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Cycle expansions for intermittent diffusion
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We investigate intermittent diffusion using cycle expansions and show that a truncation based on cycle
stability achieves reasonable convergence, without using detailed information about the analytic structure of
the zeta function.@S1063-651X~97!09212-X#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Classical dynamical systems range from purely integra
to purely hyperbolic. For purely integrable systems we ha
a variety of classical methods, such as separation of
Hamilton-Jacobi equation@1#. For almost integrable system
we have Kolmogorov-Arnold-Moser theory@2#. For purely
hyperbolic systems it is possible to obtain much informat
about the system by grouping contributions computed on
stable periodic orbits@3# into terms in cycle expansions@4,5#.
They yield the classical escape rate of open billiard syste
to a high degree of accuracy@6# and the semiclassical energ
levels of systems such as helium@7# using a surprisingly
small number of unstable periodic orbits.

However, the formalism does not work well for gener
dynamical flows for which the hyperbolic regions coex
with attractors, intermittent regions, and elliptic regions. F
intermittent systems the cycle expansions ordered by the
pological cycle length converge poorly if very long, almo
stable cycles dominate the dynamics. The original@4# as well
as more recent applications@8# of cycle expansions to inter
mittent systems uses detailed analytic information about
intermittent regions in order to explicitly sum infinite s
quences of such cycles.

Our philosophy here is that it should be possible to obt
reliable dynamical averages without a complete understa
ing of the detailed structure of the phase space as long a
are restricted to a given connected region in which the
namics is ergodic. Recent work@9# on the Lorentz gas sug
gests that reordering the cycle expansions by stability@10#
may improve convergence in such situations. Here we
this proposal by calculating diffusion in a one-dimension
intermittent map and demonstrate that the stability order
yields better convergence than the ordering by the topol
cal cycle length.

There are several arguments in favor of using stabi
rather than the topological or~in case of continuous flows!
real time length as the truncation criterion.

~i! Longer but less unstable cycles can give larger con
butions to a cycle expansion than short but highly unsta
cycles. In such situation truncation by length may require
exponentially large number of very unstable cycles befor
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significant longer cycle is first included in the expansion.
~ii ! Stability truncation requires only that all cycles up

given stability cutoff be determined, without requiring d
tailed understanding of the topology of the flow and sy
bolic dynamics. It is thus much easier to implement for
generic dynamical system than the curvature expansions@4#
that rely on finite subshift approximations to a given flow

~iii ! The stability ordering preserves approximately a
shadowing that is present. That is, a long cycle that is sh
owed by several shorter ones will have a stability eigenva
that is approximately the product of the shorter cycle eig
values and will be most likely be included at the same s
bility cutoff.

~iv! Cycles can be detected numerically by searchin
long trajectory for near recurrences@11,12#. The method
preferentially finds the least unstable cycles, regardless
their topological length. Another practical advantage of t
method~in contrast to the Newton method searches! is that it
only finds cycles in a given connected ergodic componen
phase space, even if isolated cycles or other ergodic reg
exist elsewhere in the phase space.

In what follows we illustrate the first three points by in
vestigating the convergence of stability cutoff approach fo
simple system. We begin by describing diffusion on a latt
of one-dimensional maps, how to calculate the diffusion
efficient using cycle expansions, and then perform the ca
lations numerically. Finally, we discuss the scope of su
approaches and possible improvements.

II. DIFFUSION IN 1D MAPS

As a model on which to test the above ideas we shall
a well-understood one-parameter family of diffusive on
dimensional maps. For such maps the symbolic dynamic
a complete ternary shift, all cycles can be exhaustively e
merated, and the limitations of the length truncated cy
expansions are solely due to the lack of hyperbolicity and
to inadequate understanding of the symbolic dynamics.

Many of the features of intermittent systems can be c
tured by one-dimensional intermittent maps introduced
Ref. @13# to study turbulence. Piecewise linear approxim
tions @14# can make statistical-mechanics aspects of such
termittent dynamics, including phase transitions@15# and
Levy flights, analytically tractable. Intermittent maps c
lead to anomalous deterministic diffusion, with the mea
6687 © 1997 The American Physical Society
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6688 56C. P. DETTMANN AND PREDRAG CVITANOVIĆ
square displacement either sublinear or superlinear in
time @16#.

In the intervalx̂P@21/2,1/2), which we call the elemen
tary cell, our model map takes the form

f̂ ~ x̂!5 x̂~112u2x̂ua!, ~1!

where a.21. For any value ofa, this maps the interva
monotonically to@23/2,3/2). Outside the elementary ce
the map is defined to have a discrete translational symm

f̂ ~ x̂1n!5 f̂ ~ x̂!1n nPZ.

