we study performance of four
different algorithms in all. The paper is organized as follows. Sect. 2 describes briefly
the nonlinear dynamics motivation for undertaking this project, and can be skipped by
a reader interested only in the algorithms. We describe the computational problem
in sect. 3. In sect. 4 we deal with the first stage of periodic eigendecomposition,
and then show that both the periodic QR algorithm and simultaneous iteration are
capable of achieving periodic Schur decomposition. Sect. 5 introduces power iteration
and reordering as two practical methods to obtain all eigenvectors. In sect. 6 we
compare the computational effort required by different methods, and sect. 7 applies
periodic eigendecomposition to Kuramoto-Sivashinsky equation, an example which
illustrates method’s effectiveness.

2. Dynamics and periodic eigendecomposition. Partial differential equa-
tions, such as Navier-Stokes equations of fluid dynamics, are in principle∞-dimensional
dynamical systems. However, recent work of Yang et al. offers strong numerical ev-
idence [32] that the chaotic solutions of two spatially extended systems, Kuramoto-
Sivashinsky and complex Landau-Ginzburg, evolve within a manifold spanned by a
finite number of ‘entangled’ modes, dynamically isolated from the residual set of iso-
lated, transient degrees of freedom, in agreement with the rigorous bounds on dimen-
sions of inertial manifolds for dissipative PDEs [3]. This work is motivated by recent
algorithms for computation of large numbers of ‘covariant vectors’, the eigenvectors
of the linearization of flow around ergodic trajectories [23, 31, 22, 15, 32, 24, 14]. Co-
variant vectors exhibit an approximate orthogonality between the ‘entangled’ modes
and the rest, the ‘isolated’ modes. These results suggest that for a faithful numerical
integration of dissipative PDEs, a finite number of entangled modes should suffice,
and that increasing the dimensionality beyond that merely increases the number of
isolated modes, with no effect on the long-time dynamics.

While these studies offer strong evidence for finite dimensionality of chaotic (or
‘turbulent’) attractors of dissipative flows, they are based on numerical simulations of
long ergodic trajectories and they yield no intuition about the geometry of the attrac-
tor. That is attained by studying the hierarchies of unstable periodic orbits, invariant
solutions which, together with their Floquet vectors, provide an effective description
of both the local hyperbolicity and the global geometry of an attractor embedded in a
high-dimensional state space. Motivated by the above studies of covariant vectors, we
formulate in this paper a periodic eigendecomposition algorithm suited to accurate
computation of Floquet vectors of unstable periodic orbits. We start by defining the
relevant nonlinear dynamics concepts, following conventions of ChaosBook.org [5].

Let the flow of a continuous time system be described by the time-forward map
x(t) = f t(x0), x ∈ R

n. In the linear approximation, the deformation of an infinites-
imal neighborhood of x(t) (dynamics in tangent space) is governed by the Jacobian
matrix δx(x0, t) = J t(x0) δx(x0, 0), where J t(x0) = J t−t0(x0, t0) = ∂f t(x0)/∂x0. For
a periodic point x on orbit p of period Tp, Jp = JTp(x) is called the Floquet matrix
and its eigenvalues the Floquet multipliers Λj. The associated Floquet eigenvectors
ej(x), Jp ej = Λjej , define the invariant directions of the tangent space at the periodic
point x = x(t) ∈ p. Floquet multipliers are either real, Λj = σj |Λj |, σj ∈ {1,−1}, or

http://ChaosBook.org
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form complex pairs, {Λj ,Λj+1} = {exp(iθj)|Λj |, exp(−iθj)|Λj |}, 0 < θj < π. Floquet
exponents µj = (ln |Λj|)/Tp describe the mean contraction or expansion rates per one
period of the orbit.

A Floquet multiplier is a dimensionless ratio of the final/initial perturbation along
the jth eigen-direction. It is an intrinsic, local property of a smooth flow, invariant
under any smooth coordinate transformation. In case that the state space is equipped
with a notion of distance, one can, following Lyapunov [20], characterize the mean
growth rate of the distance between neighboring trajectories during time t, by the
leading Lyapunov exponent λ ≃ ln (‖ δx(t) ‖/‖ δx(0) ‖)/t . More precisely, if the norm
is Euclidean, one defines the finite-time Lyapunov or characteristic exponents,

(2.1) λ(x0, n̂; t) =
1

t
ln
w

wJ tn̂
w

w =
1

2t
ln
(

n̂⊤J t⊤J tn̂
)

,

where J⊤J is the right Cauchy-Green strain tensor of continuum mechanics. If the
unit vector n̂, ‖ n̂ ‖ = 1 is aligned along the jth principal stretch at the initial time,
n̂ = uj , then the corresponding finite-time Lyapunov exponent is given by

(2.2) λj(x0; t) = λ(x0, uj; t) =
1

t
lnσj(x0; t) ,

where σj is the jth singular value of matrix J t(x0).
So there are two ways of characterizing the (in)stability of a dynamical system.

Eigenvectors / eigenvalues are suited to study of iterated forms of a matrix, such
as Jacobian matrix J , and are thus a natural tool for study of dynamics. Singular
values of the strain tensor J⊤J are suited to study of the matrix J itself, and are
often used because the singular value decomposition is convenient for numerical work:
there is vast literature on numerical computation of Lyapunov exponents, see for
example refs. [30, 8, 7, 25]. Singular values {σj} are not related to the Floquet
multipliers {Λj} in any simple way [28]. Floquet multipliers are invariant under all
local smooth nonlinear coordinate transformations, they are intrinsic to the flow, and
Floquet eigenvectors depend on no norm. Covariant vectors / Floquet eigenvectors
map forward and backward as ej → J ej under time evolution and remain tangent to
the attractor. In contrast, the principal axes point away from it and are not covariant,
i.e., the linearized dynamics does not transport them into the tangent space computed
further downstream. Furthermore, the principal axes have to be recomputed from the
scratch for each time t since the strain tensor J⊤J satisfies no multiplicative group
property (2.3): unlike the periodic orbit Jacobian matrix, the strain tensor (J⊤)rJr

for the rth repeat of a prime cycle is not given by a power of J⊤J for the single
traversal of the prime cycle. The deep reason for these shortcomings of singular
values {σj} and principal axes is that they depend on the choice of a norm (2.1). A
norm is largely arbitrary, and externally imposed upon the dynamics. The Euclidean
(or L2) distance is natural in the theory of 3D continuous media, but what the norm
should be for other state spaces is far from clear, especially in high dimensions and
for discretizations of PDEs.

