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Abstract

We study continuous symmetry reduction of dynamical systems by the method of slices (method of moving frames)
and show that a ‘slice’ defined by minimizing the distance to a single generic ‘template’ intersects the group orbit of
every point in the full state space. Global symmetry reduction by a single slice is, however, not natural for a chaotic
/ turbulent flow; it is better to cover the reduced state space by a set of slices, one for each dynamically prominent
unstable pattern. Judiciously chosen, such tessellation eliminates the singular traversals of the inflection hyperplane
that comes along with each slice, an artifact of using the template’s local group linearization globally. We compute
the jump in the reduced state space induced by crossing the inflection hyperplane. As an illustration of the method,
we reduce the SO(2) symmetry of the complex Lorenz equations.

Keywords: symmetry reduction; equivariant dynamics; relative equilibria; relative periodic orbits; slices; moving
frames; Lie groups

1. Introduction

In spatially-extended turbulent flows one observes similar patterns at different spatial positions and at different
times. How ‘similar?’ If the flow is equivariant under a group of continuous symmetries, one way of answering this
question is by measuring distances between different states in the symmetry-reduced state space M/G, a space in
which each group orbit (class of physically equivalent states) is represented by a single point. This distance depends
on the choice of norm and on the symmetry-reduction method.

In 1980 Phil Morrison [1] showed how to derive Hamiltonian description of ideal fluid (plasma) dynamics from
the Low Lagrangian [2] by a Lie symmetry reduction, which in this context amounts to the transformation from La-
grangian to Eulerian variables: the state space of position-labeled Lagrangian trajectories of ‘fluid parcels’ is reduced
to a much smaller state space of Eulerian velocity fields. It is a difficult example of reduction; the reduction steps have
to be executed judiciously, new variables cleverly chosen, and “one should do the Legendre transformations slowly
and carefully when there are degeneracies [3].” Our goal here is different. Rather than to reduce a particular set of
dynamical equations, we seek to formulate a computationally straightforward general method of reducing continuous
symmetries, applicable to any high-dimensional chaotic/turbulent flow, such as the fluid flows bounded by pipes or
planes. The symmetry-reduction literature is very extensive (see Refs. [4, 5] for a review), but it basically offers
two approaches (a) invariant polynomial bases, and (b) methods which pick a representative point by slicing group
orbits, generalizing the way in which Poincaré sections cut time-evolving trajectories. For high-dimensional flows the
method of slices studied in Refs. [4–8] appears to be the only computationally feasible approach. Here the method is
rederived as a distance minimization problem in the space of patterns.

The new results reported in this paper are: (a) A generic slice cuts across group orbits of all states in the state space
(Section 2). (b) Every slice carries along with it the inflection hyperplane. We show how to compute the jump of the
reduced state space trajectory (Section 2.2) whenever it crosses through such singularity (Section 3). (c) We propose
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Figure 1: (a) Complex Lorenz equations (1) exhibit a strange attractor for parameter values (2), here projected on the {y1, y2, z} axes. (thin line) A
segment of generic finite time trajectory. (thick line) TW1, the only relative equilibrium. (b) The same strange attractor plotted in the symmetry-
reduced state space slice (7), defined by the group tangent t̄′ whose choice is explained in (21). In the reduced state space relative equilibrium TW1
is reduced to equilibrium E1. Note, however, the semicircular jumps in the reduced flow. These are analyzed in Section 3. For a blow-up of the
jump indicted by the small rectangle (red), see Fig. 4 (a).

to avoid these singularities (artifacts of the symmetry reduction by the method of slices) by tiling the state space with
an atlas constructed from a set of local slices (Section 4). Pertinent facts about symmetries of dynamical systems are
summarized in Appendix A. In Appendix B we show that for continuous symmetries with product structure (such as
SO(2) × SO(2) symmetries of pipe and plane fluid flows), each symmetry induces its own inflection hyperplane.

In what follows we denote by ‘method of moving frames’ the post-processing of the full state space flow (Sec-
tion 2.1), and by ‘method of slices’ the integration of flow confined to the reduced state space (Section 2.2). In
practice, symmetry reduction is best carried out as post-processing, after the numerical trajectory is obtained by in-
tegrating the full state space flow. In particular, the symmetry-reduction induced singularities (Section 3) are more
tractable numerically if given the full state space trajectory.

We shall illustrate symmetry reduction by applying it to the 5-dimensional complex Lorenz equations [9]

ẋ1 = −σx1 + σy1 , ẋ2 = −σx2 + σy2

ẏ1 = (r1 − z) x1 − y1 − ey2 , ẏ2 = (r1 − z) x2 + ey1 − y2 (1)
ż = −bz + x1y1 + x2y2 .

In all numerical calculations that follow we shall set the parameters to Ref. [5] values,

r1 = 28, b = 8/3, σ = 10, and e = 1/10 , (2)

for which the flow exhibits a strange attractor, Fig. 1 (a). Our goal is to understand in detail this flow in the symmetry-
reduced state space, Fig. 1 (b), in particular the singularities induced by the symmetry reduction.

A flow ẋ = v(x) is equivariant under a coordinate transformation g if the form of the equations of motion is
preserved by the transformation,

v(x) = g−1v(g x) . (3)

The totality of elements g forms G, the symmetry group of the flow. The complex Lorenz equations are a simple
example of a dynamical system with a continuous (but no discrete) symmetry. They are equivariant (3) under SO(2)
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rotations by

g(θ) = exp (θ · T ) =


cos θ sin θ 0 0 0
− sin θ cos θ 0 0 0

0 0 cos θ sin θ 0
0 0 − sin θ cos θ 0
0 0 0 0 1

 , T =


0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

 (4)

(for group-theoretical notation, see Appendix A). The group is 1-dimensional and compact, its elements parameter-
ized by θ mod 2π. The fixed-point subspace (A.6) is the z-axis. The velocity (1) at a point on the z-axis points only
in the z-direction and so the trajectory remains on the z-axis for all times. The action of SO(2) thus decomposes the
state space into m = 0 invariant subspace (z-axis) and m = 1 subspace of multiplicity 2. Locally, at state space point
x, the infinitesimal action of the group is given by the group tangent field t(x) = T x = (x2,−x1, y2,−y1, 0), with the
flow induced by the group action normal to the radial direction in the (x1, x2) and (y1, y2) planes, while the z-axis is
left invariant.