A typical initial x̂ in the elementary cell diffuses, wanderin
over the real line. The map is parity symmetr
f̂ (2 x̂)52 f̂ ( x̂), so the average value ofx̂n112 x̂n is zero
and there is no mean drift.

We now restrict the dynamics to the elementary cell, t
is, we define

x5 x̂2@ x̂11/2#,

where@z# is the greatest integer less than or equal toz, so
thatx is restricted to the range@21/2,1/2). The reduced ma
~see Fig. 1! is

f ~x!5 f̂ ~x!2@ f̂ ~x!11/2#. ~2!

A cycle p5$x1 ,x2 , . . . ,xn%, f n(xj )5xj with stability
Lp5) j 51

n f 8(xj ) corresponds to a trajectory that returns

an equivalent point in the full dynamicsf̂ n(xj )5xj1n̂p .
Thus the cycles fit into two categories: those that are perio
in the full dynamicsn̂p50 and those that are not. The di
fusive properties of the map are fully specified by the
duced mapf (x), together with the lattice translationn̂. The
diffusion constant

FIG. 1. Map~1! for a51 restricted to the elementary cell, to
gether with the 061 cycle. In the full space this cycle correspon
to ballistic motion to the right, with each seventh iteration enter
the next cell.
e

ry
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D5 lim
n→`

1

2n
^n̂2& ~3!

is computed as an average over initial conditions in the
ementary cell.

The reduced map~2! has three branches, corresponding
either moving to the left, staying in the elementary cell,
moving to the right,n̂5$21,0,1%. Hence the natural sym
bolic dynamics is a three-letter alphabet$2,0,1%. For a
given symbol string the total translationn̂ is just the sum of
the individual symbols in the cycle symbol string. The thr
branches form a Markov partition, because each is map
onto the whole interval, and the symbolic dynamics is th
unrestricted in the three symbols, with all finite strings co
responding to cycles.

The pointx50 is a fixed point~cycle of length 1! with
symbol sequence 0. Fora,0, L05 f 8(0)5`, this fixed
point is infinitely unstable and its contribution to cycle e
pansions is vanishing. Fora.0, L05 f 8(0)51, the fixed
point is marginally stable and is also customarily omitt
from cycle expansions@4#. The intermittent behavior arise
from cycles containing long strings of 0’s that come close
the marginally stable fixed point.

III. CYCLE EXPANSIONS

Cycle expansion approaches to deterministic diffusion
one-dimensional maps were introduced in Refs.@17,18# and
in the Lorentz gas in Ref.@19#. The dynamicalz-function
formula @5# for the diffusion coefficient is

D5
1

2

( ~21!k
~ n̂p1

1n̂p2
1•••1n̂pk

!2

uLp1
Lp2

•••Lpk
u

( ~21!k
np1

1np2
1•••1npk

uLp1
Lp2

•••Lpk
u

, ~4!

where the sum is over nonempty distinct nonrepeating co
binations of prime cycles,n̂ is the lattice translation of a
cycle, n is the period of the cycle, andL is its stability. As
the flow is conserved, the leading eigenvalue of t
Frobenius-Perron operator equals unity and the inverse o
corresponding dynamicalz function @3# must vanish@5# for
z51:

1/z~1!511( ~21!k/uLp1
Lp2

•••Lpk
u50. ~5!

For example, with the$2,0,1% symbolic dynamics the cycle
expansion up to topological lengthn52 equals

1/z~1!512
1

L1
2

1

L2
2

1

L10
2

1

L20
2

1

L12
1

1

L1L2
,

where we have omitted the 0 cycle.
Ideally the 12 cycle is shadowed by the1 and 2

cycles, so the last two terms are expected to approxima
cancel. The cancellation is exact whena50 and both terms
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56 6689CYCLE EXPANSIONS FOR INTERMITTENT DIFFUSION
equal 9. However, for other values ofa shadowing may not
lead to any significant cancellations. For example, fora51,
L1L2525, butL12'12.

For the casea50 the map f (x) is piecewise linear,
L53n for all cycles, and in this case the stability and leng
ordering are equivalent. If the 0 cycle is included, alln.1
terms in Eq.~4! cancel, leading toD51/3.

