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On the State Space Geometry of the Kuramoto–Sivashinsky Flow in a Periodic
Domain∗
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Abstract. The continuous and discrete symmetries of the Kuramoto–Sivashinsky system restricted to a spa-
tially periodic domain play a prominent role in shaping the invariant sets of its chaotic dynamics.
The continuous spatial translation symmetry leads to relative equilibrium (traveling wave) and rela-
tive periodic orbit (modulated traveling wave) solutions. The discrete symmetries lead to existence
of equilibrium and periodic orbit solutions, induce decomposition of state space into invariant sub-
spaces, and enforce certain structurally stable heteroclinic connections between equilibria. We show,
for the example of a particular small-cell Kuramoto–Sivashinsky system, how the geometry of its
dynamical state space is organized by a rigid “cage” built by heteroclinic connections between equi-
libria, and demonstrate the preponderance of unstable relative periodic orbits and their likely role
as the skeleton underpinning spatiotemporal turbulence in systems with continuous symmetries.
We also offer novel visualizations of the high-dimensional Kuramoto–Sivashinsky state space flow
through projections onto low-dimensional, PDE representation-independent, dynamically invariant
intrinsic coordinate frames, as well as in terms of the physical, symmetry invariant energy transfer
rates.
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1. Introduction. Recent experimental and theoretical advances [25] support a dynamical
vision of turbulence: For any finite spatial resolution, a turbulent flow follows approximately
for a finite time a pattern belonging to a finite alphabet of admissible patterns. The long-
term dynamics is a walk through the space of these unstable patterns. The question is how
to characterize and classify such patterns. Here we follow the seminal Hopf paper [27] and
visualize turbulence not as a sequence of spatial snapshots in turbulent evolution, but as a
trajectory in an infinite-dimensional state space in which an instant in turbulent evolution is
a unique point. In the dynamical systems approach, theory of turbulence for a given system,
with given boundary conditions, is given by (a) the geometry of the state space and (b) the
associated natural measure, that is, the likelihood that asymptotic dynamics visits a given
state space region.

We pursue this program in context of the Kuramoto–Sivashinsky (KS) equation, one of
the simplest physically interesting spatially extended nonlinear systems. Holmes, Lumley,
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and Berkooz [26] offer a delightful discussion of why this system deserves study as a staging
ground for studying turbulence in full-fledged Navier–Stokes boundary shear flows.

Flows described by partial differential equations (PDEs) are said to be infinite-dimensional
because if one writes them down as a set of ordinary differential equations (ODEs), a set of
infinitely many ODEs is needed to represent the dynamics of one PDE. Even though their
state space is thus infinite-dimensional, the long-time dynamics of viscous flows, such as
Navier–Stokes, and PDEs modeling them, such as Kuramoto–Sivashinsky equations, exhibits,
when dissipation is high and the system spatial extent small, apparent “low-dimensional”
dynamical behaviors. For some of these the asymptotic dynamics is known to be confined to
a finite-dimensional inertial manifold, though the rigorous upper bounds on this dimension
are not of much use in practice.

For large spatial extent the complexity of the spatial motions also needs to be taken
into account. The systems whose spatial correlations decay sufficiently fast, and for which
the attractor dimension and number of positive Lyapunov exponents diverges with system
size, are said [28, 42, 10] to be extensive, “spatio-temporally chaotic,” or “weakly turbulent.”
Conversely, for small system sizes the accurate description might require a large set [20] of
coupled ODEs, but dynamics can still be low-dimensional in the sense that it is characterized
with one or a few positive Lyapunov exponents. There is no wide range of scales involved,
nor decay of spatial correlations, and the system is in this sense only “chaotic.”

For a subset of physicists and mathematicians who study idealized “fully developed,”
“homogenous” turbulence the generally accepted usage is that the “turbulent” fluid is charac-
terized by a range of scales and an energy cascade describable by statistical assumptions [16].
What experimentalists, engineers, geophysicists, and astrophysicists actually observe looks
nothing like a “fully developed turbulence.” In the physically driven wall-bounded shear
flows, the turbulence is dominated by unstable coherent structures, that is, localized recurrent
vortices, rolls, streaks, and the like. The statistical assumptions fail, and a dynamical systems
description from first principles is called for [26].

The set of invariant solutions investigated here is embedded into a finite-dimensional
inertial manifold [14] in a nontrivial, nonlinear way. “Geometry” in the title of this paper refers
to our attempt to systematically triangulate this set in terms of dynamically invariant solutions
(equilibria, periodic orbits, . . .) and their unstable manifolds, in a PDE representation and
numerical simulation algorithm–independent way. The goal is to describe a given turbulent
flow quantitatively, not model it qualitatively by a low-dimensional model. For the case
investigated here, the state space representation dimension d ∼ 102 is set by requiring that
the exact invariant solutions that we compute be accurate to ∼ 10−5.