2. Method of moving frames

Suppose you are observing turbulence in a pipe flow, or your defibrillator has a mesh of sensors measuring electri-
cal currents that cross your heart, or you have a precomputed pattern, and are sifting through the data set of observed
patterns for something like it. Here you see a pattern, and there you see a pattern that seems much like the first
one. How ‘much like the first one?’ Think of the first pattern (represented by a point x̄′ in the state space M) as a
‘template’ [6, 10, 11] or a ‘reference state’ and use the symmetries of the flow to slide and rotate the ‘template’ until
it overlays the second pattern (a point x in the state space), i.e., act with elements of the symmetry group G on the
template x̄′ → g(θ) x̄′ until the distance between the two patterns

|x − g(θ) x̄′| = |x̄ − x̄′| (5)

is minimized. Here x̄ is the point on the group orbit of x (the set of all points that x is mapped to under the group
actions),

x = g(θ) x̄ , g ∈ G , (6)

closest to the template x̄′, the Lie group element g = g(θ) ∝ exp (θ · T ) is parameterized by angles θ = (θ1, θ2, · · · θN),
and the distance is an invariant of the symmetry group, |gx|2 = |x|2. We assume that G is a subgroup of the group of
orthogonal transformations O(d), and measure distance |x|2 = 〈x|x〉 in terms of the Euclidean inner product 〈x|y〉 =∑d

i xiyi . Its Lie algebra generators Ta (A.2) are N linearly independent [d×d] antisymmetric matrices acting linearly
on the state space vectors x ∈ M ⊂ Rd.

If the state space is a normed function space, 〈h| f 〉 =
∫

dx h(x) f (x) , one customarily measures distance between
two patterns in the L2 norm, | f |2 = 〈 f | f 〉. In computations, spatially-extended functions are represented by discrete
meshes or finite basis sets, within a (possibly large) finite-dimensional state spaceM ⊂ Rd. An example is represen-
tation of a dissipative PDE by truncating the Fourier basis (A.8) to a finite number of modes.

The minimal distance is a solution of the extremum conditions

∂

∂θa
|x − g(θ) x̄′|2 = 2 〈x̄ − x̄′|t̄′a〉 = 0 , t̄′a = Ta x̄′ .

By the antisymmetry of the Lie algebra generators we have 〈x̄′|t̄′a〉 = 〈x̄′|Ta x̄′〉 = 0, so we can replace x̄ − x̄′ → x̄,
and the ‘moving frame’ transformation parameters θ which map the state x to x̄, the group orbit point closest to the
template x̄′, satisfy

〈x̄|t̄′a〉 = 0 , g(θ) x̄ = x . (7)

Thus the set of extremal group orbit points lies in a (d−N)-dimensional hyperplane, the set of vectors orthogonal to
the template tangent space spanned by tangent vectors {t̄′1, · · · , t̄

′
N}

x̄1 t̄′a,1 + x̄2 t̄′a,2 + · · · + x̄d t̄′a,d = 0 , (8)
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see Fig. 2 (a). This hyperplane contains different types of extremal points. For example, the point furthest away from
the template x̄′ also satisfies the extremal conditions. While group orbits are embedded into the high-dimensional full
state space in a highly convoluted manner, this hyperplane is a linear section through them, a global extension of the
tangent space of x̄′, which can be a good description of the ‘similarity’ to a template only in a local neighborhood
of x̄′. Our goal is to reduce the symmetry of the flow by slicing the totality of group orbits by a small set of such
neighborhoods, one for each distinct template, with each group orbit sliced only once. Group orbits close to x̄′ cross
the hyperplane transversely; the border of the neighborhood is defined by group orbits that reach the hyperplane
tangentially. In case of a local Poincaré section, determination of such border is a nontrivial task, but as we shall see
in Section 3, for group orbits this border is easy to determine.

The set of the group orbit points closest to the template x̄′ form an open connected neighborhood of x̄′, a neighbor-
hood in which each group orbit intersects the hyperplane only once. As we shall show in Section 3, this neighborhood
is contained in a half-hyperplane, bounded on one side by the intersection of (8) with its inflection hyperplane. In
what follows we shall refer to this connected open neighborhood of x̄′ as a slice M̄x̄′ ⊃ M/G, and to (7) as the slice
conditions. Slice so defined is a particular case of symmetry reduction by transverse sections of group orbits [12–14]
that can be traced back to Cartan’s method of moving frames [15]. Moving frame refers to the action g(θ) that brings a
state space point x into the slice. We denote the full state space points and velocities by x, v(x), and the reduced state
space points and velocities by x̄, v̄(x̄).

In the choice of the template one should avoid solutions that belong to the invariant or partially symmetric sub-
spaces; for such choices Ta x̄′ = 0, and some or all t̄′a vanish identically and impose no slice conditions. The template
x̄′ should be a generic state space point in the sense that its group orbit has the full N dimensions of the group G.
In particular, even though the simplest solutions (laminar, etc.) often capture important physical features of a flow,
most equilibria and short periodic orbits have nontrivial symmetries and thus are not suited as choices of symmetry-
reducing templates. It should also be emphasized that in general a template is not a spatially-localized structure. We
are not using translations / rotations to superimpose a localized, ‘solitonic’ solution over a localized template. In a
strongly nonlinear, turbulent flow a good template is typically a nontrivial global solution.