The connection between the two characterizations is asymptotic in time, and
provided by the Oseledec Multiplicative Ergodic Theorem [21] which states that the
long time limits of (2.2) exist for almost all points x0 and vectors n̂, and that there
are at most n distinct Lyapunov exponents λj(x0) as n̂ ranges over the tangent space.
For periodic orbits these λj (evaluated numerically as t → ∞ limits of many repeats
of the prime period T) coincide with Floquet exponents µj (computed in one period
of the orbit).



4 XIONG DING AND PREDRAG CVITANOVIĆ

To summarize, based on geometric considerations, we would much prefer to com-
pute Floquet eigenspectrum of a periodic orbit J directly, rather than via the singular
values, J⊤J detour. Unfortunately, the Floquet matrix and its spectrum cannot be
easily computed, as the magnitude of matrix elements may range over 100’s or more
orders of magnitude. However –and demonstrating this is the main goal of this paper–
the group property of Jacobian matrix multiplication (chain rule) along the orbit,

(2.3) J t−t0(x(t0), t0) = J t−t1(x(t1), t1)J
t1−t0(x(t0), t0) ,

enables us to factorize it into a product of short-time matrices with matrix elements of
comparable magnitudes. Periodic eigendecomposition can then be used to calculate
all Floquet multipliers and Floquet vectors along a periodic orbit.

3. Description of the problem. A product of m real matrices

(3.1) J(0) = JmJm−1 · · · J1 , Ji ∈ R
n×n, i=1, 2, · · · ,m

can be diagonalized if and only if the sum of dimensions of eigenspaces of J(0) is n.

(3.2) J(0) = V (0)D(V (0))−1 ,

where D is a diagonal matrix which stores J(0)’s eigenvalues, {Λ1,Λ2, · · · ,Λn}, and
columns of matrix V (0) are the eigenvectors of J(0): V (0) = [v

(0)
1 , v

(0)
2 , · · · , v(0)n ]. In

this paper all vectors are written in the column form, transpose of v is denoted v⊤,
Euclidean ‘dot’ product by (v⊤ u), and bold capital letter represents a product of
a sequence of matrices. The challenge associated with obtaining diagonalized form
(3.2) is the fact that often J(0) cannot be written explicitly as the elements of J(0)

can easily overflow or underflow numerically for large m. In nonlinear dynamics
applications such as periodic orbit theory [5], each periodic orbit comes equipped
with a set of Floquet multipliers Λj (eigenvalues of its Floquet matrix J(0)) and
Floquet vectors ej (eigenvectors of Floquet matrix). Floquet multipliers can easily
vary over 100’s orders of magnitude, depending on the system under study and the
period of the orbit; therefore an algorithm of high accuracy is needed, if one is to
resolve all these multipliers and eigenvectors. Also, not only the eigendecomposition
of J(0) is required, but also the eigendecomposition of its cyclic rotations: J(k) =
JkJk−1 · · ·J1Jm · · ·Jk+1 for k = 1, 2, . . . ,m− 1. Eigendecomposition of all J(k) is
called the periodic eigendecomposition of the matrix sequence Jm, Jm−1, · · · , J1.

The process of implementing eigendecomposition (3.2) proceeds in two stages.
First, periodic real Schur form (PRSF) is obtained by a similarity transformation for
each Ji,

(3.3) Ji = QiRiQ
⊤

i−1 ,

with Qi orthogonal matrix, and Q0 = Qm. In the case considered here, Rm is quasi-
upper triangular with [1×1] and [2×2] blocks on the diagonal, and the remaining
Ri, i = 1, 2, · · · ,m−1 are upper triangular. The existence of PRSF, proved in ref. [2],
provides the periodic QR algorithm that implements periodic Schur decomposition.
Defining R(k) = RkRk−1 · · ·R1Rm · · ·Rk+1, we have

(3.4) J(k) = QkR
(k)Q⊤

k ,

with the eigenvectors of matrix J(k) related to eigenvectors of quasi-upper triangular
matrix R(k) by orthogonal matrix Qk. J(k) and R(k) have the same eigenvalues,
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stored in the [1×1] and [2×2] blocks on the diagonal of R(k), and their eigenvectors
are transformed by Qk, so the second stage concerns the eigendecomposition of R(k).
Eigenvector matrix of R(k) has the same structure as Rm. We evaluate it by two
distinct algorithms. The first one is a combination of power iteration and shifted
power iteration, while the second algorithm relies on solving a periodic Sylvester
equation [17].

As all R(k) have the same eigenvalues, and their eigenvectors are related by sim-
ilarity transformations,

(3.5) R(k) = (Rm · · ·Rk+1)
−1R(0)(Rm · · ·Rk+1) ,

one may be tempted to calculate the eigenvectors of R(0), and obtain the eigenvectors
ofR(k) by (3.5). The pitfall of this approach is that numerical errors accumulate when
multiplying a sequence of upper triangular matrices, especially for large k. Therefore,
in the second stage of implementing periodic eigendecomposition, iteration is needed
for each R(k) if power iteration algorithm is chosen in this stage. Periodic Sylvester
equation bypasses this problem by giving the eigenvectors of all R(k).

Our work illustrates the connection between different algorithms in the two stages
of implementing periodic eigendecomposition, pays attention to the case when eigen-
vectors appear as complex pairs, and demonstrates that eigenvectors can be obtained
directly from periodic Sylvester equation without restoring PRSF.

4. Periodic Schur decomposition. Eq. (3.4) represents the eigenvalues of ma-
trix J(k) as real eigenvalues on the diagonal, and complex eigenvalue pairs as [2×2]
blocks on the diagonal of R(k). Previous work [2, 19] implemented periodic QR algo-
rithm to achieve the PRSF. We also implement simultaneous iteration for a sequence
of matrices Jk to achieve the same goal. The two algorithms are equivalent [27], but
their computational costs differ.

