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A simple and systematic method for the calculation of group-theoretic weights associated with Feynman

diagrams in non-Abelian gauge theories is presented. Both classical and exceptional groups are discussed.

I. INTRODUCTION

The increased interest in non-Abelian gauge
theories has in recent years led to the computa-
tion of many higher-order Feynman diagrams. ' "
Asymptotic form-factor and scattering amplitude
calculations are of special interest, because they
suggest that it might be possible to sum up dia-
grams with arbitrary numbers of soft gluons just
as one can sum up soft-photon processes in QED.
In such a program the analysis of the momentum
integrals proceeds by the traditional techniques
developed for QED calculations. The new aspect,
characteristic of non-Abelian gauge theories, is
the emergence of a group-theoretic weight (or
weight, "for short) associated with each Feynman
diagram. The dramatic cancellations among vari-
ous diagrams occur through interplay of their
group-theoretic weights and their momentum-space
integrals. So the study of weights becomes of
interest, as it might suggest cancellation patterns
needed for summations of diagrams.

In this paper we give a general method for com-
puting group-theoretic weights, and give explicit
rules for SU(n), SO(n), Sp(n), G„E„F„andE,
symmetry groups. We restrict ourselves to the
models with quarks in the defining (lowest dimen-
sional) representation, but the method can be ex-
tended to higher representations. .4,s only global
symmetry is assumed, we can compute weights not
only in symmetric gauge theories, but also in those
spontaneously broken gauge theories where all par-
ticles within a multiplet have the same mass.

The evaluation procedure is very simple. We
think of the weight itself as a Feynman integral
(over a discrete lattice), and introduce Feynman
diagrammatic notation to replace the unwieldy al-
gebraic expressions. Then we give two relations;
the first eliminates all three-gluon vertices, and
the second eliminates all internal gluon lines. The
result is a sum over a unique set of irreducible
group-theoretic tensors which form a natural basis
for all Lie algebras. All this is accomplished
without recourse to any explicit representation of
the group generators and structure constants. As
a by-product, we learn how to count quickly the
number of invariant couplings for arbitrary num-

bers of quarks and gluons, thus avoiding involved
reductions of outer products of representations by
Young tableaux.

In most calculations, one looks for properties
which arise solely from gauge invariance, and
there the explicit numerical values of weights
should really not be necessary. While in some
such calculations' ""it is appealing to express
simple diagrams in terms of quadratic Casimir
operators (so that the form of the expression is
independent of the particular gauge group and the
particular representation), for higher-order dia-
grams there is no simple way of relating weights
to generalized Casimir operators, '""and such an
approach becomes very cumbersome. Then the
explicit expressions for weights might be both
suggestive and useful as checks for the cancella-
tions among various diagrams. Another applica-
tion of explicit weight expressions is 1/n expan-
sions" for which the above evaluation method gives
simple and direct estimates. "

Possibly, a novel aspect of this paper is its
treatment of exceptional groups. It is known"
that exceptional groups arise from invariance of
norms defined on octonion spaces, but the demon-
stration is rather difficult (it involves Jordan al-
gebras over octonionic matrices). We skirt the
complexities of this underlying structure by giving
a formulation of exceptional groups purely in terms
of the geometrical properties of their defining
representations. Intuition so developed might be
of use to quark-model builders. We give the fol-
lowing example: Because SU(3) has a cubic invari-
ant &'"q,q,q„ it is possible to build a three-quark
color singlet with desirable phenomenological
properties. " Are there any other groups that
could accommodate three-quark color singlets'P
It turns out that the defining representations of
G„F„and E, are among groups with such invari-
ants. A systematic discussion of such invariants
shall be given elsewhere. "

In the past, most weight calculations have in-
volved SU(n) and, even more specifically, SU(3).
This has led to the development of methods speci-
fic to SU(n). 25 " For the sake of completeness and
comparison, we pursue this traditional line for
awhileandfind ourselves at an impasse.

1536



GROUP THEORY FOR FEYNMAN DIAGRAMS IN NON-ABELIAN. . . 1537

The organization of the paper is as follows. In
Sec. II, we state the evaluation rules. In Sec. III,
we introduce diagrammatic notation and derive
various relationships true for all Lie groups,
while particular groups are defined in Sec. IV. An
example of weight evaluation is given in Sec. V. In
Sec. VI, we discuss group-theoretic tensor bases
and relations between basis tensors for specific
representations, while higher representations are
touched upon in Sec. VII. Full Feynman rules are
stated in Appendix A. Appendix B is a long dis-
cussion of an older method of weight evaluation,
specific to SU(n). For readers interested only in
models with classical symmetry groups, Figs.
1-3 summarize all that is needed for weight com-
putation.

F""= e"4"—8"A"+ «A'4"f/' g k)

D~» = 5»a" —iA,"(T,)„
(2.1)

a, 5=1,2, . .. ,n, i,j=l, 2, .. . ,N

where the n complex quark fields q, transform as
the defining (lowest-dimensional cogredient) rep-
resentation of a compact simple N-dimensional
Lie group 8, and the N Hermitian gluon fields A,
transform as its adjoint (regular) representation.
In Yang-Mills theory the coupling constant e of the
usual QED is generalized to quark-gluon coupling
matrices (T,)». They are generators of 9, close a
Lie algebra

II. RULES FOR THE EVALUATION OF
GROUP-THEORETIC WEIGHTS

For our model we take a Yang-Mills theory with
massive quarks of n colors and N massless gluons,
defined by the classical Lagrangian density

2 = —4F(""F)„„+q(i$ —m)q,

1
iC)~» = Tr(T( TjT» ——T»T~T,.); (2.5)

man diagrams. There is no mixing between the
spacetime and the gauge group 9, and the Feynman
amplitude associated with a diagram 6 factorizes
into 8'~M~, where 8'~ is the group-theoretic
weight consisting of various (T, )» and C,», and

M~ arises from the integrals over internal mo-
menta and is similar to QED Feynman amplitudes.
Even though M~ will not concern us in this paper,
we give the rules for its computation in Appendix
A. We note that while in momentum space there
are four-gluon vertices, for S'~ there exist only
three-gluon couplings, because the group-theo-
retic factors in a four-gluon vertex have the form

«~»«a~
The group-theoretic weight S'~ is a product of

the following factors (all repeated indices are sum-
med over}:

(a) for each internal quark line, a factor 5»„a, 5

1 ) 2) 0 ~ ~ )n)
(b) for each internal gluon or ghost line, a factor

5)), i)j=1,2). .. )N)
(c) for each quark-quark-gluon vertex, a factor

(&)).',
(d) for each three-gluon or ghost-ghost-gluon

vertex, a factor —i«,»,
(e) for the four-gluon vertex, the factors

—(C, &C, »+ C,„,C&~) (multiplying g~g„,),
—(C&~»C&„,+ C, &C», } (multiplying g»&g»),
—(C,„gC» ~+C, »C, ~q) (multiplying g», gc„),
where gluon group and Lorentz indices are paired
as (i, X), (j, p, ), (k, v), and (l, g) (see also Fig. 24).

