
Nuclear Physics B203 (1982) 385-412 
© North-Holland Publishing Company 

THE PLANAR SECTOR OF FIELD THEORIES 

Predrag CVITANOVIC 

Nordita, Blegdamsvej !7, DK-2100 Copenhagen 0, Denmark 

P.G. LAUWERS 

NIKHEF, Sectie H, Postbus 41882, NL-1009 DB Amsterdam, The Netherlands 

-. 

P.N. SCHARBACH 

Rutherford Appleton Laboratory, Chilton, Didcot OXJJ OQX, UK 

Received 4 March 1982 

The full field-theoretic apparatus for the description of planar field theories is developed 
including planar generating functionals and planar Dyson-Schwinger equations. It is shown that 
planar field theory is characterized by continued fractions rather than exponentials. Planar QCD is 
studied in detail and the planar Ward identities are derived. 

1. Introduction 

The planar approximation to QCD, i.e. the N - oo, g 2N fixed, limit of the SU(N) 
gauge theory of quarks and gluons, has attracted much interest since its introduction 
by' t Hooft [1]. 

To leading N, at the nth order of perturbation theory, only (constantt of the 
number n ! of Feynman diagrams survive [2]. At the qualitative level the approxima
tion of retaining only this relatively small subset, that of planar diagrams, meets with 
considerable phenomenological success (3] and may form a bridge between QCD 
and the dual string model (1,4]. In this limit, the Bethe-Salpeter equation can be 
solved in two space-time dimensions and a meson spectrum of approximately 
straight Regge trajectories emerges (5]. The summation of the planar diagrams of 
QCD in two dimensions is facilitated by a property that is unique to the two-dimen
sional case: an appropriate choice of gauge eliminates the gluon self-couplings. The 
summation of the large-N limit of four-dimensional QCD, on the other hand, 
remains a difficult and open problem, for which it is likely that the full apparatus of 
quantum field theory will be required. 

As the first step one has to formulate a planar field theory, i.e. a theory whose 
perturbation expansion consists only of planar Feynman diagrams. One needs the 
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planar Ward identities to establish gauge invariance and renormalizability and the 
planar Dyson-Schwinger equations in order to formulate the bound-state equations. 
Then one has to identify the dominant contributions to binding (leading infrared 
singularities, for example [6]) and attempt to sum them. 

Our present purpose is to develop the formal tools required for carrying out this 
program; we will give a formulation of planar field theory, the planar QCD program 
Dyson-Schwinger equations and the planar Ward identities. In a previous work [6] 
we solved the problem of the division of an arbitrary gauge theory into gauge-in
variant sectors. In particular, we showed that the planar sector can be defined for 
any gauge theory without resorting to the N - oo limit. This result motivated us to 
attempt a direct formulation of planar field theory, i.e. a theory whose perturbation 
expansion consists only of planar Feynman diagrams. Three approaches to this latter 
problem have been made. In ref. [7] a fll!1ctional approach based on generating 
functionals of non-commuting sources was introduced. In ref. [8] a canonical 
formalism based on conjugate " planar fields" obeying a particular commutation 
relation is discussed. Finally, ref. [9] describes an alternative functional scheme, in 
which sources commute and an auxiliary non-relativistic fermion field is introduced 
to provide the necessary ordering of the external legs of planar Green functions. It is 
the first of these formulations that we wish to elaborate here. 

In sect. 2, we examine the N - oo limit of U(N) Yang-Mills theory. With the aid 
of several examples we show how the planar sector of the theory is isolated and 
motivate our prescription for the construction of the generating functionals of the 
planar theory in terms of non-commuting fields. Sect.} is a discussion of the 
properties of the corresponding sources. In sect. 4 we set up a functional formalism 
for planar theories and relate the planar connected and one-particle irreducible (lPI) 
planar Green functions to the full planar Green functions. The solution of the free 
planar field theory is given. We derive the Dyson-Schwinger equations, which 
generate the planar perturbation expansion, in sect. 5; 4>3 + 4>4 is considered as an 
example. In sect. 6 we examine zero-dimensional field theories: the planar Dyson
Schwinger equations are solved and the solution is applied to the problem of 
counting planar Feynman diagrams. Finally, in sect. 7 we return to planar QCD. We 
give the Dyson-Schwinger equations for this theory and derive the Ward identities 
for the planar full Green functions. 

2. U(N) planar Yang-Mills theory 

It is well known that the set of planar Feynman diagrams form the leading 
approximation to the SU(N) gauge theory in the large-N limit [l]. In fact, it is an 
exact result independent of the choice of gauge group that the planar sector of an 
arbitrary Yang-Mills theory is a gauge-invariant subset of the perturbation series [6]. 
In this section we use the example of U(N) Yang-Mills theory to develop intuition 
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and motivation for the formulation of planar field theory to be given in the 
following sections. _ 

Let us consider an [N X N] hermitian Bose field (A .. )b with an. action of the form 

Here a, b are colour indices that run from 1 to N, while Greek indices denote all 
other field dependence: position, Lorentz index, etc. Repeated indices indicate 
summation over discrete variables and integration over continuous ones. Yang-Mills 
theories are of the above type. Since the trace is cyclically symmetric, the momentum 
space vertex factors -y may be replaced by cyclically symmetric vertices y, e.g. 