In summary: given the minimum Euclidean distance condition, the point x̄ in the group orbit of x closest to the
template x̄′ lies in a slice, a hyperplane normal to the group action tangent space t̄′, for any state space point x ∈ M.
Symmetry reduction by the method of moving frames is a precise rule for how to pick a unique point x̄ for each such
symmetry equivalence class, and compute the moving frame transformation x = g(θ) x̄ that relates the full state space
point x ∈ M to its symmetry reduced representative x̄ ∈ M̄.

2.1. Computing the moving frame rotation angle

The idea of reducing a flow with Lie-group structure to a system of a smaller dimension dates back to Sophus Lie.
Time-evolution and symmetry group actions foliate the state space into (N +1)-dimensional submanifolds: Given a
state (a state space point x(0) at time τ = 0), we can trace its 1-dimensional trajectory x(τ) by integrating its equations
of motion, and its N-dimensional group orbit by acting on it with the symmetry group G. Locally, a continuous time
flow can be reduced by a Poincaré section; a slice does the same for local neighborhoods of group orbits.

To show how the rotation into the slice is computed, consider first the complex Lorenz equations. Substituting the
SO(2) Lie algebra generator and a finite angle SO(2) rotation (4) acting on a 5-dimensional state space into the slice
condition (7) yields 〈x|t̄′〉 cos θ − 〈t(x)|t̄′〉 sin θ = 0 , and the explicit formula for frame angle θ:

tan θ = 〈x|t̄′〉/〈t(x)|t̄′〉 . (9)

The dot product of two tangent fields in (9) is a sum of inner products weighted by Casimirs (A.7),

〈t(x)|t(x̄′)〉 =
∑

m

C(m)
2 xi δ

(m)
i j x̄′j . (10)

For the complex Lorenz equations x = (x1, x2, y1, y2, z), x̄′ = (x̄′1, x̄
′
2, ȳ
′
1, ȳ
′
2, z̄
′), and applying the moving frame

condition (9) yields

tan θ =
x1 x̄′2 − x2 x̄′1 + y1ȳ′2 − y2ȳ′1
x1 x̄′1 + x2 x̄′2 + y1ȳ′1 + y2ȳ′2

. (11)
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(a)

M̄

g x̄′ x̄′

t̄′

x(τ) x̄(τ)

g(τ)

(b)

M̄

x = g x̄

x∗

S

T 2 x̄′

x̄′

t̄′

x̄

Figure 2: The method of moving frames. (a) Slice M̄ ( ⊃ M/G) lies in the (d−N)-dimensional half-hyperplane (7) normal to t̄′, where t̄′ is the
N-dimensional tangent to the group orbit g x̄′ (dotted line) of the template point x̄′, evaluated at x̄′. This is a highly idealized sketch: A group orbit
is an N-dimensional manifold, and even for SO(2) it is usually only topologically a circle, and can intersect a hyperplane any number of times.
Such hyperplane intersects all full state space group orbits (indicated by dotted lines here). The full state space trajectory x(τ) and the reduced
state space trajectory x̄(τ) are equivalent up to a ‘moving frame’ rotation x(τ) = g(τ) x̄(τ), where g(τ) is a shorthand for g(θ(τ)). (b) For SO(2) two
hyperplanes are associated with a given template x̄′; the slice M̄, and the hyperplane of points x∗ normal to the quadratic Casimir-weighted vector
T 2 x̄′, for which the curvature (13) of the distance function (5) changes sign. This defines a group-theoretic boundary of the template neighborhood:
For rotation angles θ beyond this boundary the group orbit g(θ) x has left the neighborhood. The intersection of the two hyperplanes is the inflection
hyperplane x̄∗ ∈ S , within which all group tangents t(x̄∗) point into the slice and are thus normal to t̄′. For the lack of dimensions, the intersection
S is drawn here as a ‘line,’ the z axis in this 3-dimensional sketch. S is actually a (d−2)-dimensional hyperplane, but that is not easy to visualize.

This formula is particularly simple, as in the complex Lorenz equations example the group acts only through m = 0
and m = 1 representations (in the Fourier mode labeling of (A.10)).

Consider next the general form (A.9) of action of an SO(2) symmetry on arbitrary Fourier coefficients of a spatially
periodic function (A.8). Substituting this into the slice condition (7) and using g(m)(θ) = cos(mθ) 11(m) + sin(mθ) 1

m T (m),
see (A.9), we find that

〈e−θT x|t(x̄′)〉 = 〈x|
∑

m

(
cos(mθ) 11(m) + sin(mθ)

1
m

T (m)
)

t̄′〉

=
∑

m

(
〈x|T (m) x̄′〉 cos(mθ) − m〈x| 11(m) x̄′〉 sin(mθ)

)
= 0 . (12)

This is a polynomial equation, with coefficients determined by 〈x|T (m) x̄′〉 and 〈x| 11(m) x̄′〉, as we can see by rewriting
cos(mθ), sin(mθ) as polynomials of degree m in sin(θ) and cos(θ). Each phase θ that rotates x into any of the group-
orbit traversals of the slice hyperplane corresponds to a real root of this polynomial.

As a generic group orbit is a smooth N-dimensional manifold embedded in the d-dimensional state space, several
values of θ might be local extrema of the distance function (5). Our prescription is to pick the closest reduced state
space point as the unique representative of the entire group orbit. i.e., determine the global minimum (infimum)
of distance (5). For example, group orbits of SO(2) are topologically circles, and the distance function has maxima,
minima and inflection points as critical points: if θ is a solution of the slice condition (9) for complex Lorenz equations,
so is θ + π. We can pick the closest by noting that the local minima have positive curvature,

∂2

∂θ2 |x̄ − x̄′|2 = −2 〈x̄|T 2 x̄′〉 . (13)

For the complex Lorenz equations, this determines which moving frame angle will be used since the distance function
(5) has only a minimum and a maximum. It does not matter whether the group is compact, for example SO(n), or
noncompact, for example the Euclidean group E2 that underlies the generation of spiral patterns [16]; in either case
any group orbit has one or several locally closest passages to the template state, and generically only one that is the
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closest one. (Here we focus only on continuous symmetries - discrete symmetries that flows such as the Kuramoto-
Sivashinsky and plane Couette flow exhibit will also have to be taken into account [17–19].)