The weight 8'~ for an arbitrary Feynman ampli-
tude 6 is evaluated in two steps:

(1) Reexpress all three-gluon vertices —i C,» in
terms of the defining representation:

(a) If 9 is SU(n) or E,

f. ~g & ~jl ~Ci»i»t

TrT, =0)

(2.2)

(2 2)

(b) if 9 is SO(n), Sp(n), G„F„orE,

2i C,» = Tr(T, TzT»). —
a

(2.6)

Tr(T)Tq) = a5 gg. (2.4)

For example, for SU(n), the conventional choice"
is T, =&gX,. and a=&g'. In this paper a shall re-
main a,rbitrary throughout. ~a can be thought of

as the overall coupling constant for a simple group

9, and powers of Wa count the number of vertices
in a diagram. That the gluon self-couplings -iC;~~
also scale as ~ais evident from (2.2).

The Lagrangian (2.1) generates the usual Feyn-

and can be chosen to satisfy a normalization condi-
tion"

5~»5; — 5,'5~» for S-U(n),n'"
—(Tg)»(T, )„'=( 2(5~5; —5"5»~) for SO(n),

» (5~5»+f"fM) for Sp(n),

(2.'I)

(2.8)

(2 9)

with n even, f"= f",f"f,»=5;. -

(2) Eliminate all internal gluon lines
' ' ' (T,)~

~ ' ' (T,); by replacing them with gluon
projection operators:
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2 (3„'3f—3"5M) —f—'~,f"~ for G„
(2.10)

for E
3Q

21( 1)

(2.12)

for E
(2.13)

(a) SU(n), E6

(We do not know how to evaluate E,.)
The rules for the exceptional groups are supple-

mented by the identities of Sec. IV which define the
associated invariants. Graphically, the above
rules are summarized in Fig. 1. Section V gives
an example of how the rules are used in a typical
computation.

III. LIE ALGEBRA IN DIAGRAMMATIC NOTATION

A group-theoretic weight 5'z can be visualized
as a Feynman diagram in which the internal lines
represent sums over all colors of the associated
particles, and vertices represent their couplings.
There is never any need to label the lines and
vertices; the equivalent points on the paper repre-
sent the same index in all terms of a diagram-
matic equation. " Besides automatically keeping
track of indices, diagrams make it easier to rec-
ognize the symmetries of more complicated ex-
pressions.

In this section algebraic relations shall be trans-
cribed into diagrammatic equations which apply
to any semisimple Lie algebra with quarks in any
representation. The diagrammatic Feynman rules
are given in Fig. 2. Figure 3 summarizes the
basic relations of a semisimple Lie algebra. Note
that Fig. 3(a} fixes the sign convention for -iC,.&~,

indices circle the vertex in anticlockwise direction.
If the direction of the quark line were reversed,
the right-hand side would change sign.

Figures 3(e) and 3(f) count the numbers of quarks
and gluons, respectively: 5,'= n, 5,'. =N. The above

(b)

SO(n), Sp(n),

62, Fg, E7

SU (n)

2
0

for rea I representations:
(a) a b= sa a,b=l, 2, '' n

a — b = Sab

(b) i j = 8 j i, j = I, 2, ~ ~ N

SO (n)
I

(a) a -I b =(Ti)ab
for real representations:

Sp (n) JE +0
2

0
2 i j

=-iCijk ~

E6(27) 6 it+-
IS ~

I I I I )

4! + + 0 ~ ~

F~ (26)
+ ~ ~ ~ ~

E7(56) = — 1~ ik +0 2
24 a

FIG. 1. Weight evaluation rules for the defining re-
presentations of al.l simple groups except E8. (a) Elimi-
nation of a three-gluon coupl. ing -i C;~&, (b) elimination
of an internal gtuon line. Further rules for exceptional
groups are given in Sec. IV.

FIG. 2. (a) Quark propagator, (b) gluon or ghost pro-
pagator, (c) quark-quark-gtuon vertex. The arrow de-
notes the direction of multiplication of 7.'; matrices.
Whenever omitted, it is assumed to be pointing to the
l.eft for quarks going through the diagram, or counter-
clockwise for closed quark loops, (d) three-gluon or
ghost-ghost-gluon vertex. Indices circle the vertex
counterclockwise, (e) symmetrization symbol. , (f) anti-
symmetrization symbol, (a generalized Kronecker &).
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c,Q=

FIG. 5. A diagrammatic computation of the quadratic
Casimir operator for the fundamental representation.

(e)

/Xy r&
definitions already enable us to perform some
simple calculations. For example, to calculate
the quadratic Casimir operator for the quark rep-
resentation, Fig. 4(a}, we form a trace (join the
external quark lines) and use Figs. 3(c), 3(e), and

3(f), as outlined in Fig. 5, to obtain

0 =N

N
C~=a —.

n
(3.1)

FIG. 8. (a) Lie commutator for the quark representa-
tion, (b) tracelessness condition ("color conservation"),
(c) normalization convention, (d) Jacobi identity (or Lie
commutator) for the adjoint representation, (e) quark
number, (f) gluon number.

In other words, if we know the g1uon projection
operators [as those listed in (2.V) through (2.13)],
we can comPute the dimension of the algebra by
tracing the normalization relation (2.4):

(3.2)

(b) -=cA

(c) gy c
2

21%

FIG. 4. (a) Quadratic Casimir operator for the de-
fining representation, (b) quadratic Casimir operator
for the adjoint representation. The remaining figures
are examples of the reduction of (c) a quark-quark-gluon
vertex, (d) a three-gluon vertex, and (e) another quark-
quark-gluon vertex.

