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Abstract. We show that the periodic orbit sums for two-dimensional billiards satisfy an infinity of
exact sum rules. We demonstrate their utility by using the flow conservation sum rule to accelerate
the convergence of cycle expansions for the overlapping three-disc billiard. The effectiveness of
the approach is studied by applying the method on averages, known explicitly by other sum rules.
The method is then applied to the Lyapunov exponent.

1. Introduction

Periodic orbit theory is a powerful tool for the description of chaotic dynamical systems [1–3].
However, as one is dealing with infinities of cycles, the formal theory is not meaningful unless
supplemented by a theory of convergence of cycle expansions. For nice hyperbolic systems, the
theory is well developed, and shows that exponentially many cycles suffice to estimate chaotic
averages with super-exponential accuracy [5,6]. However, for generic dynamical systems with
infinitely specified grammars and/or non-hyperbolic phase space regions, the convergence of
the dynamical zeta functions and spectral determinants cycle expansions is less remarkable.
The infinite symbolic dynamics problem is generic, and a variety of strategies for dealing
with it have been proposed: stability truncations [7, 8], approximate partitions [9], noise
regularization [10] and even abandoning the periodic theory altogether [11,12].

Computation of periodic orbits for a given system often requires a considerable investment,
as exhaustively locating the periodic orbits of increasing length for flows in higher dimensions
can be a demanding chore. It is therefore essential that the information obtained be used
as effectively as possible. Here, we propose a new, hybrid approach of combining cycle
expansions with exact results for ‘nearby’ averages, based on the observation that the periodic
orbit sums sometimes satisfy exact sum rules.

Studies of convergence of cycle expansions, such as comparisons [13] of truncation
errors of the dimension and the topological entropy for the Hénon attractor, indicate strong
correlations in truncation errors for different averages. We propose to turn these correlations in
our favour, by using the error known exactly by a sum rule to improve the estimate for a nearby
average for which no exact result exists. Billiards provide a convenient, physically motivated
testing ground for this idea. The approach is inspired by formula (17) for mean free-flight time
in billiards, so well known to the Russian school that it went unpublished for decades [14]. In
this paper we show that billiards obey an infinity of exact periodic orbit sum rules, and indicate
how such rules might be used to accelerate the convergence of cycle expansions.
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The paper is organized as follows. Section 2 gives a brief summary of the theory of
periodic orbit averaging. In section 3 we review the known exact sum rules for billiards, and
then generalize them to an infinity of sum rules. In section 4 we present the conventional cycle
expansion numerical results for our test system, the overlapping three-disc billiard. This system
is hyperbolic and does not suffer from the intermittency effects that plague billiards such as
the stadium and the Sinai billiards, but is still ‘generic’ in the sense that its symbolic dynamics
is arbitrarily complicated. The numerics presented indicate the existence of an analytic region
extending beyond the leading zero in the relevant zeta functions. Under this assumption, in
section 5 and the appendix, we develop a method which utilizes the flow conservation sum rule
to accelerate the convergence of cycle expansions, and apply the method to our test system.

2. Periodic orbit averaging

We start with a summary of the basic formulae of the periodic orbit theory—for details the
reader can consult [1,3].

A flow x→ f t (x), x ∈M, is a continuous mappingf t : M→M of the phase space
M onto itself, parametrized by timet . On a suitably defined Poincaré surface of sectionP,
the dynamics is reduced to a return map

x → f n(x) x ∈ P (1)

wheren is the ‘topological time’, the number of times the trajectory returns to the surface of
section.

A dynamical zeta function [4] associated with the flowf t (x) is defined as the product
over all prime cyclesp

1/ζ(z, s, β) =
∏
p

(1− tp) tp = tp(z, s, β) = 1

|3p|e
βAp−sTp znp (2)

whereTp, np and3p are the period, topological length and stability of prime cyclep.
Furthermore,s is a variable dual to the timet , z is dual to the discrete ‘topological’ time
n, andtp(z, s, β) is the weight of the cyclep.