However, ‘picking the closest’ point in a group orbit of a pattern very unlike the template is not necessarily a
sensible thing to do; as such state evolves in time, distant points along its orbit can come closer to the template, causing
discontinuous jumps in the moving frame angle. We shall show in Section 3 that this is a generic phenomenon for a
single-slice symmetry reduction, and propose a cure in Section 4.

In summary, we do not have to compute all zeros of the slice condition (7) - all we care about is the zero that cor-
responds to the shortest distance (5). While post-processing of a full state space trajectory x(τ j) requires a numerical
(Newton method) determination of the moving frame rotation θ(τ j) at each time step τ j, the computation is not as
onerous as it might seem, as the knowledge of θ(τ j) and t(x̄(τ j)) gives us a very good guess for θ(τ j+1). We can go a
step further, and write the equations for the flow restricted to the reduced state space M̄.

2.2. Dynamics within a slice
Any state space trajectory can be written in a factorized form x(τ) = g(τ) x̄(τ) (here g(τ) is a shorthand for

g(θ(τ)), or perhaps even g(θ(x(τ)))). Differentiating both sides with respect to time and setting v̄ = dx̄/dτ we find
v(x) = ġ x̄ + g v̄(x̄) . By the equivariance (A.1)

v(x̄) = v̄(x̄) + g−1 ġ x̄ .

Noting that g−1ġ = e−θ·T d
d τ eθ·T = θ̇ · T , we obtain the equation for the velocity of the reduced flow:

v̄(x̄) = v(x̄) − θ̇(x̄) · t(x̄) . (14)

The velocity v in the full state space is thus the sum of the ‘angular’ velocity (A.5) along the group orbit, θ̇ · t(x̄), and
the remainder v̄.

Eq. (14) is true for any factorization x = gx̄, and by itself provides no information on how to calculate θ̇. That is
attained by demanding that the reduced trajectory stays within a slice, by imposing the slice conditions (7):

〈v(x̄)|t̄′a〉 − 〈θ̇ · t(x̄)|t̄′a〉 = 0 . (15)

This is a matrix equation in 〈tb(x̄)|t̄′a〉 that the authors of Refs. [11, 20] claim one can in principle solve for any Lie
group. We consider here only the SO(2) case, which has a single group tangent:

v̄(x̄) = v(x̄) − θ̇(x̄) t(x̄)
θ̇(x̄) = 〈v(x̄)|t̄′〉/〈t(x̄)|t̄′〉 . (16)

One way to think about this reduction of a flow to a slice is in terms of Lagrange multipliers (see Stone and Gold-
bart [21], Sect 1.5 for intuitive, geometrical interpretation of Lagrange multipliers). The first equation defines the flow
confined to the slice, the ‘shape’, ‘template’ or ‘slice’ dynamics [6], (see Fig. 1 (b), Fig. 2 (a)), and integration of the
second, ‘reconstruction’ equation [22, 23] enables us to track the corresponding trajectory in the full state space. For
invariant subspaces θ̇ = 0, so they are always included within the slice. No information is lost about the physical flow:
if we know one point on a trajectory, we can hop at will back and forth between the reduced and the full state space
trajectories, just as we can reconstruct a continuous trajectory from its Poincaré sections.

At this point it is worth noting that imposing the global and fixed slice (7) is not the only way to separate equivari-
ant dynamics into ‘group dynamics’ and ‘shape’ dynamics [24]. In modern mechanics and even field theory (where
elimination of group-directions is called ‘gauge-fixing’) it is natural to separate the flow locally into group dynam-
ics and a transverse, ‘horizontal’ flow [25, 26], by the ‘method of connections’ [6]. From our point of view, such
approaches are not useful, as they do not reduce the dynamics to a lower-dimensional reduced state spaceM/G.

3. Inflection hyperplane

If two patterns are close, their group orbits are nearly parallel, and 〈t(x)|t̄′〉 , 0. Hence a slice is transverse to all
group orbits in an open neighborhood of the template x̄′, but not so globally. As we go away from the template point,
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the angles of the group orbit traversals can decrease all the way to zero, until their group tangents lie in the slice. This
set of points defines a purely group-theoretic boundary of the template’s neighborhood (every point has a group orbit,
the dynamics plays no role here, only the notion of distance). Furthermore, whenever the group tangent of the reduced
state space trajectory points into the slice, the denominator in (16) vanishes and angular velocity θ̇ is not defined. We
now show that these singularities (a) also lie in a hyperplane, determined by the symmetry group alone, and (b) induce
computable jumps in the reduced state space trajectory.

Two hyperplanes sketched in Fig. 2 (b) are associated with any given template x̄′; the slice (7), and the hyperplane
of points x∗ defined by being normal to the quadratic Casimir-weighted vector T 2 x̄′, such that from the template
vantage point their group orbits are not transverse, but locally ‘horizontal,’

〈t(x∗)|t̄′〉 = −〈x∗|T 2 x̄′〉 = 0 (17)

(for simplicity, in this section we specialize to the SO(2) case).
We shall refer to the intersection of the two as the inflection hyperplane S , i.e., the set of all points x̄∗ which are

both (a) in the slice, and (b) whose group tangent t(x̄∗) is also in the slice:

〈x̄∗|t̄′〉 = 0
〈t(x̄∗)|t̄′〉 = −〈x̄∗|T 2 x̄′〉 = 0 (18)

(this is called ‘singular set’ in Ref. [5]). Looking back at (13), we see that S is the locus of inflection points, a
hyperplane through which the curvature of the distance function changes sign, and a local minimum turns into a local
maximum. For example, for the complex Lorenz equations x̄∗ = (x∗1, x

∗
2, y
∗
1, y
∗
2, z
∗), x̄′ = (x′1, x

′
2, y
′
1, y
′
2, z
′), and the

3-dimensional inflection hyperplane x̄∗ ∈ S ⊂ M̄ is given by vanishing denominator in (11):

0 = x∗1x′1 + x∗2x′2 + y∗1y′1 + y∗2y′2 .

