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Cycle expansions for intermittent diffusion
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We investigate intermittent diffusion using cycle expansions and show that a truncation based on cycle
stability achieves reasonable convergence, without using detailed information about the analytic structure of
the zeta function[|S1063-651X97)09212-X]

PACS numbd(s): 05.45+b

I. INTRODUCTION significant longer cycle is first included in the expansion.
(i) Stability truncation requires only that all cycles up to
Classical dynamical systems range from purely integrablgiven stability cutoff be determined, without requiring de-
to purely hyperbolic. For purely integrable systems we haveailed understanding of the topology of the flow and sym-
a variety of classical methods, such as separation of thbolic dynamics. It is thus much easier to implement for a
Hamilton-Jacobi equatiofl]. For almost integrable systems generic dynamical system than the curvature expansins
we have Kolmogorov-Arnold-Moser theof]. For purely  that rely on finite subshift approximations to a given flow.
hyperbolic systems it is possible to obtain much information  (jii) The stability ordering preserves approximately any
about the system by grouping contributions computed on unshadowing that is present. That is, a long cycle that is shad-
stable periodic orbitf3] into terms in cycle expansioid,5].  owed by several shorter ones will have a stability eigenvalue
They yield the classical escape rate of open billiard systemg,at is approximately the product of the shorter cycle eigen-
to a high degree of accurag§] and the semiclassical energy yajues and will be most likely be included at the same sta-
levels of systems such as heliufii] using a surprisingly pjjity cutoff.
small number of unstable periodic orbits. (iv) Cycles can be detected numerically by searching a
However, the formalism does not work well for generic long trajectory for near recurrencg41,12. The method
dynamical flows for which the hyperbolic regions coexist preferentially finds the least unstable cycles, regardless of
with attractors, intermittent regions, and elliptic regions. Foriheir topological length. Another practical advantage of the
intermittent systems the cycle expansions ordered by the Gnethod(in contrast to the Newton method seardhieghat it
pological cycle length converge poorly if very long, almost ony finds cycles in a given connected ergodic component of

stable cycles dominate the dynamics. The originahs well  phase space, even if isolated cycles or other ergodic regions

mittent systems uses detailed analytic information about the | what follows we illustrate the first three points by in-

intermittent regions in order to explicitly sum infinite se- vestigating the convergence of stability cutoff approach for a
quences of such cycles. . _simple system. We begin by describing diffusion on a lattice

Our philosophy here is that it should be possible to obtainyf one-dimensional maps, how to calculate the diffusion co-
reliable dynamical averages without a complete understandstficient using cycle expansions, and then perform the calcu-

ing of the detailed structure of the phase space as long as Wgtions numerically. Finally, we discuss the scope of such
are restricted to a given connected region in which the dyzpproaches and possible improvements.

namics is ergodic. Recent wofR] on the Lorentz gas sug-
gests that reordering the cycle expansions by stalilif}
may improve convergence in such situations. Here we test
this proposal by calculating diffusion in a one-dimensional
intermittent map and demonstrate that the stability ordering As a model on which to test the above ideas we shall use
yields better convergence than the ordering by the topologia well-understood one-parameter family of diffusive one-
cal cycle length. dimensional maps. For such maps the symbolic dynamics is
There are several arguments in favor of using stabilitya complete ternary shift, all cycles can be exhaustively enu-
rather than the topological din case of continuous flows merated, and the limitations of the length truncated cycle
real time length as the truncation criterion. expansions are solely due to the lack of hyperbolicity and not
(i) Longer but less unstable cycles can give larger contrito inadequate understanding of the symbolic dynamics.
butions to a cycle expansion than short but highly unstable Many of the features of intermittent systems can be cap-
cycles. In such situation truncation by length may require anured by one-dimensional intermittent maps introduced in
exponentially large number of very unstable cycles before &ef. [13] to study turbulence. Piecewise linear approxima-
tions[14] can make statistical-mechanics aspects of such in-
termittent dynamics, including phase transitiord$] and
*Electronic address: dettmann@nbi.dk Levy flights, analytically tractable. Intermittent maps can
TElectronic address: p-cvitanovic@nwu.edu lead to anomalous deterministic diffusion, with the mean-

II. DIFFUSION IN 1D MAPS
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4 D= lim i(ﬁ% )
0.4 vz oo 2n
, is computed as an average over initial conditions in the el-
0.2 S ementary cell.