4.1. Periodic QR algorithm. Periodic Schur decomposition proceeds in two
stages. First, matrices Ji, i=1, 2, · · · ,m are transformed to upper Hessenberg form
(i = m) or upper triangular form (i = 1, 2, · · · ,m − 1) by a series of Household
reflections. The second stage is iteration of periodic QR algorithm extended from
Francis’s algorithm [29] for the standard case (m = 1). The convergence of this
stage is guaranteed by the “Implicit Q Theorem” [29, 12]. Once the second stage
is accomplished, the process of computing eigenvalues is quite simple. If the ith
eigenvalue is real, it is given by the product of all the ith diagonal elements of matrices
R1, R2, · · · , Rm. In practice, the logarithms of magnitudes of these numbers are
added, in order to overcome numerical overflows. If the ith and (i + 1)th eigenvalues
form a complex conjugate pair, all [2×2] matrices at position (i, i+1) on the diagonal of
R1, R2, · · · , Rm are multiplied with normalization at each step, and the two complex
eigenvalues of the product are obtained. There is no danger of numerical overflow
because all these [2×2] matrices are in the same position and in our applications their
elements are of similar order of magnitude.

4.2. Simultaneous iteration. The basic idea of simultaneous iteration is im-
plementing QR decomposition in the process of power iteration. Assume all the
eigenvalues of J(0) are real, without degeneracy, and order them by their magni-
tude: |Λ1| > |Λ2| > · · · > |Λn|, with corresponding normalized unit eigenvectors
v1, v2, · · · , vn. For simplicity, here we have dropped the upper indices of these vec-

tors. An arbitrary initial vector q̃1 =
∑n

i=1 α
(1)
i vi will converge to the first eigenvector
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v1 after normalization under power iteration of J(0),

lim
ℓ→∞

(J(0))ℓq̃1
|| · || → q1 = v1 .

Here ||·|| denotes the Euclidean norm of the numerator (||x|| =
√
x⊤x). Let 〈a, b, · · · , c〉

represent the space spanned by vector a, b, · · · , c in R
n. Another arbitrary vector q̃2

is then chosen orthogonal to subspace 〈q1〉 by Gram-Schmidt orthonormalization,

q̃2 =
∑n

i=2 α
(2)
i [vi − (q⊤1 vi)q1]. Note that the index starts from i = 2 because

〈q1〉 = 〈v1〉. The strategy now is to apply power iteration of J(0) followed by or-
thonormalization in each iteration.

J(0)q̃2 =

n
∑

i=2

α
(2)
i [Λivi − Λ1(q

⊤

1 vi)v1]

=

n
∑

i=2

α
(2)
i Λi[vi − (q⊤1 vi)v1] +

n
∑

i=2

α
(2)
i (Λi − Λ1)(q

⊤

1 vi)v1 .

The second term in the above expression will disappear after performing Gram-
Schmidt orthonormalization to 〈q1〉, and the first term will converge to q2 = v2 −
(q⊤1 v2)v1 (not normalized) after a sufficient number of iterations because of the de-
creasing magnitudes of Λi, and we also note that 〈v1, v2〉 = 〈q1, q2〉. The same argu-
ment can be applied to q̃i, i = 3, 4, · · · , n as well. When q̃j−1 converges to qj−1 =

vj−1 − ∑j−2
s=1(q

⊤
s vj−1)qs, we have 〈v1, v2, · · · , vj−1〉 = 〈q1, q2, · · · , qj−1〉. Choose an

arbitrary vector q̃j perpendicular to subspace 〈v1, v2, · · · , vj−1〉: q̃j =
∑n

i=j α
(j)
i [vi −

∑j−1
s=1(q

⊤
s vi)qs]. After one iteration,

J(0)q̃j =

n
∑

i=j

α
(j)
i Λi

[

vi −
j−1
∑

s=1

(q⊤s vi)qs

]

+

n
∑

i=j

α
(j)
i

j−1
∑

s=1

(Λi − Λs)(q
⊤

s vi)qs .

The second term is a polynomial of q1, q2, · · · , qj−1 which is also a polynomial of
v1, v2, · · · , vj−1, so it disappears after orthonormalization and the first term will con-

verge to qj = vj −
∑j−1

s=1(q
⊤
s vj)qs (not normalized). In this way, after a sufficient

number of iterations,

lim
ℓ→∞

(J(0))ℓ[q̃1, q̃2, · · · , q̃n] → [q1, q2 · · · , qn] ,

where

q1 = v1 , q2 =
v2 − (v⊤2 q1)q1

|| · || ,

q3 =
v3 − (v⊤3 q1)q1 − (v⊤3 q2)q2

|| · || , · · · , qn =
vn −∑n−1

i=1 (v
⊤
n qi)qi

|| · || .

Let matrix Q0 = [q1, q2, · · · , qn]; then we have J(0)Q0 = Q0R
(0) with R(0) an upper

triangular matrix because of 〈q1, q2, · · · , qi〉 = 〈v1, v2, · · · , vi〉, which is just J(0) =
Q0R

(0)Q⊤
0 (the Schur decomposition of J(0)). The diagonal elements of R(0) are the

eigenvalues of J(0) in decreasing order.
Numerically, the process described above can be implemented on an arbitrary

full rank matrix Q̃0 followed by QR decomposition at each step JsQ̃s−1 = Q̃sR̃s
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with s = 1, 2, 3, · · · and Js+m = Js. For sufficient number of iterations, Q̃s and R̃s

converge to Qs and Rs (3.3) for s = 1, 2, · · · , n, so we achieve (3.4) the periodic Schur
decomposition of J(k).

We have thus demonstrated that the simultaneous iteration converges to the pe-
riodic Schur decomposition of Jk for real non-degenerate eigenvalues. For complex
eigenvalue pairs, the algorithm converges in the sense that the subspace spanned by
the complex conjugate vector pair converges. So,

J(0)Q0 = Q
′

0R
(0) = Q0BR(0) ,

where B is a block-diagonal matrix with diagonal elements ±1 (corresponding to real
eigenvalues) or [2×2] blocks (corresponding to complex eigenvalue pairs). Absorb B
into Rm, then Rm becomes a quasi-upper triangular matrix, and (3.3) still holds.