The inflection hyperplane S is purely an artifact of the choice of a template, and has nothing to do with the dynamics;
whenever the full state space trajectory crosses an inflection hyperplane, it pays it no heed whatsoever.

We next show that the singularity in the formula (9) causes a discontinuous jump in the moving frame angle θ.
Consider a full state space trajectory x(τ) that passes through the inflection hyperplane (18) at time τ∗, x̄∗ = x(τ∗),
which we shall set to τ∗ = 0. At that instant the moving frame angle θ is formally undefined: the numerator 〈x̄∗|t̄′〉
in (9) vanishes (x̄∗ is in the slice and satisfies the slice condition (7)), and the denominator 〈t(x̄∗)|t̄′〉 vanishes by (18).
Nevertheless, the trajectory going through the singularity is well defined, as in the linear approximation the numerator
and the denominator in the moving frame formula (9) are given by

〈x|t̄′〉 = 〈(x̄∗ + v(x̄∗) τ)|t̄′a〉 = 〈v(x̄∗)|t̄′a〉 τ (19)
〈t(x)|t̄′〉 = 〈t(x̄∗ + v(x̄∗) τ)|t̄′a〉 = 〈t(v(x̄∗))|t̄′a〉 τ . (20)

In other words, the moving frame rotates the state space point x and the velocity v(x) by the same angle, so either can
be used to compute it. The shortest distance condition demands that we pick the solution with positive curvature (13),
so 〈t(x)|t̄′〉 ≥ 0 for all τ. As the trajectory traverses x̄∗, the time τ changes the sign from negative to positive; hence we
must switch from the solution x̄∗ to another extremum for which 〈t(v(x̄∗))|t̄′〉 is positive. In the complex Lorenz flow
example there are only two extrema {θ, θ + π}, so the moving frame angle θ jumps discontinuously by π.

Within the reduced state space an inflection hyperplane crossing has a dramatic effect: the reduced state space
flow x̄(τ) jumps whenever it crosses the inflection hyperplane x̄∗, by an amount that we now compute. Suppose that a
reduced state space trajectory passes through a singularity x̄∗ at time τ = τ∗. At that instant the numerator 〈v(x̄∗)|t̄′a〉 is
(generically) finite, but as the group tangent of the point x̄∗ lies in the slice, 〈t(x̄∗)|t̄′〉 = 0 by (18), the denominator in
(16) vanishes, and the angular velocity θ̇ shoots off to infinity.

As an illustration of such jump, consider a blow-up of the small rectangle indicated in reduced state space flow
Fig. 1 (b). Here the template

x̄′ = (0.887846,−0.150461, 0.4,−0.12, 0)
t̄′ = (0.150461, 0.887846, 0.12, 0.4, 0) (21)
x̄∗ = (−0.889135,−0.0401956, 1.91332,−0.150327, 24.4436)
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(a) (b)

Figure 3: The angular velocity θ̇ for two complex Lorenz flow reduced state space trajectories in a slice defined by the template x̄′ given in (21):
(a) As the trajectory x̄(τ) passes through the singular point x̄∗ given in (21), the angular velocity diverges θ̇ → ∞ as a Dirac delta function. (b) The
angular velocity for a nearby trajectory going through x̄∗ + δx, δx = (0.01, 0, 0, 0, 0) exhibits a large but finite excursion close to the singularity.

was reverse-engineered, by picking a point x̄∗ = x(0) from a segment of the full state space ergodic trajectory x(τ) and
then computing x̄′ such that x̄∗ lies in the inflection hyperplane. As the trajectory x̄(τ) passes through x̄∗, the moving
frame θ jumps by π. Any trajectory nearby x(τ) in the full space (for example, the red/dashed trajectory in Fig. 4 (a))
is assigned a nearby θ both before and after x̄(τ) passes through x̄∗. The closer the trajectory is to x(τ) in the full
space, the shorter the time interval where its moving frame differs significantly from x(τ)’s. If its symmetry-reduced
trajectory does not pass through inflection hyperplane S , then θ is continuous and must change by π in a short interval
of time that shrinks the closer the trajectory is to x(τ). Hence, as the trajectory x̄(τ) passes through the x̄∗, the angular
velocity diverges θ̇ → ∞ as a Dirac delta function, Fig. 3 (a), and the reduced state space trajectory goes through the
inflection (18) and jumps to the π-rotated extremum of the distance function, Fig. 4 (a).

The inflection hyperplane S is the intersection of two hyperplanes: (1) the slice (the shortest distance from the
group-orbit to the template), and (2) the closest inflection in the distance function (18). While all group orbits of a
generic trajectory cross the slice, the trajectory has vanishing probability to cross the lower-dimensional inflection
hyperplane - that is why we had to ‘engineer’ the slice (21). However, an ergodic trajectory might come arbitrarily
close to S arbitrarily often. Such nearby reduced state space trajectories exhibit large angular velocities θ̇, Fig. 3 (b),
and very fast, nearly semi-circular excursions close to the singularity, Fig. 4 (a). Which segment of the group orbit
they follow depends on the side from which the trajectory approached the inflection hyperplane.

In summary, whenever a reduced state space trajectory crosses the inflection hyperplane, it jumps instantaneously
and discontinuously to the new group orbit point with the shortest distance to the template. We have shown that these
jumps are harmless and theoretically under control. Nearby trajectories are numerically under control if sufficient
care is taken to deal with large angular velocities. But they are an artifact of the method of slices of no dynamical
significance, and an uncalled-for numerical nuisance. We now outline a strategy how to avoid them altogether by a
clever choice of a set of templates.