Existence of the gluon Casimir operator C„[see
Fig. 4(b)] is a necessary and sufficient condition
that the algebra is semisimple. For compact
groups C„&0. If the group is simple, '""

Tr(T&T&) = /Tr(C&C&)

[where f is called the index of the representation,
and the adjoint (or regular) representation of 9 is
constructed from matrices (C,)»= -iC,»], Figs.
3(c) and 4(b) are compatible. For a semisimple
group, this is generally not true. Joining gluon
indices in commutators Figs. 3(a) and 3(d) leads
to relations in Figs. 4(c) and 4(d). Similarly, the
relation Fig. 4(e) follows from the commutation
relation Fig. 3(a).

The antisymmetry of C,» leads to vanishing of
nonplanar diagrams of Fig. 6 as well as all dia-
grams that contain these as subdiagrams. This
follows from the commutation relations of Fig. 3,
but it is easily seen as a consequence of the skew-
ness of C,», Fig. 2(d). For example, interchange
of vertices 1 2 in Fig. 6(a), and 1 2, 3 4,
and 5 6 in Fig. 6(d) gives a factor (-1)' from
skewness of C,~~, while the diagrams are mapped
into themselves. The obscure diagram of Fig.
6(d) is related to the Peterson graph' in graph
theory, while Fig. 6(a} is related to the nonplanar
Kuratowski graph. "'"

One quickly runs out of relations achievable by
Lie algebra manipulations. For example, at this
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IV. WEIGHT EVALUATION

=0 Our objective is to express the group-theoretic
weight of an arbitrary diagram as

(4.1)

(b)

where T' ' are some basis tensors which carry
the external particles' indices, and C are real
coefficients. If T' ' are independent, C can be
computed by solving a set of linear equations

W"=C f ", m, n=1, 2, . . . , P (4 2)

(c)

/ X

=0

(4) =0

FIG. 6. Some diagrams that vanish because of the
skew symmetry of C;;&.

FIG. 7. A sixth-order quark-quark-gluon vertex
graph.

point we have no clue to the evaluation of the gluon
Casimir operator C„of Fig. 4(b), let alone any
more complicated diagrams, such as the one of
Fig. 7 (related to a quartic Casimir operator).
For that, it is necessary to concentrate on specif-
ic groups, as we shall do in the next section.
However, it should be emphasized that for the
study of general properties of gauge theories, the
techniques of this section are all that is needed.
For vertex exponentiation this is evident from
published calculations. " For quark-qua, rk and
gluon-gluon scattering' ' the difficulty lies in
finding a spontaneous -symmetry-breaking me-
chanism which maintains the global symmetry
(i.e. , equal gluon masses). When such a scheme
is found (as for example in the Bardakci-Halpern
model" ), one finds that nothing specific to the
group enters into cancellations between relevant
weights. 46

where t "=-T~'~' T "' ~=Tt™g T~' & is ob-
tained from T' ' by a reversal of all quark lines,
and the product is formed by a contraction of all
pairs of corresponding indices. For example,

any gluon self-energy weight can be expressed in
terms of a single basis T"' = 6,&, W, &

= C,5, &
(in

this case W'= W«and t"=X).
W" and t "are weights of diagrams with no ex-

ternal legs, which we shall refer to as vacuum
weights. From (4.2) it is clear that vacuum weights
carry all the information needed for weight evalua-
tion. They also have a direct combinatoric signif-
icance. We have already noted that single-loop
vacuum weights count the number of ways in which
a loop can be colored [Figs. 3(e) and 3(f)]. For
arbitrary weights a hint is given by SO(3), where
the weight of a gluon vacuum diagram is simply
the number of ways of coloring the lines of the dia-
gram with the three colors meeting at each vertex. 4'

In general, a vacuum weight is a combinatoric
number generated by some more complicated
"graph coloring rule. "

How is this "coloring rule" built into vacuum
weights? If we eliminate gluon self-couplings by
(2.5), we note that the remaining couplings (T,);
always appear in the combination (T,.)~~(T&)„'. It is
this combination that must implement the "coloring
rule. " What is its significance? As (T, )~q~q, trans-
forms as the adjoint representation (see Behrends
et al. ,

52 Sec. V A for a demonstration), (T, )~(T, )fq~q,
picks out the part of the quark-antiquark product
that transforms as a gluon. Repeated applications
of (1/a)(T;);(T;)~ reduce to a single application
through the normalization convention (2.4); hence,
we shall refer to (1 a/)(T;) (~T&) ~as the gluon Pr oj ec
tion oPexatcn . The problem of weight evaluation
is solved once such projection operators are known.

A gluon projection operator is also a weight (dia-
grammatically, a Born term in quark-quark scat-
tering), and, according to (4.1), we can express
it in terms of quark-quark scattering basis ten-
sors. To construct a complete set of these, we
need to know all invariants of the particular quark
representation. There is no simple way to enu-
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merate the invariants of an arbitrary representa-
tion; let us instead concentrate on models with
guarks in the defining representation (the lowest-
dimensional cogredient representation47"b). All
higher representations can be constructed from the
defining representation; in particular, the adjoint
representation emerges as the (T&)~q~q, term in the
Clebsch-Gordan series qq = A. S . . Further-
more, in the defining representation a classical
group has a simple geometricalinterpretation[such
as length preservation for SO(n)]. The main thrust
of this section will be to use such invariance prop-
erties to characterize the exceptional groups as
well.

P(Gq) =P(q),

P(q)=g" 'q.q, " q~.

(4.3)

Infinitesimal parametrization G = 1+i&aT& gives us
a differential statement of P(g) invariance,

sP(Gq)
9&)

so that the generators (if a nontrivial group exists)
must satisfy'

A. Invariants of the defining representation

Motivated by the existence of invariants such as
5' q,q„ for SO(n), we study unitary transformations
G~ which preserve an arbitrary polynomial

of exceptional groups, the invariance conditions
are so constraining that they can be realized only
in certain dimensions" (dimensional constraints
already appear in classical groups; the symplectic
invariant can be realized only in even dimensions).

