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Neighborhoods of periodic orbits and the stationary distribution of a noisy chaotic system
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1Department of Physics, University of Texas, Austin, Texas 78712, USA
2Institute for Advanced Study, Tsinghua University, Beijing 100084, China

3Center for Nonlinear Science and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
(Received 17 July 2015; published 23 December 2015)

The finest state-space resolution that can be achieved in a physical dynamical system is limited by the presence
of noise. In the weak-noise approximation, the stochastic neighborhoods of deterministic periodic orbits can be
computed from distributions stationary under the action of a local Fokker-Planck operator and its adjoint. We
derive explicit formulas for widths of these distributions in the case of chaotic dynamics, when the periodic orbits
are hyperbolic. The resulting neighborhoods form a basis for functions on the attractor. The global stationary
distribution, needed for calculation of long-time expectation values of observables, can be expressed in this basis.
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I. INTRODUCTION

This paper investigates the interplay of deterministic
chaotic dynamics and weak stochastic noise, and proposes
a definition of the neighborhood of a noisy hyperbolic state-
space point. Such neighborhoods are conjectured to partition
the state space in an optimal way and provide a basis function
set for the evaluation of the stationary distribution.

A. Width of a noisy trajectory

The basic idea of a stochastic “neighborhood” is that the
balance between the noise broadening of a trajectory and the
deterministic contraction leads to a probability distribution
of finite width, as opposed to one that spreads with time
(diffusion only). For an orbit that converges to a linearly stable,
attractive equilibrium, this neighborhood was computed in
1810 by Laplace [1,2] and is today known as a solution to the
Lyapunov equation [3], or the Ornstein-Uhlenbeck process [4]:
for a one-dimensional flow, the deterministic equilibrium
point is smeared into a Gaussian probability density centered
on it, whose covariance Q = −D/λ is a balance of the
expansion rate D (diffusion constant) against the contraction
rate λ < 0. Fokker-Planck equation [5] generalizations to
higher-dimensional stable equilibria and limit cycles (stable
periodic orbits) are immediate, provided proper care is taken
of the diffusion along the periodic orbit [6,7].

What if a periodic orbit is unstable? Both the diffusion rate
and the linearized stability rate λ > 0 now expand forward
in time and cannot balance each other. This problem was
solved in Refs. [8,9] for repelling periodic orbits with no
contracting directions, by balancing the stochastic diffusion
against the contraction by the adjoint Fokker-Planck operator.
The resulting covariance matrix defines the stochastic neigh-
borhood for a repelling orbit, while the Ornstein-Uhlenbeck
covariance defines it for a stable orbit. However, neither these
stable nor repelling orbits play a role in chaotic dynamics.
The long-time attractors of chaotic dynamics are organized by
an infinity of hyperbolic periodic orbits [10–12], i.e., orbits

*Present address: Faculty of Science, Jiangsu University, Zhenjiang
212013, China; domenico@ujs.edu.cn

which an ergodic trajectory visits by approaching them along
their stable eigendirections and leaves along their unstable
eigendirections.

The central result of this paper is that techniques developed
for solving the Lyapunov equations [13–15] enable us to define
the neighborhood of a hyperbolic periodic point by splitting
the covariance matrix Q into two (mutually nonorthogonal)
covariance matrices: Qcc for the contracting directions and
Qee for the expanding directions.

There are two immediate applications of the notion of the
neighborhood of a hyperbolic point: (a) “optimal partition”
of the attractor, and (b) construction of a basis set for the
stationary distribution of a noisy chaotic flow.

B. An optimal partition from periodic orbits

While in the idealized deterministic dynamics the state
space can be resolved arbitrarily finely, in physical systems
noise always limits the attainable state-space resolution.

This observation had motivated the many limiting resolu-
tion estimates for state-space granularity of chaotic systems
with background noise. The idea of an optimal partition in
this context was first introduced in 1983 by Crutchfield and
Packard [16], who formulated a state-space resolution criterion
in terms of a globally averaged “attainable information.” The
approach was later generalized and applied to time-series
analysis, where the underlying dynamics is unknown [17,18].
A different strategy consists of computing a transfer matrix
between intervals of a uniform grid and estimating averages
of observables from its eigenvalues and eigenfunctions. First
introduced by Ulam [19], this technique has been developed
over the years [20,21]. All of these approaches (see Ref. [9]
for a review) are based on global averages and assume that
granularity is uniform across the state space. In contrast,
the main, computationally precise lesson of our work is
that even when the external noise is white, additive, and
globally homogenous, the interplay of noise and nonlinear
dynamics always results in a local stochastic neighborhood,
whose covariance depends on both the past and the future
noise integrated and nonlinearly convolved with deterministic
evolution along the trajectory. The optimal resolution thus
varies from neighborhood to neighborhood and has to be
computed locally. As was shown in Ref. [8] for a strictly
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expanding 1d chaotic map and a given noise, the maximal
set of nonoverlapping neighborhoods of periodic orbits can be
used to construct an optimal partition of the state space, and
compute dynamical averages from the associated approximate
matrix Fokker-Planck operator.