Ap is the integrated observablea(x) evaluated on a single traversal of cyclep

Ap =


∫ Tp

0
a(f τ (x0)) dτ (flows)

np−1∑
k=0

a(f k(x0)) (maps)
x0 ∈ p. (3)

Here the functionsa(x) onP anda(x) onM are two distinct functions, withx0, x0 indicating
that the observable is defined on the full flow, Poincaré surface of section, respectively. Later,
we apply the same convention to the invariant densitiesρ.

Classical averages over chaotic systems are given bycycle expansionsconstructed from
derivatives of dynamical zeta functions. By expanding the product (2) a dynamical zeta
function can be represented as a cycle expansion

1/ζ = 1−
′∑
π

tπ

tπ = tπ (z, s, β) = (−1)kπ+1tp1tp2 . . . tpk

= (−1)kπ+1 1

|3π |e
βAπ−sTπ znπ (4)
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where the prime on the sum indicates that the sum is restricted to pseudocycles, built from all
distinct products of non-repeating prime cycle weights. The pseudocycle topological length,
period, integrated observable, and stability are

nπ = np1 + · · · + npk Tπ = Tp1 + · · · + Tpk
Aπ = Ap1 + . . . +Apk 3π = 3p13p2 · · ·3pk .

(5)

For economy of notation we usually omit the explicit dependence of 1/ζ andtp on (z, s, β)
whenever the dependence is clear from the context.

Truncation of the dynamical zeta function with respect to the topological lengthnπ 6 N
is indicated by a subscript:

1/ζ(N)(z, s, β) = 1−
′∑

nπ6N
tπ . (6)

If the system is bounded (such that no trajectories escape), the dynamical zeta function
(2) has a leading zero at 1/ζ(1, 0, 0) = 0. Expressing this condition in terms of the cycle
expansion (4) we find that any bound system satisfies theflow conservationsum rule [3]:

1/ζ(1, 0, 0) = 1−
′∑
π

(−1)kπ+1 1

|3π | = 0. (7)

If the dynamics is ergodic, and the observable is sufficiently regular, the cycle expansions
for the phase space average of observablea(x) are given by either the integral over the natural
measure, or by the cycle expansions

flows: 〈a〉flow =
∫
M
a(x)ρ(x) dx = 〈A〉ζ〈T 〉ζ (8)

maps:〈a〉map=
∫
P
a(x)ρ(x) dx = 〈A〉ζ〈n〉ζ . (9)

Hereρ(x) andρ(x) denote the the natural invariant densities onM andP, respectively. As
we show in (17), the averages computed from the two representations of dynamics are related
by the mean free-flight time.

The cycle expansions required for the evaluation of periodic orbit averages (8) and (9) are
given by derivatives of the dynamical zeta function with respect toβ, s andz:

〈A〉ζ = ∂

∂β
1/ζ(1, 0, 0) =

′∑
π

(−1)kπ+1Aπ/|3π | (10)

〈T 〉ζ = − ∂
∂s

1/ζ(1, 0, 0) =
′∑
π

(−1)kπ+1Tπ/|3π | (11)

〈n〉ζ = ∂

∂z
1/ζ(1, 0, 0) =

′∑
π

(−1)kπ+1nπ/|3π |. (12)

Again, we use a subscript to indicate that the average is computed from a truncated zeta
function, for instance

〈A〉ζ,(N) = ∂

∂β
1/ζ(N)(1, 0, 0). (13)
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3. Periodic orbit sum rules for billiards

We start by reviewing the mean free-flight time sum rule for billiards discussed by Chernov
in [14].

In a d-dimensional billiard, a point particle moves freely inside a domainQ, scattering
elastically off its boundary∂Q. The billiard flowf t onM = Q × Sd−1 (whereS is the
unit sphere of velocity vectors) has a natural Poincaré surface of section associated with the
boundary

P = ∂M = {(q, v) ∈M : q ∈ ∂Q andv · n(q) > 0} (14)

wheren(q) is the inward normal vector to the boundary atq, defined everywhere except at the
singular set∂M∗ of non-differentiable points of the boundary (such as corners and cusps). In
what follows we restrict the discussion to two-dimensional billiards.