Our intention is merely to demonstrate that if we
know the invariants of the defining representation,
we can construct the gluon projection operators
and evaluate any weight. Hence, we shall simply
statetheprimitive invariants for each defining rep-
resentation and show the conditions they must sat-
isfy. Again, as we are computing vacuum weights,
we shall find that no explicit realizations ofg' '

are needed, only some identities which implement
the "coloring rules. "

All simple Lie algebras are generated by a small
set of primitives which are either fully symmetric
(d'b"") or fully antisymmetric (f'"'"'). All de-
fining representations preserve 5b and the Levi-
Civita tensor in n dimensions, E' '"~. Their fur-
ther primitive invariant tensors are

SU(n): ~ ~ ~,

SO(n): 5, ,

Sp(n): f'b, n even

Gb 5abtfabc~

(g)s cb" f+ P )bgc f+ (T")f+b ~ c 0 (4 4)

Contracting this with (1/a)(T, ), we obtain an invati'
ance condhtion for gluon projection operators.

Suppose g b' is an invariant tensor. Then

g b'g, ~„g"'g"+, and so forth automatically satis-
fy (4.4) and give us no new constraints on T, . Let
us therefore concentrate on primitive invariant
tensors (primitives). They are defined by the
requirement that any invariant tensor can be ex-
pressed in terms of chains of their contractions
(which, diagrammatically, can be disconnected or
connected, but cannot contain loops). We assume
that the number of primitives is finite [hence, the
number of bases in (4.1) is also finite]. Any weight
is expressible in terms of primitives; in particu-
lar, the gluon projection operator will be of the
form

{a)

(c)

dab"c =
0 ~

ab- c

fab
"c

ab- ~ c ab. ~ c

I I

) 1 ~ ~ (~ ~ & &

= 0

dab "c
~ ~

)ab- c

= a

+ Cbg gbM+ ' ' ' . (4.5)

Substituting this into invariance conditions (4.4), we
obtain conditions on C„and g b"'", which, as will
be shown, suffice to determine the gluon projection
operator up to the overall normalization g. In case

FIG. 8. (a) Diagrammatic notation for fully symmetric
tensors 4' '', d~q. ..~ and Mly antisymmetric tensorsf' '', f, t ..., , (b) invariance conditions for gluon
projection operators, (c) normalization convention for
gluon projection operators, (d) normalization convention
for cubic quark self-couplings.
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d d'~ - o.5"
abc

ycM ~6d

n for different groups need not be the same.

(4.6)

(4.7)

B. Special unitary groups SU(n)

The defining representation of SU(n) is a set of
all unitary (U~U = 1) and unimodular (detU = 1)
[n x n] matrix transformations acting on an n-di-
mensional complex vector space (n qua, rks). The
infinitesimal transformations can be parametrized
by N=n' —1 traceless Hermitian matrices (T~);
which close a Lie algebra (2.2). The invariants
are the Hermitian (sesquilinear") metric 5;
(which imposes the unitarity condition; qq =—q'5g,
is preserved) and the Levi-Civita tensor in yg di-
mensions, &' '"f. The contragredient Levi-Civita
tensor acts as an inverse to the cogredient one in
the sense that a direct product of the two can be
expressed as a generalized Kronecker 5 function
[see also (6.4)]

E6

F&: &ao~d.ac~

E . y~~ d~~«

E,: 5,&, C,», unknown.

Before we proceed with the discussion of indivi-
dual groups, let us make a few observations that
will apply to all cases. Owing to the full (anti)
symmetry of (f' "') d"'" tensors, the invariance
conditions can be stated very compactly (Fig. 8).
f'~"' and d""' can be interpreted as quark self-
couplings. Unlike quark-gluon couplings (T,)~,
whose scale is fixed relative to C&» by (2.2), they
have no a priori relation to gauge couplings, and
to characterize their scale we introduce an arbi-
trary normalization n. For cubic couplings we can
define n by

gpeoof gagee of
~Pq e ~ ~ ff +Pq e ~ of4 ~ (4.8)

Gluon projection operator expansion (4.5) is of
the form

1
(T(—)t',(T))„'= A (5„'6;+b6f 6~),a (4.9)

C. Special orthogonal groups SO(n)

The defining representation of SO(n) is a set of
all orthogonal (R R = 1) and unimodular (detR = 1)
[n x n] matrix transformations acting on an n-di-
mensional complex vector space (n quarks). The
defining invariant is a symmetric tensor d" =d"
(and its inverse d„=d„) introduced diagrammati-
cally in Fig. 10(a). The remainder of Fig. 10
derives the gluon projection operator from the in-

(a)

sO (n)

ab
dab

which we give diagrammatically in Fig. 9(a). [+ny
possible z'"'"' terms reduce to the above two by
(4.8)]. Substituting this expression into E' '" in-
variance condition Fig. 8(b), we obtain the equa-
tion Fig. 9(b), which, when contracted with 6~ (in
the only way possible, the incoming line with any
outgoing line) yields b= —1/n. We now see how a
projection operator" works; 6;6,' removes the
singlet from a quark-antiquark state, leaving N
=n && n —1 gluons. Tracelessness of T, ensures
that the gluon does not connect to the vacuum (i.e. ,
that the group is semisimple). From the normal-
ization convention Fig. 8(c) A = 1, and we can veri
fy that the number of gluons is indeed N=n' —1 by
evaluating (3.2).

(b) =A I +b +C

(a)
t'

=A I'+b

(c) O=, , + b +C y ~ b=O, C=-~
A

(b) 0
&f 'll)'lF ~ ~ 1P

b = -)/n

FlG. 9. (a) The most general, form of the gluon pro-
jection operator for SU(n), (b) the Levi-Civita tensor
invariance condition.

FIG. 10. (a) Diagrammatic notation for SO(n)-invari-
ant tensor d, q, (b) the most general form of the gluon
projection operator for SO(n), (c) d, q invariance condi-
tion, (d) gluon projection operator for SO(+).
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(a)

Qb

dab

p even

defining representations. " Construction of the
gluon projection operator (Fig. 11) proceeds as in
the SO(n) case.

E. Exceptional group G2 (Ref. 56)

(b)

(c)

FIG. 11. (a) Diagrammatic notation for Sp(n)-invari-
ant tensor f,&, (b)f~q invariance condition, {c)gluon
projection operator for Sp(n).

variance of d" [Fig. 8(b)]. By diagonalizing d"
and rescaling q' fields, we can always find a rep-
resentation where d„=5,~. There is no distinction
between upper and lower indices (quark = antiquark,
the representation is real), and in diagrams we can
omit all d" tensors and all line arrows, and note
that because of (4.4).the generators are antisym-
metric: (T,),~

= —(T, )~, They ar. e clearly trace-
less, and it is easily verified that the Levi-Civita
tensor &"" in n dimensions is preserved as well.

ln the conventional choice of SO(n) generators""4
with only two nonzero elements +1, the normaliza-
tion is fixed by p = 2g'.