(2.2) 

In terms of these cyclically symmetric vertices the action becomes 

We shall assert that the action corresponding to the planar sector of the theory is 

obtained from the action (2.3) by replacing the traces tr[A,.. .. A .. )/m by products of 
non-commuting fields A" ... A ... To motivate this statement, let us consider, as an 
example, the U(N) Yang-Mills action 

(2.5) 

with the field strength F expressed in terms of the gauge field A by F,.p = a"Ap -
a PAI'+ ig[A", AP]. Fourier transforming the fields and explicitly cyclically symme
trizing the momentum-space factors, one can rewrite (2.5) in the form (2.3): 

S[A] = (2g«Pk1 · k2 - kfk~ - kikf)½tr[ Ap{k2)Aa(k1)] 

+ g[g~P(k2 - k1V + gPY(k3 - k2)" + g«Y(k1 - k3t] 

X ½tr[ Ay(k3)Ap{k2)Aa(k1)] 

+ g2(2g«Ygfl8 - g«flgY8 - g«8gPY )¾tr[ A8( k 4 )Ay( k3 )Ap( k 2 )A .. ( k 1)] • 

(2.6) 

(Momentum integrations and momentum-conserving delta functions have been 
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suppressed.) The Feynman rules are obtained from the action by functional differ
entiation: 

8 8 
8(Aa)ba ... ( Y)eS[A] =ra'!,,-•·yf· 8 A I A=O 

Thus the inverse propagator is derived from the quadratic term in the action: 

A-I a c _ t-at-c 
-~ ab,{Jd- UdUb°Ya{J· 

Similarly, the three-gluon vertex is 

and the four-gluon vertex is given by 

Finally, we add to the action (2.5) the gauge-fixing and ghost contributions 

S[A,C,C]= - !kakPtr(Ap(k)Aa(-k)]-k2tr(C(k)C(-k)] 

+gk3tr[ C(k3 )[Aa(k2 ),C(k1)]], 

(2.7) 

(2.8) 

(2.10) 

(2.11) 

where C and C are ghost fields and a is the covariant gauge parameter. The 
ghost-gluon coupling is 

(2.12) 

The Feynman rules (2.9), (2.10) and (2.12) are represented in fig. 1, where use has 
been made of the convenient double-line notation[!] for the Kronecker-delta colour 
factors. 

We wish to isolate the leading contributions to a Feynman diagram in the N-+ oo 
limit. As QCD is believed to be a confining theory only colour singlets are of 
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Fig. I. U( N) vertices in double-line notation. All momenta are directed into the vertex: (a) three-gluon 
vertex, (b) four-gluon vertex, (c) ghost-gluon vertex; (d) planar vertices for U(N) theory. 
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physical relevance. We are therefore interested in diagrams contributing to (tr(Ay ... 
ApA

0
)); their colour weights are represented diagrammatically by vacuum bubbles. 

Consider for example the contribution of the three-gluon vertex: 

= N 3 • Y af3y + N . '( ay,B • (2.13) 

For large N, the leading term is given by that part of the vertex (2.9) whose colour 
flow can be drawn in a plane; we shall refer to this part as the "planar vertex". 

A slightly more complicated example is 

+ 6 other nonplanar contributions 

(2.14) 

Again, only the planar vertex contributes to leading order in N. However, one can 
easily find examples where non-planar parts of the vertices also contribute to the 
leading order term: 

(2.15) 

The first two terms, one planar and the other with two non-planar vertices, are of 
order N 3

• The second "non-planar" contribution can, however, be deformed into the 
planar diagram, i.e. they have identical colour and momentum factors, with the 
result 

(2.16) 

The Bose symmetry factor has been cancelled. We could have immediately obtained 
the leading result by retaining only the planar part of the 3-gluon vertex and 
dropping the combinatoric factors. 

One can convince oneself by studying further examples that this is a general 
feature of the theory: one obtains the leading contribution by dropping the combi-



P. Cvitanovic et al. / The planar sector of field theories 391 

natoric factors and keeping just the planar part of the vertices. In general there are 
no combinatoric weights in planar field theories. Such factors are a manifestation of 
the Bose symmetry of the complete theory. At leading order in N, only the planar 
part of the vertices is retained. As we have seen earlier, the planar sector is only · 
cyclically symmetric; the Bose symmetry of the theory is lost. Thus planar vertices 
are rigid in the plane. For example, the 3-gluon vertex of the planar theory is not 
symmetric under the interchange of legs: 

A-AYoo, +Jl Yo,,-£. (2.17) 

~ y 

We must also consider diagrams with ghost loops. The simplest example is the 
one-loop ghost contribution to the gluon two-point function: 

- ~ ......... ~ -- -{momentum} . { ~o + ~ -~ - ~} 
\ .. ,..: factors . ~ ~ ~ ~ · 

(2.18) 

The first two terms are identical and are of order N 3, the remaining two are O(N). 
Thus the leading terms can be obtained directly by introducing two different rigid 
planar vertices, as is shown in fig. ld. There we have tabulated the U(N) planar 
vertices; the rules reproduce the leading-N part of the perturbation expansion [l]. 
-10 summary, taking the large-N limit of a U(N) gauge theory reduces the theory 
to its planar sector, whose characteristic features are: 

(i) all diagrams can be drawn in a plane with gluon legs ordered around the edge; 
(ii) all vertices are rigid; legs cannot be interchanged; 
(iii) there are no combinatoric factors. --
Our purpose now is to develop ~. general formalism for planar perturbation theory 

embodying these features. In the case of Yang-Mills theory, the planar perturbative 
expansion should coincide automatically with that found by the large-N limit of the 
complete theory. 