4. Charting the reduced state space

So far, the good news is that for a generic template x̄′ (i.e., any x̄′ whose group orbit has the full N-dimensions of
the symmetry group G), the slice hyperplane (7) cuts across the group orbit of every point in the full state spaceM.
But is this a useful symmetry reduction of the full state space? A distant pattern that is a bad match to a given template
will have any number of locally ‘minimal’ distances, each yet another bad match. Physically it makes no sense to use
a single slice (a set of all group orbit points that are closest to one given template) globally.

Work on Kuramoto-Sivashinsky and the work of Rowley and Marsden [10] suggests how to proceed: it was shown
in Refs. [17, 27] that for turbulent/chaotic systems a set of Poincaré sections is needed to capture the dynamics. The
choice of sections should reflect the dynamically dominant patterns seen in the solutions of nonlinear PDEs. We
propose to construct a global atlas of the symmetry reduced state space M/G by deploying both slices and linear
Poincaré sections across neighborhoods of the qualitatively most important patterns, taking care that the templates
chosen have no symmetry. Each slice M̄( j), tangential to one of a finite number of templates x̄′( j), provides a local
chart for a neighborhood of an important, qualitatively distinct class of solutions (2-rolls states, 3-rolls states, etc.);
together they ‘Voronoi’ tessellate the curved manifold in which the reduced strange attractor is embedded by a finite
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(a) (b)

Figure 4: (color online). (a) Blow-up of a jump in Fig. 1 (b), indicated by a small rectangle. (blue/full line) A trajectory that passes through the
singular point x̄∗ given in (21). Note the instantaneous jump in the trajectory, caused by the divergence in velocity (Fig. 3 (a)) as the trajectory
traverses the inflection hyperplane. The neighboring red/dashed trajectory going through x̄∗ + δx, δx = (0, 0.025, 0, 0, 0), makes a rapid transit
around the singularity. The green/dotted trajectory is the group orbit of x̄∗ between the two θ that rotate v(x̄∗) in the slice. Note also how the
red/dashed trajectory begins near the blue/full trajectory, closely follows the green/dotted trajectory after the singularity point, reaches the other
side of the green/dotted arc and then resumes closely following the blue/full trajectory. (b) Smooth dynamics (left frame) tesselated by the skeleton
of periodic points, together with their linearized neighborhoods, (right frame). Indicated are segments of two 1-cycles and a 2-cycle that alternates
between the neighborhoods of the two 1-cycles, shadowing first one, and then the other (from ChaosBook.org).

set of hyperplane tiles [10, 28]. This is the symmetry-reduced generalization of the idea of state space tessellation by
a set of periodic-orbits, so dear to a professional cyclist, Fig. 4 (b).

So how do we propose to implement this tessellation?
The physical task is to, for a given dynamical flow, pick a set of qualitatively distinct templates whose slices

are locally tangent to the strange attractor. A ‘slice’ is a purely group-theoretic, linear construct, with no reference to
dynamics; a given template x̄′(1) defines the associated slice M̄, a (d−1)-dimensional tangent hyperplane (for simplicity,
in this section we specialize to the SO(2) case). Within it, there is a (d−2)-dimensional inflection hyperplane (18).
If we pick another template point x̄′(2), it comes along with its own slice and inflection hyperplane. Any neighboring
pair of (d−1)-dimensional slices intersects in a ‘ridge’ (‘boundary,’ ‘edge’), a (d−2)-dimensional hyperplane, easy to
compute. A global atlas so constructed should be sufficiently fine-grained that we never hit any inflection hyperplane
singularities. The inflection hyperplanes should be eliminated by requiring that they lie either on the far sides of the
slice-slice intersections, or elsewhere where the strange attractor does not tread. Each ‘chart’ or ‘tile,’ bounded by
ridges to neighboring slices, should be sufficiently small so that the inflection hyperplane is nowhere within the part
of the slice explored by the strange attractor.

Follow an ant as it traces out a symmetry-reduced trajectory x̄(1)(τ), confined to the slice M̄(1). The moment
〈x̄(1)(τ)|t̄′(2)〉 changes sign, the ant has crossed the ridge, we symmetry-reduce with respect to the second slice, and the
ant continues its merry stroll within the M̄(2) slice. Or, if you prefer to track the given full state space trajectory x(τ),
you compute the moving-frame angle with respect to each (global) slice, and check to which tile does the given group
orbit belong.

What about the fixed-point subspaceMG (see (A.6))? Because of it, the action of G is globally neither free nor
proper, etc.. All intersections of slices, ridges and inflection hyperplanes contain the fixed-point subspaceMG. Should
we worry? There are spurious singularities that are artifacts of a linear slice, described by the associated inflection
hyperplane, and there are genuine, symmetry induced singularities, such as the embedding of an invariant subspace
in the full state space (here z-axis). A inflection hyperplane includes the invariant subspace and cannot ‘cure’ those.
Indeed, we have tried to construct an example of a two-slice chart, but for complex Lorenz equations we have not been
able to find a good one. As the trajectory approaches the z-axis from various directions, we have not found of a way
to choose two slices such that it the group orbit is tangent to one but not to the other. This is not a serious problem, as
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the Poincaré section and the associated return map [5] can be chosen to lie away from either inflection hyperplane.
The objective of the method of slices is to freeze [24] all equivariant coordinates; once frozen, they together with

theMG coordinates span the symmetry-reduced state space.
There is a rub, though - you need to know how to pick the phases of neighboring templates. This is a reflection

of the flaw inherent in use of a slice hyperplane globally: a slice is derived from the Euclidean notion of distance, but
for nonlinear flows the distance has to be measured curvilinearly, along unstable manifolds [29, 30]. We nevertheless
have to stick with tessellation by linearized tangent spaces, as curvilinear charts appear computationally prohibitive.
Perhaps a glance at Fig. 4 (b) helps visualize the problem; imagine that the trajectories drawn are group orbits, and that
the tiles belong to the slices through template points on these orbits. One could slide templates along their group orbits
until the pairs of straight line segments connecting neighboring template points are minimized, but that is not physical:
one would like the dynamical trajectories to cross ridges as continuously as possible. So how is one to pick the phases
of the templates? The phase of the first template is for free, but the moving frame transformation (6) is global, and can
be applied only once. The choice of the first template thus fixes all relative phases to the succeeding templates, as was
demonstrated in Ref. [17]: the universe of all other solutions is rigidly fixed through a web of heteroclinic connections
between them. This insight garnered from study of a 1-dimensional Kuramoto-Sivashinsky PDE is more remarkable
still when applied to the plane Couette flow [31], with 3-d velocity fields and two translational symmetries. The
relative phase between two templates is thus fixed by the shortest heteroclinic connection, a rigid bridge from one
neighborhood to the next. Once the relative phase between the templates templates is fixed, so are their their slices,
i.e., their tangent hyperplanes, and their intersection, i.e., the ridge joining them.