D. Symplectic groups Sp(n)

The defining representation of G, (n= 7) pre-
serves a symmetric invariant 5„[G,is a sub-
group of SO(V)], and a fully antisymmetric cubic
invariant f'". lt is possible to show that G, is the
only nontrivial simple group that possesses such
invariants, '4 and that f„,must satisfy the alterna-
tivity relations'"" given in Fig. 12(b). By these
relations two out of three tensors f„,f,~, f„,f,M,
and f~,f,», can always be eliminated in favor of
the third and some combination of 5", s. As in the

SO(n) case, 6,~ invariance makes generators T,
antisymmetric, and the gluon projection operator
(4.5) has the form given in Fig. 13(a). From the

identity Fig. 13(b), we derive relation Fig. 13(c},
which determines the gluon projection operator
through invariance of f,„[Fig.8(b)]. Actually,
Fig. 13(c) (through a few more applications of the
alternativity relations) leads to a very strong
statement" that any chain of three f,~, can be re-
duced to a sum of terms linear in f,~, by the equa-
tion of Fig. 13(d). This guarantees that even
though the projection operator (2.10}replaces
internal gluon lines by internal quark lines, the

resulting weights can always be reduced to the

bases (4.1). The gluon number, evaluated by (3.2), is
indeed N = 14. Further relations are given in Fig. 14.

An explicit realization of tensors f„,is given by

octonions. '"" In this framework 6, is the auto-

The invariant preserved by the defining repre-
sentation of Sp(n) is a skew-symmetric metric4"'4
f' = —f '(anditsinversef, ~= f~,). Aninv—erse
exists only iff '' is nonsingular, det(f) e 0. The skew-
symmetry off ' allows that only for even-dimensional

(a)
Gp

=A I S+

(b)

(a)
a b (c) =0~ b= —)

{b)
(d) —6

(c)

FIG. 12. (a) Diagrammatic notation for the tensor f,~~
for the exceptional group 62(7), (b) the "alternativity"
relation which relates contractions of pairs of f,q, , (c)
the invariance condition for f,q~ .

FIG. 13. (a) The most general. form of the gluon pro-
jection operator for G2(7) pe~ invariance has already
been imposed), (b) an identity between contractions of
three f,&~ which arises from the skew-symmetry of
f,q~, and leads to (c) the invariance condition for the
gluon projection operator, (d) identity that reduces any
chain of contractions of more than two f, &~ .
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(a)

(b) I

2

(a)

I I

Vga f C =-)0

{e) —— ' = — -: -: +2 + —a
6

FIG. 15. (a) The most general form of the gluon pro-
jection operator for E6(27). (b) Springer's relation. To-
gether with the invariance condition for the gluon pro-
jection operator, it fixes the constants in (a).

36
Q2

FIG. 14. Some derived relations between f,~, tensors
useful in the computations of weights for G2.

morphism group of octonions, i.e. , it is a set of
all [7 x 7] real matrices G,~ such that the trans-
formation

15(a)] . Evaluation of (3.2) yields the dimension of
the algebra of E„N= 78.

Springer's relation arises from the characteris-
tic equation for [3 x 3] Hermitian octonion matri-
ces. The gluon projection operator (2.11) was
actually first constructed by Preudenthal" in a
very different notation (as a derivation of a Jordan
algebra). His normalization convention is n= —,'.

preserves the octonionic multiplication rule

eaea = 5an+fabcsc' (4.10)

(o)

where f„,are given explicitly in Ref. 58; for our
purposes, it is sufficient to note that octonions
satis fy the alternativity condition if

[xyz] —=(xy)z —x(yz),

[xyz] = [waxy] = [yes] = —[yxz],

(b)

tTII . A A
I II I I &

"
I I II {

vrhere x,y, z are arbitrary octonions. The alterna-
tivity relation Fig. 12(b) follows from the multi-
plication rule (4.10) and the alternativity condi-
tion. " Equation (4.10) also fixes the normalization
(4.7) g = —8. Then —n is simply the number of
distinct colorings of diagram Fig. 8(d) allowed by
the octonion multiplication rule.

28
I I

I I
I I

I I I

F. Exceptional group E6

The defining representation of E, (n= 27) pre-
serves a fully symmetric cubic invariant d,~, (and
its inverse d'~').""'""No condition relating
d„,d ' type tensors exists and the only nontrivial
relation" on d'~' tensors is a trilinear Springer
relation" [Fig. 15(b)] which arises from the re-
quirement of d'~' invariance [Fig. 8(b)). This re-
lation enables us to compute the gluon projection
operator [whose general form is given by Fig.

lt W I &

FIG. 16. Diagrammatic notation for the tensor d, &,
for the exceptional group F4(26), (b) "characteristic"
relation which relates contractions of pairs of d, ~~, (c)
expansion of this identity [which fol.lows from (b)] leads
to (d) a relation between contractions of three d, q, .
Antisymmetrization in top legs and symmetrization in
bottom legs yields (e) the Jordan identity which together
with the invariance condition for d, &~ fixes the gluon pro-
jection operator for E4(26).
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E7

(b)

=0

&a
7

dabcd

a bed

(b)

=0

(c)

FIG. 17. Some derived relations between

daric

tensors
useful in computations of F4 weights.

(d)

G. Exceptional group F4

The defining representation of F, (n= 26) pre-
serves" ~'8' both d,~, and 5,~. To derive F4, it is
necessary to assume that a relation between bi-
linear combinations d„,d„„exists. The only non-
trivial relation" of such type is the characteristic
relation" of Fig. 16(b). The gluon projection op-
erator is constructed the way it was constructed
for G, . The identity of Fig. 16(c) leads us to the
Jordan identity of Fig. 16(e), which together with
the d,~, invariance [Fig. 8(b}] fixes the projection
operator up to an overall normalization. The
normalization convention [Fig. 8(c)]then yields the
gluon projection operator given in (2.12). There are
N= 52 gluons. Further relations are given in Fig. 17.