We shall consider a theory with action S to be defined by its perturbation 
expansion, the set of all Feynman diagrams constructed from the propagators and 
vertices of S.-The planar sector of the theory consists of the subset of diagrams 
which can be drawn in a plane with no overlapping of lines. The key to the 
construction of the planar field theory is the observation that the constraint of 
planarity requires that Green functions possess no symmetry under the interchange 
of external legs: crossing the legs of a planar diagram destroys its planarity. Thus 
external sources introduced in the definition o( generating functionals for planar 
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Green functions neither commute (as in the complete Bose theory, whose Green 
functions are symmetric under the interchange of external legs) nor anticommute (as 
in the complete Fermi theory, whose Green functions are antisymmetric in external 
legs). The ordering of non-interchangeable legs in planar Green functions will be 
enforced by the introduction of non-c-number sources, which we discuss in the next 
section. 

3. Non-commuting sources 

We shall set up our formulation of planar field theory in analogy with the usual 
functional formalism of the complete theory (10]. In complete bosonic theories, 
Green functions are symmetric under tqe interchange of external legs. In that case 
the full Green functions are generated by the expansion of the functional Z[j] in 
terms of commuting c-number sources j: 

(3.1) 

Here the indices i, j, ... m represent all discrete and continuous variables specifying 
the state of an external particle. Throughout this paper, repeated indices will denote 
summation over discrete variables and integration over continuous ones. The combi
natorial factor 1/m! prevents overcounting when Green functions are recovered by 
ordinary functional differentiation: 

(3.2) 

In complete theories with Fermi statistics, the Green functions are antisymmetric 
under the interchange of external legs. Again, the full Green functions can be 
generated by" a generating functional Z[j] and the properties of the sources must 
reflect the antisymmetric character of the Green functions. For that reason the 
sources are anticommuting Grassman variables, 

(3.3) 

Eqs. (3.1) and (3.2) remain valid if differentiation with respect to anticommuting 
sources is defined by 

8 8 8 8 
8i 8jk = - 8jk 8j; . 

(3.4) 
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We adopt a similar strategy for planar theories. In these theories Green functions 
are neither symmetric nor antisymmetric under interchange of two external legs, they 
do not in general have any kind of symmetry under interchange of two external legs 
because interchanging two legs destroys the planarity of the Green function. 

The sources of the planar theory must therefore reflect this non-commuting 
property. The planar full Green functions are generated by the expansion of the 
planar functional Z[j] in terms of the planar non-commuting sources j: 

00 

Z[J]= L Z;J. .. m1m···1J1;• 
m=O 

Differentiation with respect to these non-commuting sources is defined by 

8 
Ta= 0, 
OJ; 

(3.5) 

(3.6) 

where a is any c-number numerical constant. From now on we shall call quantities 
with this non-commuting property non-c-numbers. The planar full Green functions 
are obtained by differentiating Z[j]: 

(3.7) 

It is obvious that because of the above definition of differentiation with respect to 
non-commuting sources, there is no combinatorial factor 1/m! in eq. (3.5). 

Eq. (3.5) may be represented diagrammatically as 

00 

= 1 ( 3 .5') 

where a cross at the end of an external line i k represents contraction of the Green 
function 

R 
f.~\ 

(3.7') 

i 
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with the sourcej;, (In our ordering convention the legs are labelled clockwise around 
a Green function.) 8/8} is the operation of pulling out the left-most leg in the 
expansion (3.5'). The non-c derivative (3.6) has been introduced to ensure that only 
planar diagrams contribute. For example, in the planar theory 

Im 
. 

. 

, 

k 

while in the complete theory differentiation yields non-planar diagrams as well: 

s (z .... ) 
tJ]k mnpqlqlplnlm = 

k k k k 

Here + ( - ) sign is to be taken for the Bose (Fermi) theory. From the definition of 
the differentiation (3.6), it follows that the operator };8/8}; projects out the non-c
number part of the functional/[}]: 

(3.8) 

The derivative of a product of two functionals of non-c-number variables is 

(3.9) 

Note that the ordering of the non-c-number functionals must be preserved. A chain 
rule can also be formulated. Let/ be an implicit functional of j: / = /[g], g = g[j]. 
Then, expanding/ and g in terms of their non-c-number argument, 

/ [ g] = fa.fJ .. _,g, .•. g/Jga., 

[ ·1 km p · · · ga. J = ga. ... lr · ·lmlk, 

we have 

(3.10) 

_ provided that ga.[Jl does not contain c-number terms. 