Assume that the particle has unit mass and moves with unit velocity,p2
1 + p2

2 = 1. The
Cartesian coordinates and their conjugate momenta for the full phase space,M, of the billiard
are

x = (q1, q2, p1, p2) = (q1, q2, sinφ, cosφ).

Let the Poincaŕe map be the boundary–boundary mapf : ∂M→ ∂M, and parametrize the
boundary∂M by the Birkhoff (area preserving) coordinates

x = (s, ps) ps = sinθ

wheres is the arc length measured along the boundary,θ is the scattering angle measured from
the outgoing normal, andps is the component of the momentum parallel to the boundary. Both
the area of the billiardA = |Q| and its perimeter lengthL = |∂Q| are assumed finite. Let
τ(x) be the time of flight until the next collision. The continuous trajectory is parametrized
by the Birkhoff coordinates together with a time coordinate 0< t < τ(x)measured along the
ray emanating from the boundary pointx = (s, ps).

The period of a cyclep is the sum of the finite free-flight segments

Tp =
np−1∑
k=0

τ(f k(x0))

wherex0 = (s0, ps0) is any of the collision points in cyclep. The mean free-flight time is
the average time of flight between successive bounces off the billiard boundary. It can be
expressed either as a time average

τ̄ (x0) = lim
n→∞

1

n

n−1∑
i=0

τ(f i(x0))

or, as a phase space average

〈τ 〉 =
∫
P
τ(x) dµ (x) (15)

where dµ (x) = ds dps/
∫
P ds dps is the natural measure. For Hamiltonian flows such as the

billiard flow considered here this is simply the Lebesgue measure. If the billiard is ergodic,
the time average is defined and independent ofx0 for almost allx0. In order to find an exact
expression for the phase space average〈τ 〉, compute the integral over the entire phase space
of the billiard,∫

M
δ(1− p2

1 − p2
2) dq1 dq2 dp1 dp2 = 2πA
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and recompute the same thing in the Birkhoff coordinates,∫
δ(1− p2

1 − p2
2) dq1 dq2 dp1 dp2 =

∫
P

ds dps

∫ τ(x)

t=0
dt =

∫
P
τ(x) ds dps

= 〈τ 〉
∫
P

ds dps = 2L〈τ 〉 (16)

whereL is the circumference of the billiard. Hence the mean free-flight time is a purely
geometric property of the billiard,

〈τ 〉 = π A
L

(17)

the ratio of its perimeter to its area. The relation is a consequence of the explicit form of the
invariant measure and applies to any billiard regardless of whether its phase space is mixed or
not. For ergodic systems the periodic orbit theory gives a cycle expansion formula (9) for the
mean free-flight time

〈τ 〉 = 〈T 〉ζ〈n〉ζ . (18)

If we know 〈τ 〉 this formula enables us to relate any discrete time average (9) computed from
the map to the continuous time averages (8) computed on the flow. They are linked by the
mean free-flight time formula

〈a〉map = 〈a〉f low〈τ 〉. (19)

As the next example of a periodic orbit sum rule, consider the case of the observable being
the transverse momentum change at collision,a = 2 cosθ . The corresponding sum rule is
calledthe pressure sum rulebecause it is related to the pressure exerted by the particle on the
billiard boundary.

The average pressure is given by the relationP = F/|∂Q|, whereF is the time average of
momentum change, that is the force the particle exerts against the boundary. The momentum
change per bounce equals twice the transverse momentum at the collision, so the average force
per bounce is

〈F 〉map =
∫
P

2p⊥(x) dµ (x) = 1∫
P ds dps

∫
∂Q

∫ π/2

−π/2
2 cosθ cosθ dθ ds = π

2
. (20)

Hence the pressure for a flow becomes†

〈P 〉f low = 〈P 〉map〈τ 〉 =
〈F 〉map
L〈τ 〉 =

1

2A
. (21)

The exact averages (17), (21) apply to billiards of any shape, ergodic or not. As for ergodic
billiards, both the mean free path and pressure can be calculated by means of cycle expansions,
these relations lead to exact billiard sum rules for ergodic systems.