5. Eigenvector algorithms. The eigenvectors of J(k) are related to eigenvec-
tors of R(k) by orthogonal matrix Qk from (3.3). The eigenvector matrix of R(k) has
the same quasi-upper triangular structure as R(k), so power iteration on an initial
arbitrary quasi-upper triangular matrix will generate the eigenvector matrix. This is
the basic idea of the first algorithm for generating eigenvectors of R(k), inspired by
the algorithm for calculating covariant vectors for an ergodic system [14]. Observation
that the first eigenvector of R(k) is trivial if it is real, e1 = (1, 0, · · · , 0)⊤, now inspires
us to reorder the eigenvalues so that the jth eigenvalue is in the first diagonal place of
R(k); in this way, the jth eigenvector is obtained. For both methods, attention should
be paid to the complex conjugate eigenvector pairs.

5.1. Iteration algorithm. The prerequisite for iteration algorithm is that all
the eigenvalues are ordered in a ascending or descending way by their magnitude on
the diagonal of R(k). Assume that they are in descending order, which is the outcome
of simultaneous iteration; therefore the diagonal elements of R(k) are Λ1,Λ2, · · · ,Λn,
with magnitudes from large to small.

5.1.1. Real eigenvectors. If the ith eigenvector of R(k) is real, then it has the
form ei = (a1, a2, · · · , ai, 0, · · · , 0)⊤. An arbitrary vector whose first i elements are
nonzero x = (b1, b2, · · · , bi, 0, · · · , 0)⊤ is a linear combination of the first i eigenvectors:

x =
∑i

j=1 αjej . Use it as the initial condition for the power iteration by (R(k))−1 =

R−1
k+1 · · ·R−1

m R−1
1 R−1

2 · · ·R−1
k and after ℓ iterations,

(R(k))−ℓx =
1

Λℓ
i





i−1
∑

j=1

αj
Λℓ
i

Λℓ
j

vj + αivi



 .

The property we used here is that (R(k))−1 and R(k) have the same eigenvectors but
inverse eigenvalues. Power iteration will converge to the ith eigenvector of R(k) if this
vector is normalized after each iteration,

lim
ℓ→∞

(R(k))−ℓx

|| · || = ei .

5.1.2. Complex eigenvector pairs. For a [2× 2] block on the diagonal of
R(k), the corresponding eigenvectors are a complex conjugate pair. Since the two
eigenvalues Λi and Λi+1 = Λ∗

i have the same magnitude, the method needs to be
modified in order to tell them apart. If one starts the power iteration with a real



8 XIONG DING AND PREDRAG CVITANOVIĆ

vector, then this vector will rotate. The power iteration still works, in the sense that
the subspace spanned by the complex conjugate eigenvector pair converges.

Suppose the ith and (i + 1)th eigenvectors of R(k) form a complex pair. Two
arbitrary vectors x1 and x2 whose first i+ 1 elements are non zero can be written as
the linear superposition of the first i+ 1 eigenvectors,

x1,2 = (

i−1
∑

j=1

α
(1,2)
j ej) + α

(1,2)
i ei + (α

(1,2)
i ei)

∗ ,

where (∗) denotes the complex conjugate. As for the real case, the first i−1 components
above will vanish after a sufficient number of iterations. Denote the two vectors at
this instant (corresponding to x1,2) to be X1 and X2 and form matrix X = [X1, X2].
The subspace spanned by X1,2 does not change and X will be rotated after another
iteration,

(5.1) (R(k))−1X = X
′

= XC ,

where C is a [2×2] matrix which has two complex conjugate eigenvectors eC and (eC)
∗.

Transformation (5.1) relates the eigenvectors of R(k) with those of C: [ei, (ei)
∗] =

X [eC , (eC)
∗]. In practice, matrix C can be computed by QR decomposition; let

X = QXRX be the QR decomposition of X , then C = R−1
X Q⊤

XX
′

.
Complex eigenvectors are not uniquely determined in the sense that eiθei is also a

eigenvector with the same eigenvalue as ei for an arbitrary angle θ, so when comparing
results from different eigenvector algorithms, we need a constraint to fix the phase of
a complex eigenvector, such as letting the first element be real.

5.1.3. Shifted power iteration. In the above, we have implemented power
iteration to obtain all the real and complex eigenvectors of matrix R(k). The conver-
gence rate of this pure power iteration algorithm depends on the gap of magnitude
among the eigenvalues of R(k), so the performance is relatively poor for systems like
Kuramoto-Sivashinsky equation, for which the strongly contracting multipliers (eigen-
values of Jacobian matrix) appear in closely spaced pairs. For a single matrix, inverse
iteration [27] is effective to isolate one eigenvalue from the others and thus accelerate
the converging process; however, we do not implement it here because of the heavy
cost associated with solving linear equation ((R(k))−1 − sI)y = x at one intermediate
step of this method, where s is the shift. Instead, we obtain a better convergence
rate by combining the pure power iteration with the ‘shifted power iteration’. The
shifted power iteration, is based on the observation that matrix (R(k))−1− sI has the
same eigenvectors as (R(k))−1, but with eigenvalues shifted by an arbitrary number
s, which can be tune to optimize the convergence.

We assume the eigenvalues ofR(k) are arranged in descending order by magnitude:
|Λ1| ≥ |Λ2| ≥ · · · ≥ |Λn|. Define Λi = eλi with λi = µi + iωi , ω ∈ [0, 2π), so µi

represents the magnitude |Λi| = eµi of the ith eigenvalue and ωi distinguishes among
positive real (ωi = 0), negative real (ωi = π) and complex (ωi 6= 0, π). We also assume
that µi ≈ µi−1, so pure power iteration converges slowly for the ith eigenvector ei.

The shift power iteration takes different forms for the case Λi−1 is real and Λi−1 is
complex. Consider the former case first. In this case, eλi−1(R(k))−1− I could be used
instead of (R(k))−1 for power iteration. As the same with the pure power iteration,
we start with an arbitrary real vector whose first i elements are nonzero,

(5.2) x = (

i−2
∑

j=1

αjej) + αi−1ei−1 + αiei + (αiei)
∗ .
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This expression is general and the only requirement is that ai−1 and ei−1 are real.
Complex conjugate pair αjej , αj+1ej+1 = (αjej)

∗ may show up in the first term of
(5.2), and also αiei + (αiei)

∗ generates a real vector no matter whether ei is real or
complex. After one iteration,

(

eλi−1(R(k))−1 − I
)

x =

i−2
∑

j=1

αj(e
λi−1−λj − 1)ej

+ αi(e
λi−1−λi − 1) ei + α∗

i (e
λi−1−λ∗

i − 1) e∗i .