C. The stationary distribution

In this paper, we utilize our construction of optimal par-
titions to approximate the stationary probability distribution
function by a finite sum over Gaussians, one for each neighbor-
hood. When the dynamics is chaotic, the most one can predict
accurately for long times are the statistical properties of the
system, given by the state-space averages of observables a(x),

〈a〉 =
∫

dxρ(x)a(x), (1)

where the stationary distribution (natural measure [22–24])
ρ(x) is the probability of finding the system in the state
x on the attractor. For a deterministic system, ρ(x) is a
singular, nowhere differentiable distribution with support
on a fractal set, and its numerical computation is usually
not feasible. However, for any physical system, the noise
washes out fine details of the dynamics and the stationary
distribution is smooth. Here we propose a smooth function
basis for ρ(x), based on the optimal partition of the state
space. We develop our formalism for discrete-time dynamical
systems and illustrate it by computing the neighborhoods
and estimating ρ(x) for the Lozi map [25], a simple two-
dimensional discrete-time chaotic system. The idea is to
first partition the attractor into an optimal partition set of
neighborhoods, and then use the associated local Gaussian
distributions as a finite set of basis functions for the global
stationary distribution. In the two-dimensional Lozi example,
our estimates for the stationary distribution are consistent
with those obtained by the direct numerical estimation of the
lattice-discretized probability densities computed from long
stochastic (Langevin) trajectories.

II. THE NEIGHBORHOOD OF A HYPERBOLIC POINT

An autonomous discrete-time stochastic dynamical system
(M,f,�) can be defined by specifying a state space M,
a deterministic map f : M → M, and an additive noise
covariance matrix (diffusion tensor) � = �(x). In one time
step, an initial Dirac δ density distribution ρa(x) located at x

is smeared out into a Gaussian ellipsoid ρa+1(y) centered at
y = f (x), with covariance �(x). This defines the kernel of the
Fokker-Planck evolution operator in d dimensions [5],

LFP (y,x)dx = e
− 1

2 [y−f (x)]� 1
�(x) [y−f (x)] [dx],

[dx] = ddx/ det(2π�)1/2 . (2)

Consider a trajectory {xa} = (xa,xa+1,xa+2, . . .) generated by
the deterministic evolution rule xa+1 = f (xa), and shift the
coordinates in each xa neighborhood to x = xa + za . In the
vicinity of xa , the dynamics can be linearized as za+1 =
Maza, where Ma = ∂f (xa) is the one time-step Jacobian
matrix.

Prepare the initial density of trajectories ρa(za) in the xa

neighborhood as a normalized Gaussian distribution ρ(za,Qa),

centered at za = 0, with a strictly positive-definite covariance
matrix Qa . The support of density ρ(za,Qa) can be visualized
as an ellipsoid with axes oriented along the eigenvectors of
Qa . The linearized Fokker-Planck operator,

L(za+1,za) dza = e−(za+1−Maza )� 1
2�a

(za+1−Maza ) [dza],

maps this distribution one step forward in time into another
Gaussian,

ρ(za+1,Qa+1) =
∫

dzaL(za+1,za)ρ(za,Qa), (3)

with the covariance matrix deformed by the dynamics and
spread out by the noise, as given by the discrete Lyapunov
equation [3,26],

Qa+1 = MaQaM
�
a + �a. (4)

In other words, the two covariance matrices, i.e., (i) the
deterministically transported Qa → MaQaM

�
a and (ii) the

noise diffusion tensor �a , add together in the usual manner as
squares of errors.

Similarly, the density evolution for dynamics with strictly
expanding Jacobian matrices Ma can be described by the action
of the adjoint Fokker-Planck operator [8,9], with kernel

L†(y,x) dy = e
− 1

2 (y−f (x))� 1
�(x) (y−f (x)) [dy].

The adjoint Fokker-Planck operator expresses the current
density ρa as the convolution of its image ρa+1 with the noisy
dynamics

ρa(za,Qa) =
∫

dza+1L†(za,za+1)ρa+1(za+1,Qa+1).