In what follows we restrict our attention to map averages, and omit the subscript
〈. . .〉map → 〈. . .〉.

Any averageof an observablea(x), defined in terms of∂M coordinatesx = (s, ps) can
be expressed in terms of a simple integral since the invariant measure dµ (x) = ρ(x) dx =
ds dps/

∫
P ds dps is known explicitly. For each such observable we obtain an exact periodic

orbit sum rule

〈a〉 =
∫
P
a(x) dµ (x) = 〈A〉ζ〈n〉ζ . (22)

† We are grateful to C P Dettmann and G P Morriss for the derivation of this formula (unpublished).
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The integraldefinesthe average〈a〉, with no assumptions about ergodicity. If, in addition, the
system is ergodic, by (8) we obtain an exact cycle expansion sum rule.

This uncountable infinity of sum rules seems not to have been noted in the literature.
The formula (22) does not allow for analytical computation of every average we want to

compute in a billiard. Consider the simplest nontrivial average worthy of study in billiards,
the diffusion coefficient

〈D〉 = 1

2d

1

〈n〉ζ
∂2

∂β2
(1/ζ )

∣∣∣∣
β=0

. (23)

As this formula requires evaluation of a second derivative of the relevant dynamical zeta
function, the two-point correlations of the observable along cycles will enter the averaging
formulae, and the average cannot be computed from one iterate of the map.

Another quantity of interest is the Lyapunov exponent. Let3(x0, n) be the largest
eigenvalue of the Jacobian of thenth iterate of the map. The (largest) Lyapunov exponent
is defined as

λ = lim
n→∞

1

n
log |3(x0, n)|.

The cycle expansion formulae in section 2 compute

λ = lim
n→∞

1

n

∫
P

log |3(x, n)|ρ(x) dx (24)

that is, a combination of time and phase space averages. Note that if3(x0, n) is multiplicative,
3(x0, n) =

∏n−1
k=03(f

k(x0)), as is the case for one-dimensional maps, then the integral in (24)
is independent ofn. In particular, we can setn = 1 and reduce the problem to one iterate of
the map. However, in most cases the invariant measureρ(x) is not knowna priori, and there
is no simple exact formula for the average.

For billiards the problem is the reverse: the invariant density is known but the expanding
stability eigenvalue3(x0, n) is not multiplicative along an arbitrary trajectory, and the integral
in (24) is dependent onn. It is possible to derive a multiplicative evolution operator for this
purpose [15]. However, for the purpose at hand the naive cycle expansion formulae still apply,
because3(x0, n) is multiplicative for repeats of periodic orbits. By defining the cycle weight

eβAp = |3p|β
the cycle expansion for the Lyapunov exponent is given by

〈λ〉 = 〈ln |3|〉ζ〈n〉ζ . (25)

So even though Lyapunov only requires computation of two first-order derivatives of the
dynamical zeta function, it requiresn-point correlations to all orders and cannot be computed
by a sum rule.

In the case when (19) relates the Lyapunov exponent of the flow to the Lyapunov exponent
of the corresponding Poincaré return map, the relation first proven by Abramov [16].

4. The overlapping three-disc billiard

We will test the above sum rules on cycle expansions for a concrete system, the overlapping
three-disc billiard. This billiard consists of three discs of radiusa centred on the corners of an
equilateral triangle with sidesR. There is a finite enclosure (see figure 1) between the discs if√

3< R/a 6 2. This enclosure defines the billiard domainQ. One of the limitsR/a→√3
corresponds to the integrable equilateral triangle billiard. The other limiting caseR/a = 2
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Figure 1. The overlapping three-disc billiard. A point-like particle
moves inside the billiard bouncing specularly off the boundary.
Shown is a cycle of topological length 4.

Table 1. The mean free-flight time〈τ 〉, the average pressureP , and the best estimate of the
Lyapunov exponentλ computed by cycle expansion as function of the three-disc centre-to-centre
separationR used in our numerical tests, with disc radius fixed toa = 1. ForR = 1.9 a numerically
computed Lyapunov reference value obtained by direct simulation using 1010 bounces is displayed.
The total numbers of the fundamental domain prime cycles used in the cycle expansion computations
are also indicated.