The shift chosen here annihilates term ai−1ei−1, but problem arises for the first i− 2
terms. They may expand during this shift power iteration, so the combination of pure
power iteration and shifted power iteration is required. Since eλi−1−λ∗

i −1 is conjugate
to eλi−1−λi − 1, we only need to solve

∣

∣

∣

∣

e(λi−λj)N · e
λi−1−λj − 1

eλi−1−λi − 1

∣

∣

∣

∣

= r0 ,

where r0 is the desired convergence rate, we get the number of pure power iterations
prior one shifted power iteration,

(5.3) N =
i−2
max
j=1

ln

(

r0

∣

∣

∣

∣

eλi−1−λi − 1

eλi−1−λj − 1

∣

∣

∣

∣

)

µi − µj
.

Numerically, ai−1ei−1 cannot be annihilated completely, but this method still works
if the shift chosen here is “closer” to eλi−1 than eλi .

When Λi−1 is complex, the situation is a bit more complicated. Now the shifted
power iteration takes the form

(eλi−1(R(k))−1−I)(eλi−1
∗

(R(k))−1−I) = e2µi−1(R(k))−2−2eµi−1 cosωi−1(R
(k))−1+I

in order to annihilate both ai−1ei−1 and (ai−1ei−1)
∗. The number of pure power

iteration prior one shifted power iteration can be determined in a similar way,

(5.4) N =
i−3
max
j=1

ln

(

r0

∣

∣

∣

∣

exp(2µi−1 − 2λi)− 2 cosωi−1 exp(µi−1 − λi) + 1

exp(2µi−1 − 2λj)− 2 cosωi−1 exp(µi−1 − λj) + 1

∣

∣

∣

∣

)

µi − µj
.

5.2. Reordering algorithm. The iteration algorithm described above has two
drawbacks. First, the rate of convergence depends on the sizes of gaps between the
magnitudes of eigenvalues. If a gap is small, the convergence is slow. Even though
shifted power iteration can be introduced, the number of prior pure power iterations
(5.3), (5.4) may be large for some problems, such as determining the stability of
periodic orbits in Kuramoto-Sivashinsky system (discussed in sect. 7 below). Second,
we cannot get the eigenvectors of R(k) for all k ∈ 0, 1, 2, · · · ,m at the same time.
Although eigenvectors of R(k) and R(0) are related by (3.5), it is not advisable, as
pointed out above, to evolve the eigenvectors of R(0) so as to get eigenvectors of R(k)

because of the noise introduced during this process. Therefore, iteration is needed for
each k ∈ 0, 1, 2, · · · ,m.

There exists a direct algorithm to obtain the eigenvectors of every R(k) at once
without iteration. The idea is very simple: the eigenvector corresponding to the first
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diagonal element of an upper-triangular matrix is e1 = (1, 0, · · · , 0)⊤. By reordering
the diagonal elements (or [2× 2] blocks) of R(0), we can find any eigenvector by
positioning the corresponding eigenvalue in the first diagonal position. Although in
our application only reordering of [1×1] and [2×2] blocks is needed, we recapitulate
here the general case of reordering two adjacent blocks of a quasi-upper triangular
matrix following Granat [17]. Partition Ri as

Ri =









R00
i ∗ ∗ ∗
0 R11

i R12
i ∗

0 0 R22
i ∗

0 0 0 R33
i









,

where R00
i , R11

i , R22
i , R33

i have size [p0×p0], [p1×p1], [p2×p2] and [p3×p3] respectively,
and p0 + p1 + p2 + p3 = n. In order to exchange the middle two blocks (R11

i and

R22
i ), we construct a non-singular periodic matrix sequence: Ŝi, i = 0, 1, 2, · · · ,m

with Ŝ0 = Ŝm,

Ŝi =





Ip0
0 0

0 Si 0
0 0 Ip3



 ,

where Si is a [(p1 + p2)×(p1 + p2)] matrix, such that Ŝi transforms Ri as follows:

(5.5) Ŝ−1
i RiŜi−1 = R̃i =









R00
i ∗ ∗ ∗
0 R22

i 0 ∗
0 0 R11

i ∗
0 0 0 R33

i









,

which is

S−1
i

[

R11
i R12

i

0 R22
i

]

Si−1 =

[

R22
i 0
0 R11

i

]

.

The problem is to find the appropriate matrix Si which satisfies the above condition.
Assume Si has form

Si =

[

Xi Ip1

Ip2
0

]

,

where matrix Xi has dimension [p1×p2]. We obtain periodic Sylvester equation [17]

(5.6) R11
i Xi−1 −XiR

22
i = −R12

i , i = 0, 1, 2, · · · ,m .

The algorithm to find eigenvectors is based on (5.6). If the ith eigenvalue of R(k)

is real, we only need to exchange the first [(i−1)×(i−1)] block of Rk , k = 1, 2, · · · ,m
with its ith diagonal element. If the ith and (i+1)th eigenvalues form a complex pair,
then the first [(i−1)×(i−1)] block and the following [2×2] block should be exchanged.
Therefore Xi in (5.6) has dimension [p1×1] or [p1×2]. In both cases, p0 = 0.
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5.2.1. Real eigenvectors. In this case, matrix Xi is just a column vector, so
(5.6) is equivalent to

(5.7)



























R11
1 −R22

1 Ip1

R11
2 −R22

2 Ip1

R11
3 −R22

3 Ip1

. . . · · ·

−R22
m Ip1

R11
m



















































X0

X1

X2

· · ·

Xm−1

























=

























−R12
1

−R12
2

−R12
3

· · ·

−R12
m

























,

where R22
i is the (p1 + 1)th diagonal element of Ri. This is a bordered almost block

diagonal matrix, which has dimension [(p1m)× (p1m)]. Gaussian elimination with
partial pivoting (GEPP) is used to solve (5.7). Ref. [11] argues that GEPP may
fail for some matrices, and other methods such as cyclic reduction or preconditioned
conjugate gradients, to name a few, have been proposed [1, 10, 16].