For a.0, the dynamics is intermittent andLp does not
necessarily grow exponentially with cycle lengthnp . Fur-
thermore, fora.0 the most stable orbits that contain lon
strings of 0’s are not shadowed by combinations of sho
cycles, as the 0 cycle is not included. In fact, we can exp
itly deduce the behavior of the most stable cycles, those
the form 0n1 ~an example is given in Fig. 1!. These begin at
an initial point, which we shall denote byxn , slightly greater
than zero. Many iterations of the function increase monoto
cally the value off k(x) until it finally crosses over to the
right branch and returns to the starting point. Inserting
extra 0 in the symbolic dynamics has the effect of sligh
decreasing the starting point, but the other cycle values
virtually unchanged, the new starting point is very close
the old one, andf (xn11)5xn is a good approximation fo
moderately largen. Thus, fora.0

xn

xn11
'112~2xn11!a

to the leading order inxn . This difference equation may b
approximately solved as a power lawxn5gn2d giving
ad51, 2(2g)a5d, or

xn5
1

2~2an!1/a
.

The stability can be estimated in a similar fashion:

Ln

Ln21
' f 8~xn!5112~a11!~2xn!a511

a11

an
.

Again settingLn5rne, we obtaine5111/a,

Ln;n111/a,

confirmed by our numerical results. This power-law grow
of Ln is in contrast to hyperbolic systems for which a
cycles have stabilities that grow exponentially with the cy
length.

Because these are the most stable cycles, they dom
cycle expansions at givenn. Combinations of cycles that d
not include a cycle with a string of almostn 0’s are highly
suppressed. For example, two cycles withn/2 0’s and one
other symbol each have a combined stability

Ln/2
2 ;~n2/4!111/a@Ln

for large n, again in contrast with hyperbolic systems, f
which such shadowing combinations are of comparable m
nitude. Hence we can estimate the convergence propertie
such cycle expansions by approximating them with
dominant 0n1 cycle family @4#. In this approximation the
flow conservation condition~5!
r
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1/z~1!;(
n

1

n111/a
~6!

is approximately the Riemann zeta functionz(111/a), con-
vergent for alla.0, which is just as well. The denominato
in the diffusion formula~4! appears whenever we calcula
the time average of some quantity and plays the role o
mean cycle period

^n&z;(
n

1

n1/a
. ~7!

As a increases, the system spends more and more of its
near the marginally stable fixed point, and fora>1, the
system spends on average all of its time within an arbitra
small neighborhood of this point, leading to a diverge
mean cycle period~7!. The numerator of the expression fo
diffusion looks like the flow conservation sum~6!, with extra
factors ofn̂p

2 . This factor is a number of order unity for th
least unstable cycles, so the series converges. Thus the
age ~4! that defines the diffusion coefficient undergoes
phase transition@15# and equals zero fora>1. This behavior
is described as ‘‘weak’’ (0,a,1) or ‘‘strong’’ (a>1) in-
termittency. Other averages may converge for differ
ranges ofa.

For a>1 the diffusion is anomalous, witĥn̂2& increasing
more slowly thann. In the case at hand

1/z~z!;(
n

zn

n111/a
;H z21, a,1

~z21!ln~z21!, a51

~z21!1/a, a.1

and the leading behavior of a dynamicalz function asz→1
yields @18# the exponent characterizing the sublinear diff
sion

^xn
2&;H n, a,1

n/ lnn, a51

n1/a, a.1.

We are now in position to estimate and compare the ra
of convergence of the topological and stability truncati
approaches. As we have seen, the cycle expansions are d
nated by terms of the form 1/ng, whereg5111/a for the
flow conservation condition andg51/a for the diffusion
constant. Thus the error made by the topological trunca
length aftern terms is ;n12g. In contrast, truncating by
stability corresponds to an error of order ofL21/(a11) for the
flow conservation andL (a21)/(a11) for the diffusion con-
stant. Fora→1 close to where the expansion diverges it m
be advisable to improve the estimates by convergence ac
eration techniques.

Having defined the cycle expansions and analyzed t
behavior in the intermittent case, we now pose the m
pragmatic question: What is the optimal ordering in practic
In the approximation we have been using, with only a sin
family of cycles contributing, the ordering is self-eviden
However, the full expansion is only conditionally conve
gent, and as we have no proof that the stability order
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6690 56C. P. DETTMANN AND PREDRAG CVITANOVIĆ
yields the correct results, our justification will come fro
heuristic arguments, together with the numerical results.