R 〈τ 〉 〈λ〉 λnum L〈P 〉 # cycles

1.85 0.102 0.523 1.570 342
1.90 0.1401 0.6036 0.603 63 1.570 525

exhibits intermittency with infinite sequences of periodic orbits whose periodsTp accumulate
to finite limits, and where stabilities fall off as some powernαp, wherenp is the topological
length.

The C3v symmetry of the billiard enables us to work in the fundamental domain [17]. The
fundamental domain is a one-sixth slice of the billiard domain, fenced in by the symmetry lines
of the billiard. In what follows we are only interested in the lowest eigenvalue and therefore
we restrict our computations to the fully symmetricA1 subspace. The fundamental domain
symbolic dynamics is binary, but is not of the finite subshift type; its full specification would
require an infinity of pruning rules of arbitrary length.

The mean free-flight time (17) for the overlapping three-disc billiard can be found by
geometric considerations:

〈τ 〉 = π R
2/4
√

3− a2θ − Rr/2
2aθ

(26)

wherer =
√
a2 − (R/2)2 andθ = π/6− arcsin(r/a). We shall seta = 1 throughout this

paper, and parametrize the billiard by the centre-to-centre distanceR. All our numerical tests
are done forR = 1.9. Results for this parameter value, as well as forR = 1.85 are shown in
table 1.

Figure 2 illustrates the convergence of finite topological length cycle expansions for the
flow conservation sum rule (7) and for the mean free-flight time sum rule (18). As the exact
result is known, we plot the logarithm of the error as a function of the truncation lengthN .

The overall exponential convergence indicates the existence of gaps in the zeta function.
This would mean that 1/ζ(z, 0, 0) is analytic and free of zeros in a disc extending beyond
z = 1 and 1/ζ(1, s,0) is analytic and free of zeros in a halfplane extending beyonds = 0.
In the following we work under the milder assumption of onlyanalyticity in the disc and
the halfplane respectively: we will refer to this as assumption A. The ‘irregular’ oscillations
in figure 2 are typical for systems with complicated symbolic dynamics and may reflect the
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Figure 2. Convergence of cycle expansions: deviation of
cycle expansions truncated to the topological lengthN from
exact sum rules for (◦) flow conservation (7) and (�) mean
free-flight time (18).

existence of a natural boundary [18].
For systems with finite-subshift symbolic dynamics the oscillations cease when the cutoff,

N , exceeds the longest forbidden substring and, if the full spectral determinant is used, super-
exponential convergence [5,13] sets in.

One should note the coincidence of the peaks and dips of the two curves. This type of
correlation between coefficients of different power series will be important in the following.

5. Utilizing exact sum rules

We illustrate the utility of exact sum rules in accelerating the convergence of cycle expansions
by applying the flow conservation sum rule to the problem of computing the mean free-flight
time (17). As we already have the exact formula for this average, we are able to compute the
exact error in the various estimates and compare them. We then apply the same technique to
evaluate the Lyapunov exponent, for which no exact formula exists.

The traditional estimate uses truncated zeta functions in a straightforward fashion:

〈τ 〉(N) = 〈T 〉ζ,(N)〈n〉ζ,(N) . (27)

The idea is to use the flow conservation sum rule (7) to improve the numerator and
denominator of (27) separately. We begin with the denominator〈n〉ζ = ∂

∂z
1/ζ(z = 1, 0, 0).

The general problem is to find a good estimate of the derivativeF ′(z0) at the first root
F(z0) = 0 of a function given by a power seriesF(z) = ∑∞k=0 bkz

k, given only a truncated
version of the function:

F(N)(z) =
N∑
k=0

bkz
k. (28)

In the appendix we show that, under assumption A in section 4, such an estimate is given
by

F ′(z0) ≈ F ′(N)(z0)− N + 1

z0
F(N)(z0). (29)

In the appendix we argue that the error in the above estimate is suppressed compared with the
error of the estimateF ′(N)(z0) by a factorq whose asymptotic behaviour is

q ∼ 1/N. (30)
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The traditional estimate of〈n〉ζ was〈n〉ζ,(N) = F ′(N)(z0 = 1) and an improved estimate is
now given by