Like in the forward evolution, we may substitute a Gaussian
density into this equation to obtain the discrete adjoint
Lyapunov equation for the covariance matrices,

MaQaM
�
a = Qa+1 + �a. (5)

We show in what follows that if the Jacobian matrices Ma have
all eigenvalues strictly contracting (expanding), any initial
Gaussian converges to an invariant density under the action
of the (adjoint) Fokker-Planck operator. Consider first the case
of a map f (x) with a stable fixed point at xa (at z = za = 0).
The covariance matrix transforms as

Q = � + M�M� + M2�(M�)2 + · · ·

=
∞∑

m,n=0

Mn�(M�)mδmn. (6)

By inserting the Fourier representation of Kronecker δmn into
(6), we can recast this expression into the resolvent form

Q =
∫ 2π

0

dθ

2π

∞∑
m,n=0

(e−iθM)n�(eiθM�)m

=
∫ 2π

0

dθ

2π

1

1 − e−iθM
�

1

1 − eiθM� . (7)
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We do the same in the expanding case, by using the adjoint
evolution

MQM� =
∞∑

m,n=0

1

Mn
�

1

(M�)m
δnm

=
∫ 2π

0

dθ

2π

∞∑
m,n=0

(
eiθ

M

)n

�

(
e−iθ

M�

)m

=
∫ 2π

0

dθ

2π

1

1 − eiθ /M
�

1

1 − e−iθ /M� , (8)

which is then easily reduced to (7), so that the resolvent form is
the same regardless of whether M is expanding or contracting.
This result becomes particularly handy when we deal with a
hyperbolic fixed point, that is, when Ma has both expanding
and contracting eigenvalues. The monodromy matrix is not
symmetric and it cannot be diagonalized by an orthogonal
transformation, but its expanding and contracting parts can be
separated with a similarity transformation S that brings M to
a block-diagonal form,

	 ≡ S−1MS =
(

	e 0
0 	c

)
. (9)

Here the blocks 	e and 	c contain all expanding and con-
tracting eigenvalues of the monodromy matrix, respectively.
The covariance matrix Q = SQ̂S� is not block diagonalized
by the above similarity transformation, but consider the four
blocks

Q̂ij =
∫ 2π

0

dθ

2π

1

1 − e−iθ	i

�̂ij

1

1 − eiθ	�
j

, (10)

where �̂ ≡ S−1�(S−1)�, and i,j ∈ {c,e}, where {c,e} denotes
{ contracting, expanding }. This expression may be evaluated
as a contour integral around the unit circle in the complex
plane [13,15],

Q̂ij = 1

2πi

∮



dz
1

z1 − 	i

�̂ij

1

1 − z	�
j

. (11)

The diagonal blocks Q̂cc, Q̂ee have either all expanding or
all contracting eigenvalues, meaning at least one pole inside
and one pole outside the unit circle, and the residue theorem
yields a nonvanishing result for the integral. Consider next the
off-diagonal block Q̂ce with 	i contracting and 	j expanding:
in this case, the poles all lie outside the unit circle and the
integral vanishes. The remaining off-diagonal block having
	i expanding and 	j contracting must also vanish when
integrated, due to the symmetry of Q̂, which is therefore block
diagonal,

Q = S

(
Q̂ee 0

0 Q̂cc

)
S�. (12)

These results are easily extended to a periodic orbit p of
period np, since any point xa of the orbit is a fixed point of the
npth iteration of the map. The forward and adjoint evolution
equations (4) and (5) for the covariance matrix, as well as the
resolvent (7), all still hold, with some changes in the notation:
each periodic point xa has its own neighborhood, with its own
covariance matrix Qa . The monodromy matrix Ma of xa now

evolves np steps along the orbit,

M
np

a = Ma+np−1 · · ·Ma+2Ma+1Ma,

while the diffusion tensor �a now accounts for the total noise
accumulated along the periodic orbit,

�p,a ≡
np−1∑
i=0

M
np−i−1
a+i+1 �a+i M

np−i−1
a+i+1

�. (13)