The topological length cutoff corresponds to a compl
partitioning of the phase space into 3n periodic point neigh-
borhoods, irrespective of the relative sizes of these neigh
hoods. What is the meaning of the stability cutoff? A cyc
expansion can be interpreted@5# as a partition of the dynami
cal phase space into neighborhoods of periodic pointsi Pp,
each of size;1/Lp . A fixed stability cutoff L selects a
uniform partition of the phase space into;L regions, each
of period approximatelyN5 lnL, the time needed for a
neighborhood of a hyperbolic orbit to spread across the
tire system. Each prime cycle has aboutN periodic points, so
the number of prime cycles up to a given stability grows
L/ lnL. This estimate is known as the dynamics version
the prime number theorem for axiomA systems, given in
Ref. @20#. We find that the estimate is valid numerically fo
nonhyperbolic systems as well, in the case at hand for
values ofa.21.

The dramatic difference between the two approache
the number of cycles required in each case. The numbe
prime cycles up to a given length increases exponenti
with the length, in our case as;3n/n. The number of prime
cycles up to a given stability is grows asL/ lnL. Superfi-
cially, the topological ordering requires an exponential nu
ber of cycles, while the stability ordering requires only
power law. The issue is how small the error is for a giv
truncation. In the case of nice hyperbolic flows this error
superexponentially small, but for intermittent systems,
size of the error is not known and we have to resort to
merics to estimate it.

IV. NUMERICAL RESULTS

For a simple one-dimensional map with a complete sy
bolic dynamics, such as the map~1! studied here, almost an
reasonable cycle finding method@5# should yield thousands
of prime cycles. The accuracy of 1/L ’s that we calculate
approaches the machine precision. We implement the st
ity ordering by noting that for this map any cycle containi
an extra symbol is less stable than the preceding one.
recursively increment cycle lengths, starting with1 and 2
and stopping when the stability cutoff is reached. The sta
ity ordering is fast, as cycles containing large numbers of
that dominate the expansion appear only a few times in
enumeration. The distribution of cycles as a function ofnp
andLp is shown in Fig. 2.

In Fig. 3 we check how well different truncations respe
the flow conservation rule~5!. There is a definite improve
ment as the stability cutoff is increased. For smaller value
a there is a significant amount of scatter due to a sm
number of unbalanced shadowing terms, which vary rap
with a; however, the error is consistently small. For e
ample, for a,1 and L5105 cutoff the error always lies
below e26'0.0025 .

The filled circles in Fig. 3 are obtained by using all cycl
with N<10, corresponding to roughly the same compu
tional effort as the stability cutoff of 105. For a<0 the sys-
tem is hyperbolic with complete symbolic dynamics, so t
topological length cutoff yields the best convergence. Ho
e
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ever, when the dynamics is intermittent,a.0, the error is
smooth but large.

The diffusion constant, evaluated using three differe
methods, is plotted as a function ofa in Fig. 4. Each of the
three methods used about half an hour of computing time
each value ofa. There is no analytic expression forD in
general, except forD51/3 ata50 andD50 for a>1, as
explained above.

The cycle expansions~4! truncated at topological length
N510 ~dot-dashed line! give very poor estimates ofD asa
increases away from zero into the intermittent regime,
many of the least-unstable cycles are not included~Fig. 2!.

The cycle expansions~4! truncated according to stability
~solid lines! approach the direct simulation~dotted line! as
the cutoff is increased from 102 ~upper curve ata52) to
105. Since the number of prime cycles less thanL is asymp-
totically equal to L/ lnL, we expect that abou
105/ln105'8700 cycles would be needed, not far from t
number of cycles actually found, which lies in the ran
8871–10066 for all thea shown.

FIG. 2. Distribution of cycle eigenvalues as a function of t
topological cycle length: Fora51, the intermittent case, a fixe
topological lengthn cutoff misses many of the least-unstable~but
longer period! cycles.
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56 6691CYCLE EXPANSIONS FOR INTERMITTENT DIFFUSION
Due to the phase transition all three methods are o
logarithmically convergent to zero ata51. Direct simula-
tion cannot yield accurate estimates ofD near this point; the
stability and topological length truncations could easily
improved by using the analytic structure of the 0n1 series
@8# for the map at hand, but as we are unlikely to have t
information available in a generic case, such improveme
are outside the scope of the present investigation.

As discussed in Sec. III, we expect that the error sho
scale as a power of the cutoff stability, related toa, or ex-
ponentially withn for a cutoff of 10n. If the convergence of
a sequence is exponential and reasonably smooth, it sh
be possible to extrapolate to the limit using a variety of co

FIG. 3. Numerical test of the flow conservation for differe
truncations. The logarithm of the magnitude of thez function ~5! is
plotted as a function ofa for stability cutoffsL5 102, 103, 104,
and 105 ~plusses, open triangles, squares, and circles, respectiv!,
as well as for the topological length cutoffN510 ~filled circles!.
The solid curves fora.0.5 are the behavior expected from Sec. I
ln(1.5L2a21), for the cutoff values ofL, with the constant 1.5
chosen to fit the data.