〈n〉ζ,acc ≡ 〈n〉ζ,(N) − (N + 1)ζ−1
(N)(1, 0, 0). (31)

We proceed with the denominator〈T 〉ζ = − ∂
∂s

1/ζ(1, s = 0, 0). The problem is similar to
the previous one but 1/ζ(1, s,0) = 0 is now a Dirichlet series ins. According to assumption A,
the zeta function 1/ζ(1, s,0) is analytic in the halfplane Re(s) > 0 and the basic idea is to
make a Taylor expansion of the zeta function

1/ζ(1, s,0) = 1−
′∑
π

(−1)kπ−1

|3π | e−sTπ (32)

around some points0 (Re(s0) > 0)

1/ζ(1, s,0) = 1−
′∑ (−1)kπ−1

|3π | e−s0Tπ
∞∑
k=0

(s0 − s)kT kπ
k!

≡
∞∑
k=0

ck(s0 − s)k (33)

where

ck = δ0,k −
′∑
π

(−1)kπ−1 e−s0Tπ T kπ
|3π |k! . (34)

Convergence of the sum (32) implies convergence of the coefficients (34) (as can
be realized from elementary properties of Dirichlet series) and can be identified with the
coefficients of the desired Taylor series.

All pseudo-orbit sums are still truncated with respect to topological length. The
coefficientsck,(N) can only be expected to approximateck well for small enoughk. Therefore,
we truncate the series:

1/ζ(N,M)(1, s,0) = 1−
′∑

π :nπ6N

(−1)kπ−1

|3π | e−s0Tπ
M∑
k=0

(s0 − s)kT kπ
k!

≡
M∑
k=0

ck,(N)(s0 − s)k (35)

where

ck,(N) = δ0,k −
′∑

π :nπ6N
(−1)kπ−1 e−s0Tπ T kπ

|3π |k! .

This truncated Taylor series is the analogue of the truncated functionF(N)(z) treated above;
s = 0 corresponds toz = 1, ands = s0 to z = 0. From assumption A, we know that
1/ζ(1, s,0) is analytic in a disc arounds = s0, extending beyonds = 0, we can use (29) and
derive the improved estimate:

〈T 〉ζ,acc ≡ 〈T 〉ζ,(N) +
M + 1

s0
ζ−1
(N,M)(1, 0, 0). (36)

The choice of the maximal powerM depends ons0, so how shoulds0 andM be chosen?
Obviously,s0 must lie somewhere in the range 1/Tmax < s0 < 1/Tmin where theTmin and
Tmax are the smallest and largest period in the sample for a particular topological length cutoff
N .

The next question is, for a givens0, what is the number of reliable coefficientsck,(N)?
We see from (35) that pseudocycles are suppressed with their length according to the function
T k exp(−s0T ) having its maximum atT = k/s0. So the coefficients withk � s0Tmax can



6766 S F Nielsen et al

Figure 3. The error suppression factor for the improvement
of the estimate of〈n〉ζ (�) and for 〈T 〉ζ (◦), applied to
the three-disc system withR = 1.9. Here we have used
an extrapolated value from the cycle expansion as the best
asymptotic estimate. Both error suppressions display the
estimated error decrease and demonstrate that the sum rules
do improve convergence.

be expected to be accurate. However, as the majority of cycles have periods close toTmax
we want to make use of the information they carry. In our numerical work we have found it
preferable to include a large number of fairly accurate coefficients rather than a small number
of very accurate ones. So we choose the maximum powerM to be given by the average cycle
length:

M = s0T p|np=N−1.

The error of the improved estimate is suppressed compared with the error of the traditional
estimate by factor we callq, see the appendix. Thisq-factor is plotted in figure 3. It decreases
(apart from oscillations) as the estimatedN−1 error suppression derived for maps.