III. OPTIMAL PARTITION AND STATIONARY
DISTRIBUTION

At this point, our strategy is to build a partition out of
neighborhoods of the periodic points, each defined by means
of the stationarity condition (7): solve for the expanding and
contracting blocks of (12) separately and draw a parallelogram
on the supports of the resulting Gaussians, with axes oriented
along the eigenvectors of the covariance matrices Qee and Qcc

and their widths given by one standard deviation along each
direction. We say that two neighborhoods overlap if they do so
by at least 50% of their areas (consistent with the 1σ confidence
interval chosen as the overlapping threshold in Ref. [8]). For a
typical chaotic map, periodic points are dense in the determin-
istic attractor [27], which we now aim to cover entirely with
the minimum number of neighborhoods possible. We do so
via the following algorithm: (i) Find periodic points of period
np = 1,2, . . ., and their corresponding neighborhoods. (ii) If
any neighborhood overlaps with the neighborhood of a shorter
periodic point, then it is discarded and the neighborhood of
lower period occupying the same area is instead kept in the
partition. (iii) Among groups of neighborhoods of the same
period, discard those that overlap, while keep the rest in the
partition. (iv) The algorithm stops when the attractor is fully
covered and no further nonoverlapping neighborhoods can be
found. An example is shown in Fig. 1 for the two-dimensional
Lozi attractor [25].

The main utility of a good partition is that it provides
a basis for an accurate and efficient estimate of long-time
averages of observables defined on the dynamical system, of
the form (1). As explained in Sec. I C, our goal here is to
determine the stationary distribution ρ(x). For that purpose,
we use as our basis the Gaussian ellipsoids that satisfy the
local stationarity condition (7) in each neighborhood of the
optimal partition. A set of Gaussians centered at every point in
the state spaceM forms an overcomplete, nonorthogonal basis
for functions in L2(M), as is well known from the study of
coherent states of quantum harmonic oscillators [28]. Our (also
overcomplete and nonorthogonal) set of Gaussians is centered
only on periodic points, which are dense in the deterministic
attractor, but not in the entire state space. Therefore, our basis
is designed to resolve the structure of any function with support
on the hyperbolic “strange set” (an attractor or a repeller). The
Gaussians are constructed so that their widths balance the noise
spreading and the (time-forward or -backward) contraction
of the deterministic dynamics. In the transverse directions,
the basis gives the width of the global stationary distribution,
locally everywhere determined by the balance between noise
and dynamics. Along the attractor, the basis determines the
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FIG. 1. (Color online) Building the partition for the Lozi attrac-
tor, for an isotropic constant diffusion tensor δij�. (a),(b) � = 0.01.
The deterministic attractor is the fractal structure in the background
of each picture. Stochastic neighborhoods of a set of periodic points
are indicated by their standard deviation parallelograms. (a) An
initial partition: with only periodic points of periods �5, much of
the attractor remains to be covered. (b) The final, optimal partition
covers the whole attractor, with no pair of neighborhoods overlapping
by more than 50%. (c) N , the number of neighborhoods needed to
achieve the optimal partition for a given noise strength �.

minimum number of neighborhoods needed to fully resolve
the structure of the stationary distribution.

There are numerical methods (such as refinements of
Ulam’s method [29]) that identify the asymptotic attractor
by running long noisy trajectories, dropping the transients,
and covering the attractor so revealed by a finite number of
boxes. These algorithms have no a priori information about
how the stationary distribution behaves transversely to the
deterministic attractor, and they may easily overestimate the
number of basis elements needed to resolve this structure.
In contrast, in our approach the transverse structure is
automatically accounted for by the local balance between
the noise and the deterministic contraction along the stable,
transverse directions, given by covariance matrix block Q̂cc in
Eq. (12). Furthermore, estimating ρ(x) by binning a long noisy
trajectory over a finite number of attractor-covering boxes is
feasible only in a low-dimensional state space, while (12) can
be computed for a state space of any dimension.

In discrete time dynamics, the stationary distribution is
the ground-state eigenfunction of the Fokker-Planck evolution
operator (2) with escape rate γ ,

Lρ(x) = e−γ ρ(x). (14)

In order to estimate the stationary distribution, we write it as a
sum over the neighborhoods of the periodic points:

ρ(x) =
N∑

a=1

ha φa(x), (15)

where φa = e−x�
a Qaxa are the Gaussian basis functions, with

Qa given by (12), and the coefficients {ha} to be determined.
The truncation of the expansion (15) to N basis functions
follows from our optimal partition. We estimate the coefficients
ha by minimizing the cost function,

∫ [
N∑

a=1

ha(L − e−γ )φa(x)

]2

dx, (16)

together with the normalization constraint for ρ(x). We can
also estimate the escape rate of the system by minimizing the
error with respect to e−γ .