The reduced maf2) has three branches, corresponding to
either moving to the left, staying in the elementary cell, or
flz) o© moving to the rightn={—1,0,1}. Hence the natural sym-

., bolic dynamics is a three-letter alphabet,0,+}. For a
, given symbol string the total translatianis just the sum of
02 e the individual symbols in the cycle symbol string. The three
’ branches form a Markov partition, because each is mapped
4 onto the whole interval, and the symbolic dynamics is thus
’ unrestricted in the three symbols, with all finite strings cor-
, responding to cycles.

4 The pointx=0 is a fixed point(cycle of length 1 with

04 0.2 0 0.2 0.4 symbol sequence 0. Far<<0, Ay=f'(0)=, this fixed

x point is infinitely unstable and its contribution to cycle ex-
) pansions is vanishing. Fax>0, Ay=1f'(0)=1, the fixed

FIG. 1. Map(1) for =1 restricted to the elementary cell, to- hoint js marginally stable and is also customarily omitted
gether with the &+ cycle. In the full space this cycle corresponds gy cycle expansion§4]. The intermittent behavior arises
:ﬁebﬁglittlzernotlon to the right, with each seventh iteration en'[erlngfrom cycles containing long strings of 0's that come close to

' the marginally stable fixed point.

square displacement either sublinear or superlinear in the

time [16]. Ill. CYCLE EXPANSIONS
In the intervalx e[ —1/2,1/2), which we call the elemen-  cycle expansion approaches to deterministic diffusion in
tary cell, our model map takes the form one-dimensional maps were introduced in REf,18 and

in the Lorentz gas in Ref.19]. The dynamical-function

FO)=x(1+2[2x%), (1) formula[5] for the diffusion coefficient is

where «>—1. For any value ofx, this maps the interval - - Ay
monotonically to[ —3/2,3/2). Outside the elementary cell, (Np,tNp,+---+np)
> (1

the map is defined to have a discrete translational symmetry [Ap Ap Ay
L o D= 1 P2 k , (4)
f(x+n)=f(xX)+n ne?Z. z _1)knpl+np2+...+npk
( |Ap Ap, - Ap |
1 2 k

A typical initial X in the elementary cell diffuses, wandering
over the real line. The map is parity symmetric,

f(=x)=—1(x), so the average value 6f; =Xy IS Z€r0 . inng of prime cyclesn is the lattice translation of a

and there is no mean drift. . cycle, n is the period of the cycle, and is its stability. As
We now restrict the dynamics to the elementary cell, thaEhe flow is conserved, the leading eigenvalue of the

where the sum is over nonempty distinct nonrepeating com-

is, we define Frobenius-Perron operator equals unity and the inverse of the
X=X—[x+1/2], ;(irrlgspondmg dynamicdl function [3] must vanish'5] for
where[z] is the greatest integer less than or equat,tso
thatx is restricted to the rande-1/2,1/2). The reduced map 1e(1) =1+ “YA- A - A |=0 5
(see Fig. 1is ¢(1) 2 (=1 PP pk| : ®
f(x)=F(x)—[F(x)+1/2]. (2)  For example, with thé—,0,+} symbolic dynamics the cycle
expansion up to topological length=2 equals
A cycle p={Xq1,Xp, ... Xp}, f'(xj)=x; with stability
Ap=Hj“=1f’(xj) corresponds to a trajectf)ry that retlAJrns to B 1 1 1 1 1 1
an equivalent point in the full dynamicg'(x;)=x;+n,. 1/§(1)_1_E_E_ Ao Ay A + AN

Thus the cycles fit into two categories: those that are periodic
in the full dynamicsﬁpzo and those that are not. The dif- where we have omitted the 0 cycle.
fusive properties of the map are fully specified by the re- |deally the + — cycle is shadowed by the- and —

duced mapf(x), together with the lattice translation The  cycles, so the last two terms are expected to approximately
diffusion constant cancel. The cancellation is exact whers 0 and both terms
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equal 9. However, for other values afshadowing may not 1
lead to any significant cancellations. For example,der1, l/§(1)~2 RFETS (6)
A A =25 butA, ~12. nontee

For the casea=0 the mapf(x) is piecewise linear,
A=3"for all cycles, and in this case the stability and length
ordering are equivalent. If the O cycle is included, rait 1
terms in Eq.(4) cancel, leading t® = 1/3.