The calculation of the integrated observable amounts to evaluating theβ derivatives of the
dynamical zeta functions. The role ofβ is completely analogous to that ofs. With β viewed
as a complex variable, the dynamical zeta function 1/ζ(1, 0, β) is a Dirichlet series inβ and
the above methods can be used to compute∂

∂β
1/ζ(1, 0, 0). Here similar criteria apply toβ0

andN as for (36):β0 close to 1/Amin andM = β0Ap|np=N−1.

5.1. Improvement on the averages

So far we have improved the numerator and the denominator of (18) and (9) separately. The
errors of both are suppressed by a factorq ≈ O(1/N) compared with unaccelerated estimates.
We have also seen (figure 3) that, both before and after resummation, their behaviour versus
the cutoffN are highly correlated. So it is not obvious how the resulting average should be
improved, indeed it is not clear whether it is improved at all.

The accelerated cycle expansion for an observablea(x) using our method is

〈a〉acc = 〈A〉ζ,acc〈n〉ζ,acc (37)

and the error suppression, theq-factor for the observablea(x) is

qa = 〈a〉acc − 〈a〉exact〈a〉(N) − 〈a〉exact . (38)

We compute thisq factor numerically for three different averages:

(i) The mean free-flight time〈τ 〉 by (18).
(ii) The mean pressureP , cycle expansion of (21).

(iii) The Lyapunov exponent by (25). The reference value of the Lyapunov exponent is obtained
by numerical simulation, see table 1.
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Figure 4. The error suppression factor (38) for: (�) the
accelerated mean free-flight time sum rule, (◦) pressure sum
rule, (�) the Lyapunov exponent. At topological length
12, the accuracy of the accelerated Lyapunov exponent has
reached the best estimate from direct numerical simulation
(see table 1).

The results are summarized in figure 4. The accelerated cycle expansions are clearly
better than the standard cycle expansions. The error suppression factors appear to decrease
exponentially, and therefore the acceleration techniques has, for the three-disc system,
increased the correlation between the expansions leading to a faster convergence for the
averages.

6. Conclusion

In this paper we have achieved two objectives: (i) we have derived an infinite number of
exact periodic orbit sum rules for billiards (22). Such sum rules enable us to make exact
computations of some statistical averages for billiards, such as the mean free-flight time (17)
and pressure (21). (ii) We have derived the improved estimate (36) which combines the
flow conservation sum rule (7) with the cycle expansions. In order to measure the convergence
acceleration, we have introduced the error suppression factor (38) that gauges the improvement
of the accelerated cycle expansions relative to the unaccelerated ones. We thus demonstrate
that exact sum rules can be used to accelerate convergence for observables for which no exact
results exist, see figure 4.

A challenge for the future is to utilize such infinities of sum rules for billiards in the classical
applications (other than the Lyapunov exponent studied here), as well as in the semi-classical
applications of periodic orbit theory.
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Appendix. Resummation of power series

Consider a functionF(z) = ∑∞k=0 bkz
k given by a power series, where only a finite number

of coefficients are known:

F(N)(z) =
N∑
k=0

bkz
k. (39)
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We assume thatF(z0) = 0 for somez0 and we wish to estimate the first derivativeF ′(z0)

(and possibly higher derivatives) as accurately as possible. A simple estimate is

F ′(z0) ≈ F ′(N)(z0) (40)

but this does not make use of the knowledge thatF(z0) = 0.
In order to improve this estimate we follow the idea of [19]. We assume that the function

is analytic in a disc enclosingz0, cf assumption A. We can then consider a resummation of the
Taylor series aroundz = 0 into a Taylor series aroundz = z0, from which we want to extract
the desired coefficients. With only a finite number of coefficients at our disposal we make the
ansatz

N∑
k=0

bkz
k =

N+1∑
i=1

ai(z− z0)
i + O(zN+1) (41)

where we have kept the number of known and unknown coefficients equal so that the system
of equations is solvable. Note that the sum rule is built into this ansatz by settinga0 = 0.

Later, we see that the estimateF ′(z0) ≈ a1 is an improvement as compared with the
simple estimate (40).