As an example, we apply the procedure to the Lozi
map [25],

xn+1 = 1 − a|xn| + b yn,

yn+1 = xn, (17)

with parameters a = 1.85,b = 0.3 and isotropic, constant dif-
fusion tensor δij�, with � ranging in the interval [0.003,0.1].
Figure 1(c), which shows the number N of neighborhoods
required by the optimal partition for a given �, illustrates the
efficiency of our method: N goes from tens to few hundreds in
the noise range considered. In order to test our algorithm, we
also estimate ρ(x) and γ by a direct numerical simulation. The
(x,y) state space is divided into uniform mesh 6.4 × 105 bins;
we follow long stochastic trajectories and count how many
times they visit each bin. The stationary distribution ρB(x) is
then the normalized frequency distribution of the whole grid.
The deterministic Lozi map has a fixed point at the edge of
the attractor, whose stable manifold is the boundary of the
deterministic basin of attraction. The noise makes it possible
for a stochastic trajectory to cross this boundary and escape.
We compute the escape rate as the ratio of the total number
of points in the noisy trajectories to the number of escapes.
Figure 2 shows an example of the stationary distribution
estimated with both methods, while in Fig. 3 we quantitatively
compare the two procedures. In particular, we estimate the
relative error between the stationary distribution ρ computed
with the optimal partition and ρB computed on the uniform
grid, by using a normalized L2 distance, as

d(ρ,ρB ) =
∫

[ρ(x) − ρB(x)]2dx∫
[ρB(x)]2dx

. (18)

FIG. 2. (Color online) The stationary distribution of the Lozi
map with � = 0.01. (a) A direct numerical calculation obtained
by running noisy trajectories for a long time. (b) The stationary
distribution calculated with the optimal partition method.
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FIG. 3. (Color online) (a) The escape rate from the attractor as the
function of the noise strength �. Squares: uniform grid discretization
method. Triangles: optimal partition. (b) The normalized L2 distance
d(ρ,ρB ) between the corresponding stationary distributions.

The two distributions are within 5% of each other, whereas
the escape rates differ by at most 10%, over a range of � that
spans two orders of magnitude.

IV. DISCUSSION

In conclusion, we have generalized the optimal partition
hypothesis first formulated in [8] to hyperbolic maps in arbi-
trary dimension and tested the method on a two-dimensional
system with weak white isotropic noise. As noise induces a
finite resolution of the state space of any physical system,
finite numbers of neighborhoods suffice to partition the state
space explored by chaotic dynamics and to estimate long-time
averages of observables. Here we have used the deterministic
unstable periodic orbits as the skeleton on which to build
an optimal partition for the noisy state space. First we
determine a local stationary distribution in the neighborhood
of each periodic point by balancing the noise against the
deterministic expansion or contraction. From the separation
of expanding and contracting blocks in the covariance matrix

that characterizes the Gaussian approximation to the local
stationary distribution, we carve out a precise definition of
neighborhood, i.e., the constituent of our partition, which is
then used to approximate the global stationary distribution,
estimate the escape rate (for open systems that allow escape),
and estimate any long-time averaged observable. Numerical
tests confirm that the accuracy of our method is comparable
to that of a uniform grid discretization, but the number of
neighborhoods required for our optimal partition (∼10 to 100)
is three to four orders of magnitude smaller than the number
of bins used in the uniform grid discretization method (∼105).

The problems that dynamical chaos (or “turbulence”)
theory faces nowadays are not two dimensional, but high and
even infinite dimensional. Today it is possible to compute
numerically exact periodic orbits (“recurrent flows” [30]) in a
variety of physically realistic turbulent fluid flows [31,32], but
these calculations are at the limit of what current codes can do,
and we hope that the methods presented here can provide sharp
criteria for when a sufficient number of such solutions has been
computed. Furthermore, unlike the uniform grid discretization,
our partitions are smart, since they rely on the periodic orbits of
the deterministic system as skeleton of the dynamics, as well as
efficient, due to the finite (and surprisingly optimal) numbers
of neighborhoods and corresponding basis functions. This, we
believe, should make our algorithm less costly to implement
than direct numerical simulations in higher dimensions, where
discretizations would be impractical. With some modifications
and application of Poincaré sections, the formalism can be
applied to continuous time flows as well [9,33]. Outstanding
challenges include dealing with the lack of hyperbolicity
in higher dimensions (marginal directions were treated in
Ref. [9] for 1d maps) as well as extending the definition
of neighborhood to other time-invariant sets, such as relative
periodic orbits and partially hyperbolic invariant manifolds.
Further technical issues, such as improving the efficiency of
the minimization algorithm by modifying the basis of functions
used in the computation of the stationary distribution, are also
part of our agenda.
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J. Phys. (Paris), Colloq. 39, C5 (1978).
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