An explicit realization of tensors d„, is given
by octonion matrices. In this framework" F, is
the isomorphism group of the exceptional simple
Jordan algebra of traceless Hermitian [3x3] ma-
trices x with octonion matrix elements. The non-
associative multiplication rule for elements x
can be written as

(e)

FIG. 18. (a) Diagrammatic notation for the tensor
d, q, & for the exceptional group E, (56), (b) symplectic
invariant tensor f'~ relates + " and da&c&, (c) the
most general form of the gluon projection operator (fa~

invariance has already been imposed), (d) Brown relation
which relates contractions of pairs of da~cz, (e) reduc-
tion of a one-loop diagram.

The characteristic equation for traceless [3 x 3]
matrices

x' ——,Tr(x')x —3 Tr(x') 1=0

gives a relationship between contractions of pairs
of d, „„drawn in Fig. 16(b). (Characteristic equa-
tions are discussed in Sec. VI.) The Jordan iden-
tity (xy)x' = x( yx') is automatically satisfied; it is
just the relation of Fig. 16(e). Normalization is
fixed by (4.11), n= —, .

x=—x,e, g=1, 2, . . . , 26

Tre, =0, e, is a [3x 3] basis matrix,

~a~
~a~g g~a 3

~ + agcec &

Trl = 3, 1 is a [3 x 3] unit matrix.

(4.11)

Transformations of F4 preserve the quadratic
form Tr(x') [the length in 26-dimensional space,
so that F, is a subgroup of SO(26)], as well as a
fully symmetric cubic form

Tr(xyz) = Tr(yxz) = Tr(yzx)=d, ~~,y,z, .

H. Exceptional group E7

The defining representation of E, (n= 56) pre-
serves a skew-symmetric tensor f" [E, is a sub-
group of Sp(56)] and a fully symmetric quartic
invariant, e'e4'" d'~~ [Fig. 18(a)]. f,~, f'~ raise and
lower indices [Fig. 18(b)]. The gluon projection
operator can have the general form of Fig. 18(c).
The invariance of d,„~ gives the Brown relation"
[Fig. 18(d)], which enables us to compute Fig.
18(e), impose the normalization condition Fig.
8(c), and derive (2.13}. The evaluation of the gluon
number gives N= 133.
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In the explicit realization of tensors d,b~ by oc-
tonion matrices, "the conventional normalization
is @=3.

I. Exceptional group Es SU(0) n -) 2n2 n~ U—p2

The defining representation of E, (n=N= 248) is
also the adjoint representation, so our method of
reducing everything to the lowest-dimensional
representation is of no help. Still, if the invari-
ants of the defining representation of E, were
known, we would be able to reduce higher-order
weight diagrams to a basic set just as for all other
simple groups. Known invariants are 5„and
C„, and other invariants are certainly higher than
quartic. The Tits construction, ""which relates
SU(n) -E„SO(n)- F„and Sp(n) —E„suggests
(extrapolating octonions -E,) that the E, invariant
is a fully symmetric octet d„~,&~„. We do not know
whether this is true and we hope we shall never
need to know.

We should also point out that we have not proved
that our identities for F4, E„and E, suffice to
evaluate any weight. We have only verified this
for all vacuum weights up to 4 loops (F, and E,)
and 3 loops (E,).

V. ILLUSTRATIVE EXAMPLES

Evaluation of any 8'~ is now almost trivial, es-
pecially for classical groups. We just proceed
applying systematically the rules of Fig. 1, first
eliminating all three-gluon vertices, and then re-
moving all internal gluon lines. Removal of each
gluon line reduces 8'~ into a sum of weights of
lower order. Eventually we end up with a set of
irreducible tensor bases, each multiplied by some
polynomial in n (n is the number of quark colors).

As an example, we evaluate the SO(n) qua, dratic

SO(n)

SO(n) n(n-))
2

(n-2)—
2

Sp(n)

G2(7)

Fq (26) 52

Eg(27) 78

E,(56)

sQ
7 L
8

p2 U
2

U
2

p2 U
Y
p2 U
(2

p2

9
p2 U
24

+a

+

+a

FIG. 20. A tabulation of some simpl. e weight evalua-
tions.

VI. RELATIONS BETWEEN BASIS TENSORS

The procedure outlined in Secs. I-V always leads
us to a unique set of tensors: (T~)~ and traces over
T, matrices. In other words, we are expressing
all 8'G. in terms of the defining representation.
Let us illustrate this by writing all irreducible
bases T' ' for quark-quark scattering weights
[see (4.1)]:

Casimir operator for the adjoint representation
(gluons) in Fig. 19. We find that

C„=a(n —2).

Other such results are tabulated in Fig. 20. Qf
course, dimensions and Casimir operators (or
representation indices) are all tabulated in the
literature4" 4' and our algorithm is unnecessary
for their evaluation. However, we can now calcu-
late the weight of any diagram. A typical example
would be computation of all the weights that appear
in the SU(n) quark-quark scattering calculation, '
or the order of the first nonleading term in 1/n
expansion for various groups. "

2 +

FIG. 19. A sample diagrammatic computation: quad-
ratic Casimir operator for the adjoint representation of
SO(). (a) C~&~ are replaced by the defining representa-
tion, (b) internal. gluons are replaced by gluon projection
operators, and (c) the expression is expanded and evalu-
ated.

SO(n): 3'5' O'O' V'3 (P = 3)

Sp(n): 5q5q, 5f5q, f' fM, (P = 3)

G2(7): &u&~ ~s &~ &"»a f'~.f"g,(P =4)

and so forth. These bases appear naturally in our
approach, but they are by no means the only pos-
sible choice. For example, we can replace the
"color exchange" base 6„'5~ by the "color flip"
base' ' (T,.);(T,)f using relations (2.7)-(2.13). As
another example, we write down all irreducible
tensor invariants for a process with t' external
gluons and no external quarks, the set of all dis-
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.~ t ~ ~

~ b ~

O none (traceIessness)

(t ) su(z) + =0

2
(c) SU(&) 6

I I

FIG. 22. (a) A characteristic equation for t4x4] mat-
rices, (b) characteristic equation for SU(2) tthere are
no d&,k coefficients; see Fig. 25(d)l, (c) Macfarlane et al .
relation for- SU(3).