P. Cvitanovic et al. / The planar sector of field theories 395 

After these preliminaries we are now in a position to discuss the planar perturba
tion theory. 

4. Planar generating functionals · 

We begin by relating the generating functionals for planar connected Green 
functions, 

00 

W[J]= '° W - J ... J.J, 1-.J ltl2···'m lm lz lt 
( 4.1) 

m=I 

to the generating functional of full Green functions Z[j] introduced in sect. 3. 
Denoting the connected Green function by a hatched blob, the relation between Z 
and Wis represented by fig. 2. That is, a .given leg enters a connected diagram whose 
other legs are separated by disconnected parts. The functional statement of fig. 2 is 

z[J] = 1 + w[ jZ[Jil , ( 4.2a) 

or 

z[J] = 1 + w[ z[JJj] . ( 4.2b) 

Because of planarity, each leg of the connected piece is followed by all possible 
disconnected diagrams, and it is convenient to define the product .f; = iZ[j] as the 
(non-c-number) source for the connected functional W[J]. From now on a hatched 
blob will stand for a connected piece with the .f; as sources. The derivatives with 
respect toi and .f; are related by the chain rule (3.10): 

(4.3) 

In particular, we have 

_!z[ ·]=Z[ ·]8W[J] 
8i 1 1 8J ' 

°JI I 

(4.4) 

which may be represented as in fig. 3. For an arbitrary number of derivatives (4.4) 

= 
. 
. 

= 
CJ CJ CJ 
*··* f.1 f .. 1 

Fig. 2. Relation between full and connected planar Green function, eq. (4.2). Full Green functions are 
denoted by dotted blobs, connected ones by hatched blobs. 
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Fig. 3. Extracting a leg from a full planar Green function, eq. (4.3). 

generalizes to 

~ _i__§__z[·]=z[·1(8W[J] _§__) (8W[J] _!_)8W[J] s· ··· s· s· 1 1 w + w ··· BJ + BJ BJ · >f, >fm >fn l , m m n (4.5) 

Eq. ( 4.4) is formally similar to the relation 

8Z[J] = ·:z[ ·] 8W[J] 
~- J £,• 
Oji OJ; 

(4.6) 

of the complete theory [10] for which the sourcesj are c-numbers and 8/8j is the 
usual functional derivative. The content, however, is quite different. Integration of 
(4.6) gives an exponential relation Z = exp[W] between full and connected generat
ing functionals. This relation has a very different form in the planar theory, as we 
can see from the free field case. The solution of the free planar field theory follows 
directly from ( 4.2). In the absence of interactions there is only one connected 
diagram, 

(4.7) 

where J is the Feynman propagator, so that the generating functional for full Green 
functions is 

z[J] = 1 + w[ jZ[Jil 

=I+ J,ikjkZ[J]jiZ[j] 

= {I -JikAZ[i]jJ--:-1 (4.8) 

in terms of the expansion (1 - x )- 1 = I + x + x 2 
••• • Iteration generates the free 

planar theory in the form of a continued fraction: 

z[J] = 1 + J,ikjkji + ( J,ijJkm + JimJjk)jmA,hj; + · · · 

1 
-

1 - ji Joki A 
1 - j, Jm/ jm (4.9) 

1-jp J,qp jq 
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t.n.nn•fnl 
·nnn·nfnl·fnln 
+ nn + fnl + 

.. 
Fig. 4. Full Green function for free planar theory, eq. (4.9). 

Diagrammatically this is represented by fig. 4. In contrast, for the complete bosonic 
free field theory, 

The generating functional I'[ '1>] of 1 PI planar Green functions (proper vertices) 
may now be constructed from W[J]. We define a field '1> by 

(4.10) 

A leg entering a connected diagram must either end on a source Jk or a proper 
tadpole I'k, or may enter connected parts of the diagram through a proper self· 
energy II or proper vertices I', as in fig. 5. Additional (suppressed) sources J are 
hidden in the fields '1>;[1] defined by (4.10), so the fields '1>; are non-c-number 
quantities. Fig. 5 may be stated as 

( 4.11) 

Fig. 5. Expansion of a connected Green function in terms of !PI Green functions, denoted by 
cross-hatched blobs, eq. (4.11). All sources Ji are implicitly contained in the connected Green functions 

(hatched blobs). 
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Now an "interaction" functional I'1[4>] can be defined: 

(4.12) 

In terms of I'1[4>] eq. (4.11) takes the form 

(4.13) 

The iteration of ( 4.13) yields an expansion of 4> in terms of dressed planar trees. As 
the right-hand side of this equation contains a term linear in 4>, it is convenient to 
define the effective action 

(4.14) 

which obeys the equation 

8I'[ 4>] 
84> +.f; = 0. 

I 

( 4.15) 

As in the complete theory, transforming from I'1 to r amounts to summing proper 
, self-energy insertions into full propagators W;1 = Ll;kL[(IILlth1 on external legs. 