5. What lies ahead

Many physically important spatially-extended and fluid dynamics systems exhibit continuous symmetries. For
example, excitable media [16, 32–35], Kuramoto-Sivashinsky flow [17, 36, 37], plane Couette flow [18, 31, 38, 39],
and pipe flow [40, 41] are invariant (equivariant) under combinations of translational (Euclidean), rotational and
discrete symmetries. If a physical problem has a symmetry, one should use it - one does not want to compute the same
solution over and over, all one needs is to pick one representative solution per each symmetry related equivalence
class. Such procedure is called symmetry reduction. In this paper we have investigated symmetry reduction by the
method of slices, a linear procedure particularly simple and practical to implement, and answered affirmatively the
two main questions about the method: (1) does a slice cut the group orbit of every point in the dynamical state space?
(2) can one deal with the inflection hyperplanes that the method necessarily introduces?

We have shown here that a symmetry-reduced trajectory passes through such singularities through computable
jumps, a nuisance numerically, but cause to no conceptual difficulty. However, while a slice intersects each group
orbit in a neighborhood of a template only once, extended globally any slice intersects every group orbit multiple
times. So even though every slice cuts all group orbits, it makes no sense physically to use one slice (a set of all group
orbit points that are closest to a given template) globally. We propose instead to construct a global atlas by deploying
sets of slices and linear Poincaré sections as charts of neighborhoods of the most important (relative) equilibria and/or
(relative) periodic orbits.

Such global atlas should be sufficiently fine-grained so that an unstable, ergodic trajectory never gets too close
to any of the inflection hyperplanes. Why does this proposal have none of the elegance of, let’s say, Killing-Cartan
classification of simple Lie algebras? Why is this symmetry reduction purely a numerical procedure, rather than
an analytic change of equivariant coordinates to invariant ones? The theory of linear representations of compact
Lie groups is a well developed subject, but role of symmetries in nonlinear settings is altogether another story. It
is natural to express a dynamical system with a symmetry in the symmetry’s linear eigenfunction basis (let us say,
Fourier modes), but for a nonlinear flow different modes are strongly coupled, and group orbits embedded in such
coordinate bases can be highly convoluted, in ways that no single global slice hyperplane can handle intelligibly.

It should be emphasized that the atlas so constructed retains the dimensionality of the original problem. The full
dynamics is faithfully retained, we are not constructing a lower-dimensional model of the dynamics. Neighborhoods
of unstable equilibria and periodic orbits are dominated by their unstable and least contracting stable eigenvalues
and are, for all practical purposes, low-dimensional. Traversals of the ridges are, however, higher dimensional. For
example, crossing from the neighborhood of a two-rolls state into the neighborhood of a three-rolls state entails going
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through a pattern ‘defect,’ a rapid transient whose precise description requires many Fourier modes. Nevertheless, the
recent progress on separation of ‘physical’ and ‘hyperbolically isolated’ covariant Lyapunov vectors [42–45] gives
us hope that the proposed atlas could provide a systematic and controllable framework for construction of lower-
dimensional models of ‘turbulent’ dynamics of dissipative PDEs.

While it has been demonstrated in Ref. [5] that the method of moving frames, with a judicious choice of the
template and Poincaré section, works for a system as simple as the complex Lorenz flow, one still has to show
that the method can be implemented for a truly high-dimensional flow. Siminos [7] has used a modified method of
moving frames to compute analytically a 128-dimensional invariant basis for reduced state space M̄ =M/SO(2), and
shown that the unstable manifolds of relative equilibria play surprisingly important role in organizing the geometry
of Kuramoto-Sivashinsky. In Ref. [17] it was found that the coexistence of four equilibria, two relative equilibria
(traveling waves) and a nested fixed-point subspace structure in an effectively 8-dimensional Kuramoto-Sivashinsky
system complicates matters sufficiently that no symmetry reduction by the method of slices has been attempted so far.
More importantly, a symmetry reduction of pipe flows, which due to the translational symmetry have only relative
(traveling) solutions, remains an outstanding challenge [46].
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forthcoming - hence this article. We are grateful to D. Barkley, W.-J. Beyn, C. Chandre, K.A. Mitchell, B. Sandstede,
R. Wilczak, and in particular E. Siminos and R.L. Davidchack for spirited exchanges. S.F. work was supported by the
National Science Foundation grant DMR 0820054 and a Georgia Tech President’s Undergraduate Research Award.
P.C. thanks Glen Robinson Jr. for support.

Appendix A. Symmetries of dynamics

In this Appendix we review a few basic facts about dynamics and symmetries. We follow notational conventions
of Chaosbook.org [30], to which the reader is referred to for a more extensive discussion of dynamics and symmetries.