SO(n): P, = 1, P, = 6, etc. (6.2)

5 44
6 265

Further relations, dependent on the dimensional-
ity of the defining representation, arise from the
characteristic equations for [n x n] matrices (i.e. ,
from the invariance of the Levi-Civita tensor).
The characteristic polynomial" is defined as

P(~) =detl&

7 I854
8 I4 833

FIG. 21. Tensor bases for processes with r =2, 3, . . .
external gluons and no external quarks. These are also
the complete and independent bases for SU{n) tensors
as long as n~~.

where

8
(-+)"b —6+1+2"'abgbg ~ ~, Abb

~ bk a& ky-0

ap~bp ~fp

(6.3)

tinct traces overs T, matrices (Fig. 2].).
P„, the number of all distinct tensors of rank r,

is the number of ways in which r T; matrices can
be grouped into traces over their products, with
the restriction that Tr(T, )= 0. P„can be calculated
in a number of arduous ways, such as by Young
tableaux, '""or by the method of Appendix B.
However, it turns out that p„had already been
calculated in 1708,"'"and is known as a number
of derangements, or subfactorial

(6 1)

Not all tensor bases thus enumerated are neces-
sarily independent, because they might be related
through the invariants of the defining representa-
tion. P„was calculated from a single condition,
tracelessness. Thus, traces over T, form natural
bases for all simple Lie groups, SU(n) in particu-
lar. For SO(n), Sp(n), G„F„and E„ the clock-
wise and anticlockwise directions of loops in Fig.
21 are related by 6„,f,b invariance, and the num-
ber of independent bases is reduced:

5b
6""'~= detpqe ~ e g

&eu
' ' '

&yu

(6.4)

is the generalized Kronecker 6. Identity P(A) =0
yields the characteristic equation for A:

n iqk
0 Afg~ gggg2 o gk

bgb2" 'bk

Aby Ab2 ~ ' ' Abk

Now if we substitute A = a, T, , where T, are gen-
erators of the group 9, for each n we obtain vari-
ous relations between tensor invariants. As an
example, we work out the n= 4 case diagrammati-
cally in Fig. 22(a). The indices are symmetrized
because the whole expression is multiplied by a
symmetric factor a;a&aka, , summed over all i, j,
k, and L. More familar relationships are worked
out explicitly for SU(2) and SU(3) in Figs. 22(b) and
22(c). The SU(3) relationship can be rewritten
in terms of d&+ tensors, the form of which has
been originally derived by Macfarlane et al."
Higher SU(n) relationships have been worked out
in Ref. 29. Such relations do not affect the cor-
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rectness of our general procedure for weight eval-
uation.

VII. HIGHER REPRESENTATIONS

tensor notation. To check this construction we
compute the dimension [Fig. 3(f)) and the index
(3.3) and verify"'"'" that

In Sec. 1V we have constructed gluon projection
operators from the invariants of the quark repre-
sentation. This approach is by no means restricted
to the defining representation; in Appendix B we
shall give an example of a calculation in terms of
the invariants of the adjoint representation. That
calculation will exemplify the difficulties arising
in the study of higher representations; it is not
easy to find a complete set of invariants for an
arbitrary representation, and even when those are
found, the evaluation ofweights can still be difficult.

However, we already have a simpler solution for
one higher representation; we know how to com-
pute weights of diagrams with all particles in the
adjoint representation. We evaluate them by re-
writing them in terms of the defining representa-
tion. This suggests that we should attempt to ex-
press the particular higher representation in terms
of the defining representation; once that is accom-
plished, the weights can be evaluated by the meth-
ods of Sec. IV. In principle, we always know how
to construct any representation from the defining
one by the Young symmetrization procedure.

As an example we construct the antisymmetric
second-rank tensor representation of SU(n)."
The projection operator —,'(5;5~b —5t5b) picks out the
antisymmetric part of a two-quark state q~~, and
the generator of SU(n) transformations is

(t, )~b = 2 [(T,);5,' —(T,);5~+ 5', (T, )", —5,'(T, )t],

—Tr(t, t;) =n —2.1

Further examples of projection operators for high-
er representations are given by Behrends et gl."

We should also mention that there already exist
algorithms for computing weights of arbitrary rep-
resentations. For example, Agrawala and Belin-
fante" have developed a computer program for
evaluation of SU(n) invariants.
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APPENDIX A: COMPLETE FEYNMAN RULES FOR Ng V~

With the definition of the group-theoretic weight
8'~ given in Sec. II, the rules for M~ are easily

Factors for WG MG

I

a b a = b i(D~+m~) (quark)

where a, b, . . . =1,2, . . . ,n, and T,. are the gener-
ators of the defining representation of SU(n) (Sec.
IV B). This is a nice example of how compact the
diagrammatic notation is" (Fig. 23) compared to

i ~wvx~rj v i
I I j

—ig„, (g luon 3

(ghost 3

su(n)

i, )

2 I(j-- -4 k
J

(a)
kiv

[( ~ &) q +(o2 4) q"" (oz oi)"9 ]

)kv pg x( yv

Vg )kg

n (n-1)
2

k~u y g

I

I g g —
g g

FIG. 23. (a) Diagrammatic notation for the antisym-
metric second-rank tensor representation of SU(n), (b)
computation of its dimension.

FIG. 24. Factors for the group-theoretic weights W~
and Feynman momentum integrate ~ in the Feynman
gauge.
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constructed by consulting some standard refer-
ence, such as Abers and Lee." In this appendix
we state the full rules for unrenormalized Feyn-
man amplitudes in (unbroken) non-Abelian gauge
theories as an extension of the rules for construc-
ting Feynman-parametric integrals given previ-
ously. " Factors of rule 5, of Ref. 73, are now

replaced by the factors of Fig. 24. Additionally
M~ gets a factor —1 for each quark or ghost loop.

0 I

I 0

2 I

APPENDIX B: EVALUATION OF SU(N) WEIGHTS

USING f- AND d-TENSOR BASES

In this appendix we extend the SU(3) method of
Dittner" to SU(n). The generalized Gell-Mann
[n & n] X matrices together with I, iI, and iX span
all complex matrices, "so we can write a multi-
plication law for X matrices as

SU(n): A.;X~ = (g+ ib)5)g + (dg»+ if)»)X».

This relation, which has no obvious analogs for
other simple groups, is the departure point for
most of the earlier attempts at weight evalua-
tion.""The tensors 5,&, d,», and f,.» are numer-
ically invariant in the sense that they are the same
for all equivalent representations X, —u~&,u, u~u = i.
They are real by definition. b = 0 because of the
Hermiticity of X, , while a is related to the arbi-
trary normalization of Eq. (2.4), g = (qg' j4)g.