In order to computea1 we expand the right-hand side (41) in binomials

N∑
i=0

biz
i =

N+1∑
i=1

ai

i∑
j=0

zj (−z0)
i−j
(
i

j

)
+ O(zN+1) (42)

we obtain the linear system of equations

bj =
N+1∑

max(j,1)

(
i

j

)
(−z0)

i−j ai 06 j 6 N. (43)

To express this in a more convenient way we formn-dimensional vectors ofai andbi

(b)i = zi−1
0 bi−1 (a)i = zi0ai (44)

wheren ≡ N + 1 and transfer to matrix notations and write (43) as

b =Ma (M)ij =
(

j

i − 1

)
(−1)j−i+1 16 i, j 6 n. (45)

We use the convention that
(
n

m

) = 0 if m is out of range. This system may readily be solved.
Define the matrixL by

(L)ij =
{

1 i > j
0 i < j .

(46)

Then

(LM)ij = (−1)i+j+1

(
j − 1

i − 1

)
→ (LM)−1

ij = −
(
j − 1

i − 1

)
(47)

and the explicit solution is

a = (LM)−1Lb. (48)

In particular,

(a)1 = −n(b)1− (n− 1)(b)2 − · · · − 1(b)n = −
n∑
k=1

(n− k + 1)(b)k (49)
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which we rewrite in terms of our original notation:

z0a1 = −
N∑
k=0

(N + 1− k)zk0bk. (50)

The right-hand side is recognized asz0F
′
(N)(z0) − (N + 1)F(N)(z0), leading to our improved

estimate

F ′(z0) ≈ a1 = F ′(N)(z0)− (N + 1)z−1
0 F(N)(z0). (51)

The error is suppressed by a factor

q = F ′N(z0)− (N + 1)z−1
0 FN(z0)− F ′(z0)

F ′N(z0)− F ′(z0)
=
∑∞

k=N+1(k −N − 1)bk∑∞
k=N+1 kbk

. (52)

To express this in a more convenient form we usesummation by parts, that is, we define

sk =
∞∑
j=k

bj (53)

and write

1/q = 1 +
(N + 1)sN∑∞

k=N sk
. (54)

If F(z) is the spectral determinant for ad-dimensional Axiom A map, the coefficients of
the power series expansion are super-exponentially bounded [5]:

Ca3
−m1+1/d

a < |bm| < Cb3
−m1+1/d

b (55)

where 1< 3b < 3a. Assuming, moreover, that the signs of the coefficients settle down
to some periodic pattern, one can show that the error suppression factor has the following
asymptotic behaviour:

q ∼ N−(1+1/d). (56)

In this paper we focus on a hyperbolic systems whose symbolic dynamics cannot be finitely
specified. However, if the zeta function is analytic in a disc enclosingz0, cf assumption A, the
bound on the coefficients is exponential

Ca3
−m
a < |bm| < Cb3

−m
b (57)

and nothing can be said about the signs, as they can oscillate in a completely irregular
fashion [18]. It seems difficult to obtain proper bounds onq in a general setting. In the

Figure A1. Error suppression factor (38) (y-axis) versus
truncation in topological lengthN (x-axis) for the tent
map (with a ‘typical’ slope value3).
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case at hand we can only provide a qualified guess on the decrease of the error suppression
factor:

q ∼ N−1. (58)

Some evidence for this behaviour can be provided by the tent map

F(x) =
{
3x for x < 1

2

−3(x − 1) for x > 1
2.

(59)

The expansion rate is uniform but complete symbolic dynamics is lacking in the generic case,
that is for almost all3. It is then known [18] that the analyticity is limited by a natural boundary
so this simple system can give us a hint of the behaviour of generic hyperbolic billiards. In
figure A1 we plot theq-factor for the tent map for a randomly chosen parameter versusN . It
conforms with the predicted 1/N behaviour.

The ansatz (41) used here is the simplest conceivable and it led to very simple formulae.
The only requirement is that the dynamical zeta function is analytic in a discz 6 R, where
R > 1. This excludes strongly intermittent systems where a more refined ansatz is needed [19].
If one has some explicit knowledge of the nature of the leading singularity of the dynamical
zeta function, one can tailor a more specific ansatz.
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