The Legendre transformation between W[J] and I'[4>] follows directly from (4.1), 
(4.10) and (4.15): 

J4> =J8W[J] = W[J] 
I I I 8J > 

I 

( 4.16) 

Hence the Legendre transformation is given by 

( 4.17) 

The only formal difference from the Legendre transformation of the complete theory 
is that because of the non-c-number character of sources .f; and fields 4>;, the 
right-hand side of (4.17) now contains the symmetric sum .f;4>; + 4>;.f;. 

The relations between the connected and proper n-point functions are derived 
from ( 4.10), ( 4.15) and ( 4.17). In general these relations are made tedious by 
proliferation of tadpoles. However, if the tadpoles vanish (I';= 0, W; = 0), the simple 
chain rule (3.10) can be used. In the remaining part of this section we shall limit the 
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discussion to this case. (QCD belongs to this category.) Differentiating (4. IO) gives 

(4.18) 

while differentiation of ( 4.15) gives 

Mm 82I'[ <I>] 
8<J>k = - 8<J>k8<J>m . (4.19) 

Now, defining I'[<l>hm = 82I' /8<l>k8<l>m, etc., we obtain from eqs. (4.18) and (4.19) 

(4.20) 

Similarly, differentiation of eqs. (4.10) and (4.15) with respect to the source J gives 

( 4.21) 

We conclude from eqs. (4.20) and (4.21) that -I'[<l>]m; is the inverse of W[Jhm, the 
full planar propagator in the presence of external sources. 

Indeed, we may return to the "interaction" functional, eq. (4.12), and make the 
replacement 

where Il[<l>hm = I'1[<l>hm• 
Using eq. (4.13), we may express W[Jhm as a geometric series of proper 

self-energy insertions: 

W[ J]iJ = (.1 + .1II[ <I> ].1 + .1II[ <I> ].1II[ <l>].1 + ···)ii 

= ( ,1-1 -III[ <I>]) ij. 

The rest of this section describes the expansion of connected Green functions in 
terms of proper vertices and full planar propagators. 

As a first step toward this goal we shall derive a useful simple relation. We take 
the functional derivative with respect to <l>s of both sides of (4.21) and using (3.9) we 
obtain 
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or, using eq. ( 4.20), 

(4.22) 

where W[Ohm is the c-number part of the full propagator W[Jhm• Now we can 
express all functional derivatives with respect to the sources .f; in terms of propaga
tors and functional derivatives with respect to the fields <I>;. Using the chain rule 
(3. IO) we obtain: 

(4.23) 

The content of ( 4.23) is clear: in the. transition from connected to l PI Green 
functions, all insertions on external legs are factorized. 

All higher derivatives can be expressed in a similar fashion by repeated use of 
(3.9), (4.22), and (4.23). The simplest example is 

(4.24) 

It is now straightforward to obtain the desired expansions. One expands the 
derivatives of the fields, eq. ( 4.10), with respect to the sources J as in ( 4.24) and sets 
the remaining sources and fields equal to zero. For example, from (4.24) we have 

(4.25) 

as illustrated in fig. 6a, from which follows the expression for the connected 3-point 
function in terms of the proper vertex with dressed legs, fig. 6b. Note the appearance 
of the c-number full propagator W[O];m rather than the non-c-number functional 
W[JLm· This guarantees that the next external leg can be inserted only in planar 
fashion. Thus a further derivative of ( 4.25) gives 

+ W[Oh1W[O];mw[ J],,r[ <l> ],jmnW[ J]n, 

+ W[O]kjW[O];mI'[OLmnW[J],n/, (4.26) 



P. Cvitanovic et al. / The planar sector of field theories 401 

(a) 

( b) 

Fig. 6. ( a) Extraction of. three legs from a generating functional for the connected planar Green functions 
eq. (4.25). A circular (oblong) blob indicates the c-number Green function (the generating functional). (b) 

Relation between connected and proper planar three-point functions. 

(a) 

+ + 

( b) 

Fig. 7. (a) Extracting four legs from a connected planar generating functional eq. (4.26). A circular blob 
stands for a Green function. (b) Relation between connected and proper planar four-point functions. In 
(a) and fig 6a we have drawn the generating functionals in one-to-one correspondence with the algebraic 
notation (4.26) and (4.25). This is convenient for keeping track of the (ordered) planar derivatives and the 
fermionic signs. One can also draw the diagrammatic relations in the conventional way, i.e. think of the 
blobs in figs. 6b and 7b as planar generating functionals, with all sources ordered around the periphery of 
the diagram. In that notation the planar derivative acts by pulling a leg from all blobs on the edge of a 
given sector. For example, the three terms of b are obtained by inserting a leg into fig. 6b in all possible 

planar ways. 
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as shown in fig. 7a. The corresponding expansion of the 4-point function, fig. 7b, 
includes, indeed, only planar terms. 

5. Planar Dyson-Schwinger equations 

It is straightforward to write down the Dyson-Schwinger equations (DSE) which 
generate the full planar perturbation expansion. As an illustration we take <l.> 3 + <l.> 4 

theory and examine the effect of extracting a leg from a full Green function. The leg 
may either terminate on a source or enter a vertex as is shown diagrammatically in 
fig. 8. Thus 

(5.l) 

where y denotes a rigid planar vertex. We remind the reader that the indices i, j, ... 
stand for all field dependence, such as position, Lorentz indices, flavour, etc. 