According to Sec. IV, we can evaluate any weight
if we know how to evaluate vacuum weights. There
&; matrices always appear in traces, TH(A, &,. A,„),
and they can be eliminated by the repeated applica-
tion of the X-multiplication rule [depicted in Fig.
25(b)]. The problem of weight evaluation for SU(n)

4 l5

5 140

6 lel5
FIG. 26. Construction of all simple d and f tensors

with r external gluons.

(a)

su(n}

=—4iIk

is then reduced to the problem of evaluation of
vacuum weights built solely from the adjoin. nt rep-
resentation invariant tensors 5,&, f&», and g&»,
Dittner solves this by setting up a chain of sets of
linear equations of type (4.2), which make it pos-
sible (in principle) to compute weights with /+ I
loops once all vacuum weights with up to / loops

a +-
r) 2 2

r ar-I ar

(e)

Id) ~ =
~

FIG. 25. (a) Notation for the (ful. ly symmetric) numeri-
cal tensor d;~&, (b) multiplication rule for SU() matrices
T; =—

2 g &;, (c) decomposition of three external gluon
quark-l. oop into real and imaginary parts, (d) d&&z as its
real part.

4 2

5 5

6 I 4 I 680

FIG. 27. Catalan's trees.
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are known. To achieve this, it is necessary to
construct independent bases for processes with
x=2, 3, . .. external gluon legs.

The simplest set of tensors for each x is easily
constructed (see Fig. 26). To enumerate them,
we start a systematic construction by drawing all
Catalan'"" trees in Fig. 27, whose number is
Catalan's number (the number of ways in which a
product of n numbers can be evaluated)

(a)

su(n)

a 4aM
n ~+

a 4a
n

(Jacobi identity)
(2r —4)!

(r —1)!(r —2)! '

By (r —1)!permutations of all branches, and

factor 2 for each crotch (f or d tensor), we obtain
the number of all distinct connected tensors

n, =2" '(2r —5)!!, n, =o, n, =-l

where (2n —1)!!is the product of the first n-odd
integers, 7 1 t =-7 & 5 x 3 x 1. To relate Q.„to the

n„, the number of all distinct tensors (connected
and unconnected) we introduce generating functions

(b) Q / 4a
/

4a
n

A(f)=- g
r=O + ~

(B4)

The numbers of connected and disconnected
graphs are related in the usual fashion,

A(t) eA(0) (B6)

By differentiation with respect to t, this can be
restated as

(B7)

which enables us to calculate recursively Q.„ listed
in Fig. 26.

However, tensors so constructed are redundant,
and if we attempt to use them to expand an arbi-
trary tensor with x external gluons, we would not
be able to calculate the expansion coefficients,
because the determinant of the system of Q.„equa-
tions vanishes for x& 3.

So our next task is to find all the relations be-
tween „ tensors. These stem from the associ-
ativity of T& matrices. For example, Tr(T, T&T~T, )
can be evaluated in two ways, by pairing matrices
either as Tr(T, T&)(T„T,) or Tr(T&T~)(T, T), and then
using Fig. 25(b). The two evaluations give the
relationship of Fig. 28(a). There are (4 —1)!= 6
distinct connected tensor bases (Fig. 21) with
four T,. each, giving us y~= 6 relationships. We
cast those in the form familiar from the litera-
ture, '6 "three equations for the real parts [Fig.
28(b)] and three for the imaginary parts [Fig.
28(c) . Figure 28(c) states that d&z~ are invariant

FIG. 28. (a) Associativity of T~ matrices leads to re-
lations between various d and f tensors. All relations
between (b) real and (c) imaginary parts of simple ten-
sors with four external gluons.

y„=(r —1)!(a„,—1), r~2.
For each x there are

p „=n„-y„= (r —1)! r ~ 2

(B9)

(B10)

independent connected tensors. The total number
of independent tensors P„ is given by

B(t) g ~fr
„.0 r! (B11)

[see (4.4) and remember that (T&)»= —if&» for the
adjoint representation of SU(n)]. The second and
third lines of Fig. 28(b) are two versions of the
SU(n) generalization"'" of the SU(2) relationship

(B8)

Glancing back at the gluon projection operator for
F, [Fig. 1(b)], we realize that this is the gluon
projection operator for models with quarks in the
ad joint representation of SU(n).

The number of associativity relations for arbi-
trary r is again related to Catalan's number,
which is nothing but the number of associativity
patterns
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SU(n)

(a)

2 a2

=2a

+-an
2

+ —2an
2

(b) =2a + +n +

FIG. 29. Gluon "box" diagram evaluated in (a) two
different f and d bases and (b) T~ basis.

B(t)= Q "t"
r=2 Y

= —f —ln(1 —t),
e t

B(t)= e~"'=
1 —t

(B12)

But B(t) is precisely the generating function for
subfaCtorill, so we have rederived the simple
counting of (6.1) in a complicated way.

Once a set of P„ independent tensors has been
constructed, the tensor to be simplified is expan-
ded in this basis. By contracting all its indices
with each basis tensor, a set of P, linear equations

is obtained. Now it is necessary to solve these
equations —for the details, we refer the reader
to Dittner's papers. " To illustrate the form of the
results, we give the reduction of a gluon "box" dia-
gram in two (of many possible) choices of f, d
bases [Fig. 29(a)]. For comparison with the meth-
od of Sec. VI, we also evaluate the same diagram
in T, bases, Fig. 29(b).

To summarize, for SU(n) the knowledge of the
invariants of the adjoint representation leads to a
feasible method of weight evaluation. However,
compared with the evaluation via the defining rep-
resentation, it suffers from numerous drawbacks.
It introduces a tensor d,» that does not appear in
the original interaction Lagrangian, and leads to
arbitrariness in the choice of tensor bases (note
that the T, bases are unique). Finally, it involves
solving large sets of linear equations; already for
x = 4 we found it convenient to do the algebra on a
computer. " By contrast, if we use the defining
representation, evaluation never requires solving
any equations (for classical groups, at least): It
is a systematic procedure of eliminating internal
gluons one by one until only irreducible tensors
are left. If there are d, » couplings in the model,
they are easily incorporated into our scheme by
Fig. 25(d).
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