For a>0, the dynamics is intermittent antl, does not
necessarily grow exponentially with cycle length. Fur-
thermore, fora>0 the most stable orbits that contain long
strings of 0’s are not shadowed by combinations of shorter (n>g~2
cycles, as the 0 cycle is not included. In fact, we can explic- nn
itly deduce the behavior of the most stable cycles, those of ) o
the form 0'+ (an example is given in Fig.)1These begin at As o increases, the system spends more and more of its time
an initial point, which we shall denote by, slightly greater Near the marginally stable fixed point, and fa~1, the
than zero. Many iterations of the function increase monotoniSystem spends on average all of its time within an arbitrarily
cally the value off¥(x) until it finally crosses over to the Small neighborhood of this point, leading to a divergent
right branch and returns to the starting point. Inserting arfméan cycle period7). The numerator of the expression for
extra 0 in the symbolic dynamics has the effect of S”ghﬂydlffusmn IE)oks like the flow conservation sui@), with extra
decreasing the starting point, but the other cycle values ar@ctors ofnf,. This factor is a number of order unity for the
virtually unchanged, the new starting point is very close toleast unstable cycles, so the series converges. Thus the aver-
the old one, and(x,.1) =X, iS a good approximation for age (4) that defines the diffusion coefficient undergoes a

is approximately the Riemann zeta functiofl + 1/«), con-
vergent for alla>0, which is just as well. The denominator
in the diffusion formula(4) appears whenever we calculate
the time average of some quantity and plays the role of a
mean cycle period

1
Ua® (7)

moderately largen. Thus, fora>0 phase transitiofil5] and equals zero fax=1. This behavior
is described as “weak” (&cw<<1) or “strong” (a=1) in-
Xn o termittency. Other averages may converge for different
Xoi1 ~1+2(2Xq+1) ranges ofa.

_ _ o _ For =1 the diffusion is anomalous, witn?) increasing
to the leading order ix,,. This difference equation may be more slowly tham. In the case at hand

approximately solved as a power law,=yn ° giving

ad=1, 2(2y)“=6, or . z—-1, a<l1
z
U(2)~> ——-~1 (z=DIn(z=1), a=1
1 n r,|l+Z|./a
Xy=——. (z—1)Ye,  g>1
2(2an)Ye
- ] . o ) and the leading behavior of a dynamidafunction asz— 1
The stability can be estimated in a similar fashion: yields [18] the exponent characterizing the sublinear diffu-
sion
Ay , _ o at+l
An_1~f () =1+ 2(@+1)(2x) =1+ ——. N a<i
(x3y~1{ n/lnn,  a=1

Again settingA ,= pn¢, we obtaine=1+ 1/a, Ny
n-* a>1.

An~n1+l/a,

We are now in position to estimate and compare the rates
confirmed by our numerical results. This power-law growthof convergence of the topological and stability truncation
of A, is in contrast to hyperbolic systems for which all @pproaches. As we have seen, the cycle expansions are domi-
cycles have stabilities that grow exponentially with the cyclenated by terms of the form i/, wherey=1+1/a for the
length. flow conservation condition ang =1/« for the diffusion

Because these are the most stable cycles, they dominag@nstant. Thus the error made by the topological truncation
cycle expansions at givem Combinations of cycles that do length aftern terms is~n*~”. In contrast, truncating by
not include a cycle with a string of almost0’s are highly ~ Stability corresponds to an error of order/of ¥(“* 1) for the
suppressed. For example, two cycles wi2 0’s and one flow conservation and\(*~1/(*1) for the diffusion con-

other symbol each have a combined stability stant. Fora— 1 close to where the expansion diverges it may
be advisable to improve the estimates by convergence accel-
A2~ (n2[4) 1T Yas A eration techniques.

Having defined the cycle expansions and analyzed their
for large n, again in contrast with hyperbolic systems, for behavior in the intermittent case, we now pose the more
which such shadowing combinations are of comparable magsragmatic question: What is the optimal ordering in practice?
nitude. Hence we can estimate the convergence properties bf the approximation we have been using, with only a single
such cycle expansions by approximating them with thefamily of cycles contributing, the ordering is self-evident.
dominant @'+ cycle family [4]. In this approximation the However, the full expansion is only conditionally conver-
flow conservation conditioi5) gent, and as we have no proof that the stability ordering
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yields the correct results, our justification will come from 12
heuristic arguments, together with the numerical results. mi . '