Now we get all vectorsXi by solving periodic Sylvester equation, but how are they
related to the eigenvectors? Defining R̃0 = R̃mR̃m−1 · · · R̃1, we get Ŝ

−1
m R(0)Ŝm = R̃0

by (5.5). Since p0 = 0 and p2 = 1 in (5.5), the first eigenvector of R̃0, the one
corresponding to eigenvalue Πm

i=1R
22
i is ẽ = (1, 0, · · · , 0)⊤. Before normalization, the

corresponding eigenvector of R(0) is

ep1+1 = Ŝmẽ =
[

X⊤

0 , 1, 0, 0, · · · , 0
]⊤

.

This is the eigenvector of matrixR(0) = RmRm−1 · · ·R1 in (3.4) for k = 0. For R(1) =
R1Rm · · ·R2, the corresponding periodic Sylvester equation will be cyclically rotated
one row up, which means X1 will be shifted to the first place in the column vector
in (5.7), and thus the corresponding eigenvector of R(1) is ep1+1 = [X⊤

1 , 1, 0, · · · , 0]⊤.
The same argument goes for all the following R(k) , k = 2, 3, · · · ,m−1. In conclusion,
solution of (5.7) contains the eigenvectors for all R(k) , k = 0, 1, · · · ,m− 1.

5.2.2. Complex eigenvector pairs. As in the real eigenvalue case, we have
p0 = 0, but now p2 = 2, so matrix Xi has dimension [p1×2]. Using the same notation
as ref. [17], let v(Xi) denote the vector representation of Xi with the columns of Xi

stacked on top of each other, and let A ⊗ B denote the Kronecker product of two
matrices, with the (i, j)-block element be aijB.

Now, the periodic Sylvester equation (5.6) is equivalent to
(5.8)




























I2 ⊗R11
1 −(R22

1 )⊤ ⊗ Ip1

I2 ⊗R11
2 −(R22

2 )⊤ ⊗ Ip1

I2 ⊗R11
3 −(R22

3 )⊤ ⊗ Ip1

. . . · · ·

−(R22
m )⊤ ⊗ Ip1

I2 ⊗R11
m





















































v(X0)

v(X1)

v(X2)

· · ·

v(Xm−1)

























=

























−v(R12
1 )

−v(R12
2 )

−v(R12
3 )

· · ·

−v(R12
m )

























.

After switching R11
i and R22

i , we can get the first two eigenvectors of R̃0 by multiplying
the first [2×2] diagonal blocks of R̃i: R22 = R22

mR22
m−1 · · ·R22

1 . Let the eigenvectors

of R22 be v and v∗ of size [2× 1], then the corresponding eigenvectors of R̃0 are
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ẽ1 = (v⊤, 0, 0, · · · , 0)⊤ and ẽ2 = (ẽ1)
∗ (the additional zeros make the length of the

eigenvectors to be n). Therefore, the corresponding eigenvector of R(0) is

[ep1+1, ep1+2] = Ŝm[ẽ1, ẽ2] =



















X0

I2
0 0
0 0
...

0 0



















[v, v∗] .

For other R(k), the same argument in the real case applies here too, so we obtain all
the complex eigenvector pairs for R(k) , k = 1, 2, · · · ,m.

6. Computational effort and convergence analysis. In this paper we make
no attempt at conducting a strict error analysis of the alternative algorithms pre-
sented. However, for practical applications it is important to understand their com-
putational costs.

Periodic eigendecomposition is conducted in two stages: (1) periodic Schur de-
composition, and (2) determination of all eigenvectors. In each stage, there are two
candidate algorithms, so the efficiency of periodic eigendecomposition depends on the
choice of the specific algorithm in each stage.

Periodic QR algorithm and simultaneous iteration are both effective to achieve
PRSF for the real eigenvalues, and for complex pairs of eigenvalues. Periodic QR al-
gorithm consists of two stages. First, matrix sequence Jm, Jm−1 · · · , J1 is reduced to
Hessenberg-triangular form, with Jm−1, · · · , J1 upper triangular and Jm upper Hes-
senberg. It requires O(mn) Householder reflections in this stage and computational
cost associated with each reflection is O(n2), if the transformed matrix is calculated
implicitly without forming the Householder matrix [27]. So the overall computational
cost of this stage is O(mn3). The second stage is the periodic QR iteration which
is a generalization of the standard, m = 1, case [27]. O(mn) Givens rotations are
performed in each iteration with overall computational cost of O(mn2). Though the
computational effort in each iteration in the second stage is less than that in the first
stage, the number of iterations in the second stage is usually far more than the dimen-
sion of matrices involved. In this sense, the second stage is the heavy part of periodic
QR algorithm. On the other hand, simultaneous iteration conducts one QR decom-
position O(n3) and m matrix-matrix multiplication O(n3) in each iteration, giving a
total computational cost of O(mn3). The convergence of either algorithm depends
linearly on the ratio of adjacent eigenvalues of R(0): |Λi|/|Λi+1| without shift [12].
Therefore the ratio of costs is of the order O(mn3)/O(mn2) ≈ O(n), implying that
the periodic QR algorithm is much cheaper than the simultaneous iteration if the
dimension of matrices involved is large enough.

The second stage of periodic eigendecomposition is to find all the eigenvectors of
J(k) via quasi-upper triangular matrices R(k). The first candidate is the combination
of power iteration and shifted power iteration. The computational cost of one itera-
tion for the ith eigenvector is O(mi2). The second candidate, reordering algorithm,
relies on an effective method to solve periodic Sylvester equation (5.6). For example,
Gaussian elimination with partial pivoting (GEPP) is suitable for well conditioned
matrix (5.7) and (5.8) with computational cost of O(mn2). On the other hand, the
iteration algorithm, as pointed out earlier, could not produce the eigenvectors of R(k)

for all k = 1, 2, · · · ,m accurately in the same time due to the noise introduced during
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the transformation process (3.4), especially when the magnitudes of eigenvalues span
a large range. In contrast, the reordering algorithm is not iterative and it gives all
the eigenvectors simultaneously.