F [01·.::.·: .. •·.· .. '·.·.•···.·:.r7.·:· .. :. 
LdLd 

. . . . .. 

+ ~
:i)i.: 

... 

Fig. 8. Dyson-Schwinger equation for the generating functional of the full planar Green functions in the 
case of the 4>3 + 4>4 theory, eq. (5.1). 

Iteration of this equation generates the planar sector of the theory's perturbation 
expansion. As an example we derive the O(g 2

) expansion of the planar two-point 
function. Repeated use of the DSE, eq. (5.1) gives 

= etc. (5.2) 



P. Cvitanovii: et al. / The planar sector of field theories 403 

So to order g 2
, the planar two-point function is 

-®--.. ~. 
6 

.99 . .2.. --o-

+.D.. + u . (5.3) 

It is instructive to compare this result with the equivalent expansion in the complete 
bosonic theory: 

As in our earlier example (2.14), planar Feynman diagrams have no combinatoric 
weights. Recall that the Feynman diagrams of the planar sector are constructed from 
the non-deformable planar parts of the vertices of the complete theory; we see once 
again that, in terms of these, the combinatoric factors of the complete theory cancel 
in the planar sector. 

A planar action S[<l>] can also be defined: 

S [ <J>] = -Llik1
<J>k<J>, + Ymik<J>k<J>l<J>m + Ynmlk<J>k<J>l<J>m<J>n, ( 5 .5) 

with y the planar vertices as in eq. (5.1). The DSE can then be rephrased as the 
equation of motion for Z[j]: 

(5.6) 

The starting point for the derivation of the DSE for planar connected Green 
function are eqs. (4.2) and (5.1). Remembering the definition .I,= j;Z[j] and using 
(4.5), we can rewrite (5.1) as 

SW[J] _Ll {J [S 2W[J] SW[J] SW[J]] 
&f - ki k + Ynik SJ8./. + SJ SJ 

1 I n I n 

[ 
SW[J] SW[J] SW[J] SW[J] S2W[J] 

+ Y m nl k 8./. 8./. 8./. + SJ 8.f. 8.f. 
I n m I n m 

S2W[J] SW[J] S3W[J] SW[OJ 82W(JJ]} 
+ &fi8Jn 8Jm + &fi8Jn8Jm + 8Jn 8fi8Jm ' 

(5.7) 

which is the DSE for the planar connected Green functions. 
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~•n•~·~·~ 
~~ 
.~ 

Fig. 9. Dyson-Schwinger equation for the generating functional of the connected planar Green functions 
in the case of the '1>3 + '1>4 theory, eq. (5. 7). 

The physical content of this equation becomes obvious in its diagrammatic 
representation, fig. 9: a line enters a connected Green function to end on an external 
source or a bare vertex whose remaining legs continue into a connected part or 
separate connected parts. The generalization to the case of an arbitrary planar action 
S[ tl>] is 

(5.8) 

It is now a simple task to derive the DSE for planar amputated l PI Green 
functions, at least for the theories for which tadpoles vanish ( I'; = 0 and W; = 0). We 
apply the transformations (4.10), (4.15) and (4.23) to eq. (5.8): 

(5.9) 

The meaning of this equation may be illustrated by considering the specific case of 
the '1> 3 + '1>4 planar theory. In this case eq. (5.9) takes the form 

8I'1 [ I[> 1 
Btl>. =rmu(4>14>m+ W[J]im) 

I 

+Ynmn( 4>/4>m4>n + 4>1W[ J]mn + W[ J]1m4>n 

+ W[ J]1kW[O]m,I'[ 4> ]k1uW[ J] un), (5.10) 

for the interaction functional I'1[tl>]. The effect of the W[J] terms is to create 
dressed loops as illustrated in fig. 10. 
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Fig. 10. Dyson-Schwinger equation for the generating functional of the proper planar Green functions, 
IP1 + IP4 theory, eq. (5.10). 

♦ 

Fig. 11. Dyson-Schwinger equations for the proper planar two-point Green function (self-energy), 
.pl + .P4 theory. Tadpole contributions have been suppressed. 

For example, differentiating (5.10) with respect to '1> and then setting all fields and 
sources equal to zero, we obtain the DSE for the proper self-energy shown in fig. 11. 
Successive differentiations produce the DSE's for the higher proper vertices of the 
planar theory. 

6. Zero-dimensional theories 

It is amusing and instructive to consider field theories in the zero-dimension limit 
because the planar Dyson-Schwinger equations can be solved explicitly in this case. 
In this limit space-time collapses to a single point, and there is only a single sourcej, 
propagators take the value unity, and each vertex is simply a factor g, the coupling 
constant. The generating functionals become ordinary c-number valued functions, 

( 6.1) 
m m,k 

where z<m, k) is the number of diagrams with m legs and k vertices. Furthermore, the 
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planar functional derivative becomes trivial: for a function /[j] admitting a power
series expansion/[j] = 1::_0J<m>jm, we have in zero dimensions 

8/[j] /[j]-/[O] 
= 

8} j 
( 6.2) 

Thus the DSE's become algebraic equations whose solution counts the number of 
planar diagrams generated by the theory under consideration. The relevance of the 
asymptotic behaviour of the number of diagrams to the possible convergence of the 
planar perturbative expansion has been discussed in ref. [2]. 