The topological length cutoff corresponds to a complete [ :
partitioning of the phase space int8 Beriodic point neigh- 8f ’
borhoods, irrespective of the relative sizes of these neighbor- i . ;

hoods. What is the meaning of the stability cutoff? A cycle In A ot T

expansion can be interpretgs] as a partition of the dynami- af L ]
cal phase space into neighborhoods of periodic paiatp, F '

each of size~1/A,. A fixed stability cutoff A selects a 2r - a=-05 ]
uniform partition of the phase space intoA regions, each N

of period approximatelyN=InA, the time needed for a 2 4 6 8 10 12 14 16 18 20
neighborhood of a hyperbolic orbit to spread across the en- 12

tire system. Each prime cycle has abbdlperiodic points, so
the number of prime cycles up to a given stability grows as
AllnA. This estimate is known as the dynamics version of
the prime number theorem for axios systems, given in
Ref.[20]. We find that the estimate is valid numerically for InA s} . ’ ]
nonhyperbolic systems as well, in the case at hand for all
values ofa>—1.

The dramatic difference between the two approaches is
the number of cycles required in each case. The number of [
prime cycles up to a given length increases exponentially ol
with the length, in our case as3"/n. The number of prime

10f . 1

12— T

cycles up to a given stability is grows a¥/InA. Superfi- _ l | |
cially, the topological ordering requires an exponential num- 10 i I l I | I i i
ber of cycles, while the stability ordering requires only a f : REE E 5 0 0
power law. The issue is how small the error is for a given 8r ' I ' ]

truncation. In the case of nice hyperbolic flows this error is A ef
superexponentially small, but for intermittent systems, the ; il
size of the error is not known and we have to resort to nu- al oy 4 ]
merics to estimate it. ; !

IV. NUMERICAL RESULTS 2 4 6 8 10 12 14 16 18 20

For a simple one-dimensional map with a complete sym-
bolic dynamics, such as the mé&p studied here, almostany  FIG. 2. Distribution of cycle eigenvalues as a function of the
reasonable cycle finding meth¢8] should yield thousands topological cycle length: For=1, the intermittent case, a fixed
of prime cycles. The accuracy of s that we calculate topological lengthn cutoff misses many of the least-unstalibeit
approaches the machine precision. We implement the stabilenger period cycles.
ity ordering by noting that for this map any cycle containing
an extra symbol is less stable than the preceding one. Wever, when the dynamics is intermittert>0, the error is
recursively increment cycle lengths, starting withand — smooth but large.
and stopping when the stability cutoff is reached. The stabil- The diffusion constant, evaluated using three different
ity ordering is fast, as cycles containing large numbers of 0’smethods, is plotted as a function afin Fig. 4. Each of the
that dominate the expansion appear only a few times in thithree methods used about half an hour of computing time for
enumeration. The distribution of cycles as a functiomgf each value ofa. There is no analytic expression f&r in

and A, is shown in Fig. 2. general, except fob=1/3 ata=0 andD=0 for «=1, as
In Fig. 3 we check how well different truncations respectexplained above.
the flow conservation rulé5). There is a definite improve- The cycle expansion§) truncated at topological length

ment as the stability cutoff is increased. For smaller values oN= 10 (dot-dashed linegive very poor estimates @ as«
a there is a significant amount of scatter due to a smalincreases away from zero into the intermittent regime, as
number of unbalanced shadowing terms, which vary rapidiymany of the least-unstable cycles are not inclutfed. 2).
with «; however, the error is consistently small. For ex- The cycle expansiong}) truncated according to stability
ample, fora<1 and A=10 cutoff the error always lies (solid lineg approach the direct simulatiootted ling as
belowe 6~0.0025 . the cutoff is increased from #Qupper curve atr=2) to
The filled circles in Fig. 3 are obtained by using all cycles10°. Since the number of prime cycles less thafis asymp-
with N<10, corresponding to roughly the same computatotically equal to A/InA, we expect that about
tional effort as the stability cutoff of PO For =<0 the sys- 10°/In10°~8700 cycles would be needed, not far from the
tem is hyperbolic with complete symbolic dynamics, so thenumber of cycles actually found, which lies in the range
topological length cutoff yields the best convergence. How-8871-10066 for all ther shown.
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0 vergence acceleration schemes. We have tried Aitkéf’s
procesq21] which is geared to exponential convergence. If
t,—1. tn, @andt,, , are three consecutive terms of a sequence,
an improved estimate is