In summary, if we just consider the computational effort, the combination of
periodic QR algorithm and reordering algorithm is the best choice for periodic eigen-
decomposition.

7. Application to Kuramoto-Sivashinsky equation. As an example, we
focus on the one-dimensional Kuramoto-Sivashinsky equation

(7.1) ut +
1

2
(u2)x + uxx + uxxxx = 0 , x ∈ [0, L]

on a periodic spatial domain of size L. The preperiodic orbit pp of period Tpp =
10.25, and relative periodic orbit rp of period Trp = 16.3 that we study here are
described in ref. [6], where the domain size has been set to L = 22, large enough to
exhibit complex spatiotemporal dynamics. Periodic boundary condition enables us to
transform this partial differential equation into a set of ODEs in Fourier space, and
in our computations discrete N = 64 Fourier transform is used,

ak(t) = F [u]k =
1

N

N−1
∑

n=0

u(xn, t)e
−iqkxn , u(xn, t) = F−1[a]k =

N/2
∑

k=−N/2+1

ak(t)e
iqkxn ,

where qk = 2πk/L, and the coefficients are complex, ak = bk + ick. The transform of
differentiation of u(x, t) is given by

F
[

∂νu

∂xν

]

k

=

{

(iqk)
νF [u]k , otherwise
0 if ν is odd and k=N/2 .

Here the odd derivative of the N/2 mode at the grid points is set to zero separately
in order to eliminate the asymmetry of the highest wave number in the definition of
inverse discrete Fourier transform [26]. Applying discrete Fourier transform to (7.1)
we obtain

ȧk = (q2k − q4k) ak − i
qk
2
F [(F−1[a])2]k , k = −N/2 + 1, · · · , N/2− 1(7.2a)

ȧN/2 = (q2N/2 − q4N/2) aN/2 .(7.2b)

In our implementation of the code we use Fast Fourier Transform packages, such as
Matlab fft() function (note, however, that Matlab fft() orders wave numbers as
k = 0, 1, 2, . . . , N−1, which is mapped to k = 0, 1, . . . , N/2−1, N/2,−N/2+1, . . . ,−1
in Kuramoto-Sivashinsky system).

Since u(x, t) is real, ak(t) = a∗
−k(t); thus only half of the Fourier modes are

independent. As ȧ0 = 0 from (7.2a), we can set a0 = 0. It follows from (7.2b) that
aN/2 is decoupled from other modes and it can be set to zero as well. Thus then the
number of independent variables is N − 2,

(7.3) û = (b1, c1, b2, c2, · · · , bN/2−1, cN/2−1)
⊤ .

This is the ‘state space’ in the discussion that follows. ETDRK4 scheme [18, 4] is
implemented to integrate (7.2a). The combination of periodic QR algorithm algorithm
and reordering algorithm is used to obtain all exponents and eigenvectors. In addition,
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Fig. 1. (Color online) (a) Preperiodic orbit pp and (b) relative periodic orbit rp in the full
state space for total time 4Tpp and 2Trp, respectively. The phase shift for rp after one prime period
≃ −2.863. (c) The real parts of Floquet exponents paired for a given k as (k, µ2k−1) and (k, µ2k),
for pp with truncation number N = 64. The dashed line (green) is q2k − q4k, with x-axis the indices
of Fourier modes k = 1, 2, · · · , N/2 − 1. The inset is a magnification of the region containing the
8 leading entangled modes. As can be seen in table 1, for modes that follow, k ≥ 5, the exponents
are much smaller, in agreement with the expected separation into entangled and isolated modes of
ref. [32]. (d) The magnitudes of the Fourier components |ak| = (b2k + c2k)

1/2 of the 1st, the 2nd,
the 57th and 58th Floquet vectors ek for pp at initial time t = 0, truncation number N = 64.
For entangled modes the first 4 Fourier are comparable in magnitude. For the kth isolated modes
pair, the amplitude is concentrated on kth Fourier mode. The x-axis is labeled by the Fourier mode
indices. Only the k > 0 part is shown, the negative k follow by reflection.

Gaussian elimination with partial pivoting (GEPP) is stable for (5.7) and (5.8) if the
time step in Kuramoto-Sivashinsky integrator is not too large, as GEPP only uses
addition and subtraction operations.

Kuramoto-Sivashinsky equation is equivariant under reflection and space trans-
lation: −u(−x, t) and u(x+ l, t) are also solutions if u(x, t) is a solution, which corre-
sponds to equivariance of (7.3) under group operation R = diag(−1, 1,−1, 1, · · · ) and
g(l) = diag(r1, r2, · · · , rN/2−1), where

rk =

(

cos(qkl) − sin(qkl)
sin(qkl) cos(qkl)

)

, k = 1, 2, · · · , N/2− 1 .

There are three types of recurrent orbits in Kuramoto-Sivashinsky system: peri-
odic orbits in the bk = 0 invariant antisymmetric subspace, preperiodic orbits which
are self-dual under the reflection, and relative periodic orbits with a shift along group
orbit after one period. As shown in ref. [6], the first type is absent for domains as
small as L = 22, and thus we focus on the last two types of orbits. For preperiodic
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Table 1

The first 10 and last four real Floquet exponents and Floquet multiplier phases, Λi = exp(T µi±
iθi), for orbits pp and rp, respectively. θi column lists either the phase, if the Floquet multiplier is
complex, or ‘-1’ if the multiplier is real, but inverse hyperbolic. Truncation number N = 32. The
8 leading exponents correspond to the entangled modes: note the sharp drop in the value of the 9th
and subsequent exponents, corresponding to the isolated modes.

pp rp
i µi θi i µi θi
1,2 0.033209 ±2.0079 1 0.32791
3 -2.0317e-14 2 5.0352e-09
4 -2.4267e-09 -1 3 -1.2399e-08
5 -0.21637 4 -0.13214 -1
6,7 -0.26524 ±2.6205 5,6 -0.28597 ±2.7724
8 -0.33073 -1 7 -0.36242
9 -1.9605 8 -0.32821 -1
10 -1.9676 -1 9,10 -1.9617 ±2.2411
· · · · · · · · · · · · · · · · · ·
27 -239.52 · · · · · · · · ·
28 -239.22 -1 27,28 -239.41 ±0.88159
29 -307.47 -1 29 -313.98
30 -332.74 30 -323.41

a
1

−0.2

0.0

0.2

b1−0.20
−0.15

−0.10

a
2

0

(a)