We illustrate the above remarks with two examples, the most trivial of which is the 
counting problem for the free field theory. In this first example, the DSE (5.1) 
becomes 

or, using (6.2), 

sz z2•-o 
8j - J- ' 

j 2Z 2 
- z + 1 =O 

(6.3) 

(6.4) 

[of course, in this simple case, we could have arrived at (6.4) directly from (4.2) and 
(4.7)). Noting that Z[j] is a power series in j, we immediately get an explicit 
summation of the continued fraction ( 4.9). 

Z - I - VI - 4)2 - oo (2n )! ·2n 

- 2j2 - n~O n!(n + 1)! 1 (6.5) 

The coefficient of j 2 n gives the number of diagrams with 2n legs (see fig. 4). 
As a less trivial example, let us consider <P3 theory. In zero dimensions the DSE 

(5.1) becomes 

with 

_s2_z = z - z(l)_j - 1 
j2 

The solution of this quadratic equation is 

(6.6) 

(6.7) 
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By requiring that Z be a power series of the form (6.1), one finds after some algebra 
[11] explicit expressions for z<m,k)_ 

In a similar way, the number of planar connected and lPI diagrams with a given 
number of legs and vertices may be found by solving the zero-dimensional versions 
of the relevant DSE's. The planar formalism provides a simple and more direct 
method of diagram counting than that of taking the large-N-lirnit of a scalar [N x N] 
matrix field theory [11]. 

7. Planar QCD 

In sect. 2 we have used 't Hooft's [l] large-N limit of U(N) QCD to motivate the 
formal development of planar field theory carried out in sects. 3 to 6. In this section 
we return to QCD and describe the pla.nar QCD perturbation expansion. 

The contribution of a Feynman diagram to an amplitude consists of three parts: a 
combinatoric factor, a colour weight and a momentum-space factor. As we have 

...£.+. 

k --(l 13 

-i,--m+ie: 

-i 
k2 + i e: 

-i gp ha( k) 

ha aeka+k13 (k13fa-f13kci) 
2 

Fig. 12. Feynman rules for planar QCD. Hr(k) is set equal to (I -a)ka/k2
, one obtains the rules for 

the covariant gauges; if r(k) is set to 2na/(n · k)-_n 2ka/(n · k) 2
, the rules for the axial gauge are 

obtained. In the latter case the ghosts decouple. 
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argued above, due to the lack of Bose symmetry, all planar combinatoric factors are 
equal to unity. In ref. [6] we have exploited the colour weight structure of QCD to 
show that the planar sector of QCD is gauge invariant and defined for any 
non-abelian gauge group. The colour weights of planar diagrams are all proportional 
to Cz(R)k, where 2k is the order in perturbation theory, and Cz(R) is the quadratic 
Casimir operator for the defining representation. Hence all planar colour weights 
can be absorbed into the coupling constant by redefinition 

(7 .1) 

(In the large-N limit g;--+ g 2N, the usual coupling constant for 1/N expansions). 
The only non-trivial part of the planar QCD Feynman rules is their momentum-space 
structure. This has been discussed in sect. 2 and is summarized in fig. 12. The 
essential point is that the planar vertices are rigid: they are not symmetric under leg 
interchanges. 

The planar perturbation expansion is generated by iterating the Dyson-Schwinger 
equations of sect.· 5. For planar QCD the Dyson-Schwinger equations for the 
generating functional of the full Green functions are 

P Fl .... r'7l ~:·:.·.-.·.: ~:::·.'::· C.:.J(:jj ::·.::.· ·:·:·:•.·· 
·= + + 

. . . . . . . . . . .. 

CJ . 
. :CJ!□ ... = -

'V' h. 

~ . . X .. 

r-7 s7) Ld Ld 
-+t .~ ... 

)'' .. . /' ... 
(7.2) 

(7.3a) 

(7.3b) 

We are omitting quarks in this section for reasons of simplicity, their inclusion is 
straightforward. In order to obtain the full perturbation expansion for a particular 
Green function, e.g. the full gluon propagator, one should use the DSE's (7.2) and 
(7.3) to follow the left-most leg entering a blob further into the blob. Note the minus 
signs in (7.2) and (7.3b); they will generate the fermionic factor -1 for each ghost 
loop. 

As an example, we expand the gluon self-energy to the order g;. The gluon 
Dyson-Schwinger equation (7.2) gives 
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Now, using (7.2) and (7.3) and then setting all remaining sources equal to zero, we 
obtain to order g; 

(We drop the tadpoles, as in QCD they vanish identically.) Even though the 
combinatorics look different, the Feynman integrals for the planar gluon self-energy 
and the full QCD gluon self-energy are the same to this order. The reason has been 
explained in sect. 2; there is a compensation between the combinatoric factors and 
the colour weights. 