If a pipe is rotated around its axis or translated, the shifted and rotated state of the fluid is a physically equivalent
solution of the Navier-Stokes equations. Such rotations and translations are examples of continuous symmetries. On
the level of equations of motion, one says that a flow ẋ = v(x) is equivariant under a coordinate transformation g if

v(x) = g−1v(g x) . (A.1)

The totality of elements g forms G, the symmetry group of the flow. An element of a compact Lie group G ⊂ O(d)
that is continuously connected to the identity can be parametrized as

g(θ) = eθ·T , θ · T =

N∑
a=1

θaTa , (A.2)

where θ · T is a Lie algebra element, θ = (θ1, θ2, · · · θN) are the parameters (‘phases,’ ‘angles,’ ‘shifts’) of the transfor-
mation, and the Ta are a set of N linearly independent [d×d] antisymmetric matrices acting linearly on the state space
vectors. A spatial transformation induced by infinitesimal variations of group phases g(δθ) ' 1 + δθ · T . is

δx = δθ · t(x) , (A.3)

where the N vectors
ta(x) = Tax , a = 1, 2, · · · ,N, (A.4)

span the group tangent space at x. We use ta(x) notation (rather than Tax) to emphasize that the group action induces
a tangent field at x. A transformation induced by infinitesimal time-dependent variations (A.3) of group phases can
be thought of as an ‘angular velocity,’ δθa = δτ θ̇a is

ẋ = θ̇ · t(x) . (A.5)

The tangent field is of dimension N, as long as the point x does not belong to a fixed-point subspace. Points in the
fixed-point subspaceMG are fixed points of the full group action. They are called invariant points,

MG = Fix (G) = {x ∈ M : g x = x for all g ∈ G} , (A.6)
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or, infinitesimally, Tax = 0 for a = 1, 2, · · · ,N. If a point is an invariant point of the symmetry group, by equivariance
the velocity at that point is also inMG, so the trajectory through that point will remain inMG. MG is disjoint from
the rest of the state space since no trajectory can ever enter or leave it.

Any representation of a compact group G is fully reducible [47]. The invariant tensors constructed by contractions
of Ta are useful in identifying irreducible representations. The simplest such invariant is

T · T = −
∑

m

C(m)
2 11(m) , (A.7)

where C(m)
2 is the quadratic Casimir for irreducible representation labeled m, and 11(m) is the identity on the irreducible

subspace m, 0 elsewhere. For compact groups C(m)
2 are strictly nonnegative. C(m)

2 = 0 if m is an invariant subspace.
The simplest example of a Lie group is given by the action of SO(2) on a smooth function u(θ+2π) = u(θ) periodic

on interval [−π, π]. Expand u as a Fourier series

u(θ) =
a0

2
+

∞∑
m=1

(am cos mθ + bm sin mθ) . (A.8)

The matrix representation of the SO(2) action g(θ′)u(θ) = u(θ + θ′) on the Fourier coefficient pair (am, bm) is

g(m)(θ′) = exp
(
θ′ · T (m)

)
=

(
cos mθ′ sin mθ′

− sin mθ′ cos mθ′

)
= cos mθ′ 11(m) + sin mθ′

1
m

T (m) . (A.9)

Here

T (m) =

(
0 m
−m 0

)
(A.10)

is the Lie algebra generator and 11(m) is the identity on the irreducible subspace labeled m, 0 elsewhere. The SO(2)
group tangent t(u) to state space point u is

t(u) =

∞∑
m=1

t(m)(u) , t(m)(u) = m
(

bm

−am

)
, (A.11)

and the quadratic Casimir (A.7) for irreducible representation labeled m is C(m)
2 = m2.

Appendix B. Singularities of SO(2) × SO(2)

Two groups G and H can be combined into the product group G × H, whose elements are pairs (g, h), where g
belongs to G, and h belongs to H, with the group multiplication rule (g1, h1)(g2, h2) = (g1g2, h1h2) . Some important
fluid-dynamical flows exhibit continuous symmetries which are the products of SO(2) groups, each of which acts on a
subset of the state space coordinates. The Kuramoto-Sivashinsky equations [36, 37], plane Couette flow [18, 31, 38],
and pipe flow [40, 41] all have continuous symmetries of this form.

Let G ×H be a Lie group with two sets of infinitesimal generators, T1 and T2, such that the T1 acts only on the (a)
coordinates (eθ1T1 (a, b) = (eθ1T1 a, b)), or, infinitesimally, T1(a, b) = (T1a, 0), and T2 acts only on the (b) coordinates,
T2(a, b) = (0,T2b). Taken together, T1T2(a, b) = T2T1(a, b) = (0, 0) for all (a, b), so T1T2 = 0.

For simplicity, we now specialize to the SO(2) × SO(2) case. Suppose we are rotating a trajectory x(τ) into the
slice normal to the group tangents at x̄′. Using the restrictions the slice imposes on the angular velocity (15) yields
〈v(x̄)|t̄′1〉 − θ̇1〈t1(x̄)|t̄′1〉 − θ̇2〈t2(x̄)|t̄′1〉 = 0. We have 〈t2(x̄)|t̄′1〉 = 0 since T1T2 = 0, leaving us with the equation for θ̇1,

θ̇1 = 〈v(x̄)|t̄′1〉/〈t1(x̄)|t̄′1〉 , (B.1)

and similarly for θ̇2, the same as (16) for the rotation group consisting of only the rotations generated by either T1 or
T2. This means a point being singular depends only on whether or not it is singular in either of the slices normal to
only one of the group tangents, breaking up the problem of determining if a point is singular into the same problem
for each of the SO(2) separately. In Section 3 we described what happens to the reduced state space trajectory as it
passes through singularity of a single SO(2) symmetry group. Using this result we can handle the singularities for the
product of arbitrarily many SO(2).

12



References

[1] P. J. Morrison, J. M. Greene, Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics, Phys. Rev.
Lett. 45 (1980) 790–794, see also Phys. Rev. Lett. 48, 569 (1982).

[2] F. E. Low, A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas, Proc. R. Soc. London A 248 (1253) (1958) 282–287.
[3] H. Cendra, D. D. Holm, M. J. W. Hoyle, J. E. Marsden, The Maxwell-Vlasov equations in Euler-Poincaré form, J. of Math. Phys. 39 (1998)
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[43] F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, A. Politi, Characterizing dynamics with covariant Lyapunov vectors, Phys. Rev. Lett. 99
(2007) 130601, arXiv:0706.0510.
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