0 x(Tp)
0

1

2

3

4

5

6 1e−5
(b)

||v3(x)−�v(x)||
||v4(x)−t(x)||

Fig. 2. (Color online) Marginal vectors and the associated errors. (a) pp for Tpp projected
onto [a1, b1, a2] subspace (blue curve), and its counterpart (green line) generated by a small group
transformation g(ℓ) by ℓ, here arbitrarily set to ℓ = L/(20π). Magenta and black arrows represent
the first and the second marginal Floquet vectors e3(x) and e4(x) along the prime orbit. (b) The
solid red curve is the magnitude of the difference between e3(x) and the velocity field ~v(x) along the
orbit, and blue dashed curve is the difference between e4(x) and the group tangent t(x) = Tx.

orbits û(0) = Rû(Tp) , we only need to evolve the system for a prime period Tp which
is half of the whole period, with the Floquet matrix given by Jp(x) = RJTp(x). A
relative periodic orbit, û(0) = gpû(Tp), returns after one period û(Tp) to the initial
state upon the group transform gp = g(lp), so the corresponding Floquet matrix is
Jp(x) = gpJ

Tp(x). Here we show how our periodic eigendecomposition works by ap-
plying it to one representative preperiodic orbit pp and one relative periodic orbit
rp.

At each repeat of the period Tpp, pp is invariant under reflection along x = L/2,
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figure 1 (a), and rp has a shift along the x direction as time goes on, figure 1 (b). Since
pp and rp are both time invariant and equivariant under SO(2) group transformation
g(l), there should be two marginal Floquet exponents, corresponding to the velocity
field v(x) and group tangent t(x) = Tx respectively, where T is the generator of
SO(2) rotation:

T = diag(t1, t2, · · · , tN/2−1), tk =

(

0 −qk
qk 0

)

.

Table 1 shows that the 2nd and 3rd, respectively 3rd and 4th exponents of rp, re-
spectively pp, are marginal, with accuracy as low as 10−8, to which the inaccuracy
introduced by the error in the closure of the orbit itself also contributes.

We have noted above that the group property of Jacobian matrix multiplication
(2.3) enables us to factorize J(k) into a product of short-time matrices with matrix
elements of comparable magnitudes. In practice, caution should be exercised when
trying to determine the optimal number of time increments that the orbit should be
divided into. If the number of time increments m is too large, then, according to the
estimates of sect. 6, the computation may be too costly. If m is too small, then the
elements of Jacobian matrix corresponding to the corresponding time increment may
range over too many orders of magnitude, causing periodic eigendecomposition to fail
to resolve the most contracting Floquet vector along the orbit. One might also vary
the time step according to the velocity at a give point on the orbit. Here we have
determined satisfactory m’s by numerical experimentation. We find that it suffices
to divide the preperiodic orbit pp of period Tpp ≃ 10.253 into 500 time increments,
and the relative periodic orbit rp of period Trp ≃ 16.314 into 820 time increments.
Table 1 and figure 1 (c) then show that periodic Schur decomposition is capable of
resolving Floquet multipliers differing by thousands of orders to machine accuracy:
when N = 64, the smallest Floquet multiplier for pp is |Λ62| ≃ 10−6083.72. For
sufficiently large index k, the velocity field of (7.2a) is dominated by the linear term
(q2k − q4k) ak; therefore these isolated modes are decoupled from the leading entangled
modes and are expected to contract with rate ≈ q2k−q4k. Figure 1 (c) and (d) illustrate
this. For large wave number k, the real parts of Floquet exponents (µ2k−1, µ2k) lie on
curve q2k − q4k, and the associated Floquet vectors (e2k−1, e2k) peak at k, indicating
their decoupling from other modes. Since these higher modes are isolated and have
very large negative Floquet exponents, a perturbation along the corresponding eigen-
direction disappears instantaneously without affecting other modes. In this sense, the
truncation numbers chosen here are large enough to describe the long-time dynamics
in Kuramoto-Sivashinsky system.

The two marginal directions have a simple geometrical interpretation. Figure 2 (a)
depicts the two marginal vectors of pp projected onto the subspace spanned by
[a1, b1, a2] (the real, imaginary parts of the first mode and the real part of the second
Fourier mode). The first marginal eigen-direction (the 3rd Floquet vector in table 1)
is aligned with the velocity field along the orbit, and the second marginal direction
(the 4th Floquet vector) is aligned with the group tangent. The numerical difference
between the unit vectors along these two marginal directions and the corresponding
physical directions is shown in figure 2 (b). The difference is larger than the accuracy
of the hyperbolic Floquet vectors, of order of 10−5. Both the error of calculating the
velocity field, the orbit itself and the error associated with the periodic eigendecom-
position contribute to this.

As shown in table 1, for an preperiodic orbit, such as pp, the trajectory tangent
and the group tangent have eigenvalue +1 and −1 respectively, and are thus distinct.
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However, the two marginal directions are degenerate for an relative periodic orbit,
such as rp. So these two directions are not fixed, but the plane that they span is
uniquely determined. Figure 3 shows the velocity field and group tangent along orbit
rp indeed lie in the subspace spanned by these two marginal directions.

Fig. 3. (Color online) Projection of relative periodic orbit rp onto the Fourier modes subspace
[b2, c2, b3] (red curve). The dotted curve (lime) is the group orbit connecting the initial and final
points. Blue and magenta arrows represent the velocity field and group tangent along the orbit,
respectively. Two-dimensional planes (cyan) are spanned by the two marginal Floquet vectors at
each point (yellow) along the orbit.

8. Conclusion and future work. Periodic eigendecomposition, an implemen-
tation of the periodic Schur decomposition, is introduced here and its effectiveness
demonstrated for linearized dynamics of Kuramoto-Sivashinsky system. As we con-
template applying the method to study of orbits of much longer periods, as well as
to the study high-dimensional, numerically exact time-recurrent unstable solutions
of the full Navier-Stokes equations [13], we anticipate the need for optimizing and
parallelizing such algorithms.
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