Now that we have the planar QCD f eynman rules and the planar Dyson-Schwinger 
equations, we are ready to derive the planar Ward identities. They are needed for the 
proof of gauge invariance and renorrnalizability. Of course, we know [6] that the 
planar QCD is gauge invariant because the complete theory is gauge invariant- but 
for any attempt at the direct summation of the planar theory, the planar Ward 
identities are an essential prerequisite. 

In QED the proof of Ward identities follows from the Feynman identity for the 
electron-photon vertex: 

The corresponding QCD identity for the three-gluon vertex is 

k3y{g"P( k1 - k2) y + gPY( k2 - k3 )" + gY"( k3 - k1 l} 

= ( g"Pki - k 2kfl - ( g"Pkf - kfkf}. 

(7 .5) 

(7.6) 

Sandwiching the above identity between two gluon propagators (fig. 12) we obtain 
the 't Hooft [12] identity for the three-gluon vertex: 

• r • ! ! 
';' ;,. ,.. ;,. ;,. 

A = 

A 
... + (7.7) A /"""'-. /~,· 

The auxiliary vertices and propagators are defined in fig. 13. The corresponding 
't Hooft identities for the planar four-gluon and gluon-ghost vertices are easily 
checked: 

. ~ . 
~--~·~. (7.8) 

I 
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Auxiliary propagators 

a. • J • ~ - i g",. 

•····l-··<• - i 
. {+if (full) momentum arrow 

O.o--4··>··• k=f--,- (!:k") al long ghost arrow 
k + I e: 

- if against 
Auxiliary vertices 

+ 
.. i.:·•··-r.. 

i g g",. 
p 

Fig. 13. Auxiliary propagators and vertices used in the derivation of the planar Ward identity. 

•. -· 
= • (7.9) 

t A . 
We have used momentum conservation together with ka.ha.(k)=k 2 (cf. fig. 12) in 
deriving the last relation. The above are the Ward identities for the bare planar 
vertices. To derive the Ward identities for the full planar Green functions we shall 
also need the following trivial identities (true by the definitions of figs. 12, 13): 

·4. ·"·· ·A. .'1 

_.·£:~ • ~l" = 
o, (7.10) 

·,:._ _:,· 

.··,r:~ 
(7 .11) 

(7.12) 

The 't Hooft identity for the three-gluon vertex (7.7) has two types of terms. The 
auxiliary propagator terms cancel against similar terms generated by (7:8) and (7 .9). 
The last two terms in (7.7) can be interpreted as propagation of a "longitudinal 
gluon" k,. through the diagram; in each application of the 't Hooft identity k,. "eats" 
a gluon line, leaving a ghost line in its wake. We start our proof of Ward identities 
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by considering an arbitrary full Green function (external legs suppressed) with a 
longitudinal gluon somewhere inside the diagram, 

(7.13) 

Under an infinitesimal variation of a gauge parameter, gauge variation insertions 
will appear on every gluon line. The above diagram represents the sum of all such 
terms. This unusual way of drawing Green functions is forced upon us by the 
planarity; the dotted blob represents the remainder of a planar Green function. 
Using the ghost Dyson-Schwinger equation (7.3a) we obtain 

(7.14) 

We may instead use the gluon Dyson-Schwinger equation (7.2) to obtain 

= + ... *- .. + + (7 .15) 

Now we use the 't Hooft identities (7.7)-(7.9). The last two terms in (7.14) cancel 
against terms generated by (7.7) and we obtain 

+ 

(7.16) 
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It is clear that the fourth and fifth term of the right-hand side of this equation will 
cancel against identical terms generated in the Dyson-Schwinger expansion of the 
second and third term. Expanding the sixth term with (7.3b) and using identities 
(7. l0)-(7.12) we finally obtain the planar Ward identity 

+ 

. . . . . 
. . . · .. · .. 

+ r.: ~ · .•. · .. ... . X ... 

(7.17) 

Modulo combinatoric factors, the planar Ward identities have the same form and 
the same interpretation as the complete QCD Ward identities: insertion of a 
longitudinal gluon (left-hand side) results m a sum of Green functions with vanish
ing mass-shell factprs (right-hand side). 

Eq. (7.17) is the planar QCD equivalent of the Becchi-Rouet-Stora identity [13] in 
the complete theory. Due to the non-commutativity of the sources, it is not possible 
to write this identity in its usual form (with functional derivatives acting on Z[j] 
from the left). The Ward identities for the connected and lPI Green functions can 
be obtained by the methods of sect. 4. 

To summarise, in this paper we have developed the full field-theoretic apparatus 
for the description of planar QCD: the planar generating functionals, the planar 
Dyson-Schwinger equations and the planar Ward identities. Planar field theory is 
characterized by continued fractions (rather than exponentials), which gives us hope 
that it may be convergent and summable. The stage is now set for a serious study of 
the high order UV behaviour (planar '/3 function) and IR behaviour (bound states) of 
planar QCD. 

Two of us (P.C. and P.G.L.) want to thank the particle physics group of the 
Rutherford Appleton Laboratory for its hospitality. P.N.S. wants to express his 
gratitude for the hospitality of the Niels Bohr Institute. 
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