In [¢7H0, 1)]
=t . (tn+1_tn)2
oot ther—2th+Ht_y

®

-10

-12

Y 0 0.5 1 15 2 Using this formula for the cycle expansions computed to a

a stability of 1¢, 10*, and 16 we obtain the dashed line in
Fig. 4, which is comparable to the direct simulation and
FIG. 3. Numerical test of the flow conservation for different mych closer to the true value Bf than the value obtained by
truncations. The logarithm of the magnitude of th&unction(S) is  the |ength cutoff.
plotted as a function ofr for stability cutoffsA= 107, 10°, 10%, It should be noted that the estima® only works if the
and 10 (plusses, open triangles, squares, and circles, respedfivelysequence is relatively smooth. Cycle expansions with stabil-
as well as for the topological length cutdff=10 (filled circles. ity cutoff are not particularly smooth as a function of the
The soIidQlerves for>0.5 are the behavior gxpected from Sec. lll, cutoff; for example, see Fig. 5 of RdB]. This is because at
Icnrfglsse/; o fit) ’trfgrd;htz cutoff values ofA, with the constant 1.5 each stage a small number of shadowing combinations are
’ unbalanced by the cutoff and the number of such mismatches
varies rapidly with the cutoff. In this case, the convergence
Due to the phase transition all three methods are Onlbver the range 1%9_1(? is Sufﬁcient'y smooth to use E@L

logarithmically convergent to zero at=1. Direct simula-  however, a smaller spacing such asX21®*, 5x 10, or 10
tion cannot yield accurate estimatesdiear this point; the s dominated by fluctuations.

stability and topological length truncations could easily be
improved by using the analytic structure of thB40 series

[8] for the map at hand, but as we are unlikely to have this V. CONCLUSION
information available in a generic case, such improvements o )

As discussed in Sec. Ill, we expect that the error shouldalculate averages for intermittent systems with accuracy
scale as a power of the cutoff stability, relatedatpor ex- comparable to direct simulations as long as a stability cutoff
ponentially withn for a cutoff of 10. If the convergence of 1S used. Stability ordering has a great simplicity in that it
a sequence is exponential and reasonably smooth, it shoufg§quires no knowledge of the dynamics, except what is con-

be possible to extrapolate to the limit using a variety of conained in a finite cycle set. We conclude with a few possi-
bilities for future directions.

First, it is good to see rapidly converging expansions, but
another thing to have rigorous limits to guarantee conver-
gence. Chaotic systems often behave more nicely than it is
possible to prove; however, it would be advantageous to ex-
tend the proofs of superexponential convergence for length

0.6 ordered cycle expansions of analytic hyperbolic systems to
b ‘ the stability ordered case with the hope of allowing a wider
0.4 class of dynamical systems.

The stability ordering exhibits imperfect shadowing,
which can lead to scatter in the results, as observed in Fig. 3.
One possible remedy to this problem might be to replace the
factor LUTA by f(ITA)/TIA, where the smoothing functioh
moves continuously from 1 to 0. This must certainly im-
o prove the shadowing, but it requires that cycles be found up
e . to the largest stability at whichis nonzero, without utilizing
FIG. 4. Diffusion constan(3) as a function ofx computed by these cycles fully. For our diffusion coefficient calculations,

three different methods. The dotted line is obtained by direct nu-,[h r lts are smooth en h t Aitken’s method
merical evaluation of E¢(3) for 3x 10* random initial points, each € results are smooth enough to use en's method, so

evolved by 3< 10* iterations of the map. The dot-dashed line is the additional smoothing is probably unnecessary.
cycle expansion averadé) truncated at topological lengfi= 10, We also note that because the number of cycles less than

corresponding to 9381 cycles with O omitted. The expansion i€ 9ivenA is roughlyA/InA, independent of the dimension of
accurate only near<0.3,where the shadowing is good. The solid the space, stability ordering could be applicable to high-
lines are cycle expansiorté) truncated according to stability, with dimensional systems. In particular, the detailed structure of
cutoff A =10 for the uppermost line atr=2, followed by 18, the dynamics need not be known, only an algorithm for find-
10, and 18 for the other curves. The dashed line is an extrapolaing the cycles in the first place, for example, tracing out a
tion (8) of these curvesa=1 corresponds to a phase transition long trajectory and looking for near repeats, which are then
point beyond whictD =0; all numerical methods fail here. refined by some form of Newton’s method.

0.8

0.2

-0.5
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Finally, it is not clear to what extent the stability cutoff alternation of the Maslov phase within families of cycles
approach is applicable to quantum systems. It is not as eagnalogous to the™d+ family studied above crucial for quan-
to estimate the rate of convergence in this case, even for nidem convergence can lead to large errors in the stability cut-
hyperbolic flows, because the terms are complex, and theff cycle expansion truncation22].
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