FIG. 4. Diffusion constant~3! as a function ofa computed by
three different methods. The dotted line is obtained by direct
merical evaluation of Eq.~3! for 33104 random initial points, each
evolved by 33104 iterations of the map. The dot-dashed line is t
cycle expansion average~4! truncated at topological lengthN510,
corresponding to 9381 cycles with 0 omitted. The expansion
accurate only neara,0.3,where the shadowing is good. The sol
lines are cycle expansions~4! truncated according to stability, with
cutoff L5102 for the uppermost line ata52, followed by 103,
104, and 105 for the other curves. The dashed line is an extrapo
tion ~8! of these curves.a51 corresponds to a phase transitio
point beyond whichD50; all numerical methods fail here.
ly

s
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d

uld
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vergence acceleration schemes. We have tried Aitken’sd2

process@21# which is geared to exponential convergence.
tn21, tn, andtn11 are three consecutive terms of a sequen
an improved estimate is

tn85tn112
~ tn112tn!2

tn1122tn1tn21
. ~8!

Using this formula for the cycle expansions computed to
stability of 103, 104, and 105 we obtain the dashed line in
Fig. 4, which is comparable to the direct simulation a
much closer to the true value ofD than the value obtained b
the length cutoff.

It should be noted that the estimate~8! only works if the
sequence is relatively smooth. Cycle expansions with sta
ity cutoff are not particularly smooth as a function of th
cutoff; for example, see Fig. 5 of Ref.@9#. This is because a
each stage a small number of shadowing combinations
unbalanced by the cutoff and the number of such mismatc
varies rapidly with the cutoff. In this case, the convergen
over the range 103–105 is sufficiently smooth to use Eq.~8!;
however, a smaller spacing such as 2.53104, 53104, or 105

is dominated by fluctuations.

V. CONCLUSION

Our results indicate that cycle expansions may be use
calculate averages for intermittent systems with accur
comparable to direct simulations as long as a stability cu
is used. Stability ordering has a great simplicity in that
requires no knowledge of the dynamics, except what is c
tained in a finite cycle set. We conclude with a few pos
bilities for future directions.

First, it is good to see rapidly converging expansions,
another thing to have rigorous limits to guarantee conv
gence. Chaotic systems often behave more nicely than
possible to prove; however, it would be advantageous to
tend the proofs of superexponential convergence for len
ordered cycle expansions of analytic hyperbolic systems
the stability ordered case with the hope of allowing a wid
class of dynamical systems.

The stability ordering exhibits imperfect shadowin
which can lead to scatter in the results, as observed in Fig
One possible remedy to this problem might be to replace
factor 1/)L by f ()L)/)L, where the smoothing functionf
moves continuously from 1 to 0. This must certainly im
prove the shadowing, but it requires that cycles be found
to the largest stability at whichf is nonzero, without utilizing
these cycles fully. For our diffusion coefficient calculation
the results are smooth enough to use Aitken’s method
additional smoothing is probably unnecessary.

We also note that because the number of cycles less
a givenL is roughlyL/ lnL, independent of the dimension o
the space, stability ordering could be applicable to hig
dimensional systems. In particular, the detailed structure
the dynamics need not be known, only an algorithm for fin
ing the cycles in the first place, for example, tracing ou
long trajectory and looking for near repeats, which are th
refined by some form of Newton’s method.
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Finally, it is not clear to what extent the stability cuto
approach is applicable to quantum systems. It is not as e
to estimate the rate of convergence in this case, even for
hyperbolic flows, because the terms are complex, and
,
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,

m

/

d

e,
sy
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e

alternation of the Maslov phase within families of cycl
analogous to the 0n1 family studied above crucial for quan
tum convergence can lead to large errors in the stability c
off cycle expansion truncations@22#.
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~1995!; P. Cvitanović, P. Gaspard, and T. Schreiber, Chaos2,
85 ~1992!.

@20# W. Parry and M. Pollicott, Ann. Math.118, 573 ~1983!.
@21# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.

Flannery,Numerical Recipes in C, 2nd ed.~Cambridge Uni-
versity, Cambridge, 1992!, p. 166.

@22# S. F. Nielsen, Master’s thesis, University of Copenhagen, 1
~unpublished!, available on http://www.nbi.dk/ChaosBook/.