Here comes our quandary. If we ban the words turbulence and spatiotemporal chaos from
our study of small extent systems, the relevance of what we do to larger systems is obscured.
The exact unstable coherent structures that we determine pertain not only to the spatially
small chaotic systems, but also the spatially large spatiotemporally chaotic and the spatially
very large turbulent systems. So, for the lack of more precise nomenclature, we take the
liberty of using the terms chaos, spatiotemporal chaos, and turbulence interchangeably.

In previous work, the state space geometry and the natural measure for this system have
been studied [6, 38, 39] in terms of unstable periodic solutions restricted to the antisymmetric
subspace of the KS dynamics.
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The focus in this paper is on the role that continuous symmetries play in spatiotemporal
dynamics. The notion of exact periodicity in time is replaced by the notion of relative spatio-
temporal periodicity, and relative equilibria and relative periodic orbits here play the role that
the equilibria and periodic orbits played in the earlier studies. Our search for relative periodic
orbits in the KS system was inspired by the investigation of López et al. [41] into relative
periodic orbits of the complex Ginzburg–Landau equation. However, there is a vast literature
on relative periodic orbits since their first appearance, in Poincaré study of the three-body
problem [5, 48], where the Lagrange points are the relative equilibria. Such orbits arise in
dynamics of systems with continuous symmetries, such as motions of rigid bodies, gravita-
tional N -body problems, molecules, and nonlinear waves. Recently Viswanath [49] has found
both relative equilibria and relative periodic orbits in the plane Couette problem. A Hopf
bifurcation of a traveling wave [1, 2, 35] induces a small time-dependent modulation. Brown
and Kevrekidis [4] study bifurcation branches of periodic orbits and relative periodic orbits in
the KS system in great detail. For our system size (α = 49.04 in their notation) they identify
a periodic orbit branch. In this context relative periodic orbits are referred to as “modulated
traveling waves.” For fully chaotic flows we find this notion too narrow. We compute 60,000
periodic orbits and relative periodic orbits that are in no sense small “modulations” of other
solutions; hence our preference for the well established notion of a “relative periodic orbit.”

Building upon the pioneering work of [33, 23, 4], we undertake here a study of the KS
dynamics for a specific system size, L = 22, sufficiently large to exhibit many of the features
typical of turbulent dynamics observed in large KS systems but small enough to lend itself to
a detailed exploration of the equilibria and relative equilibria, their stable/unstable manifolds,
determination of a large number of relative periodic orbits, and a preliminary exploration of
the relation between the observed spatiotemporal turbulent patterns and the relative periodic
orbits.

In presence of a continuous symmetry, any solution belongs to a group orbit of equivalent
solutions. The problem: If one is to generalize the periodic orbit theory to this setting, one
needs to understand what is meant by solutions being nearby (shadowing) when each solution
belongs to a manifold of equivalent solutions. In a forthcoming publication [46] we resolve this
puzzle by implementing symmetry reduction. Here we demonstrate that, for relative periodic
orbits visiting the neighborhood of equilibria, if one picks any particular solution, the universe
of all other solutions is rigidly fixed through a web of heteroclinic connections between them.
This insight garnered from study of 1-dimensional KS PDEs is more remarkable still when
applied to the plane Couette flow [20], with 3-dimensional velocity fields and two translational
symmetries.

The main results presented here are the following: (a) Dynamics visualized through phys-
ical, symmetry-invariant observables, such as “energy,” dissipation rate, etc., and through
projections onto dynamically invariant, PDE-discretization–independent state space coordi-
nate frames (section 3). (b) Existence of a rigid “cage” built by heteroclinic connections be-
tween equilibria (section 4). (c) Preponderance of unstable relative periodic orbits and their
likely role as the skeleton underpinning spatiotemporal turbulence in systems with continuous
symmetries (section 6).

2. Kuramoto–Sivashinsky equation. The KS system [37, 47], which arises in the de-
scription of stability of flame fronts, reaction-diffusion systems, and many other physical
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Figure 1. A typical spatiotemporally chaotic solution of the KS equation, system size L = 20π
√
2 ≈ 88.86.

The x coordinate is scaled with the most unstable wavelength 2π
√
2, which is approximately also the mean

wavelength of the turbulent flow. The color bar indicates the color scheme for u(x, t), used also for the subsequent
figures of this type.

settings [33], is one of the simplest nonlinear PDEs that exhibit spatiotemporally chaotic
behavior. In the formulation adopted here, the time evolution of the flame front velocity
u = u(x, t) on a periodic domain u(x, t) = u(x+ L, t) is given by

(2.1) ut = F (u) = −1

2
(u2)x − uxx − uxxxx , x ∈

[
−L

2
,
L

2

]
.

Here t ≥ 0 is the time, and x is the spatial coordinate. The subscripts x and t denote partial
derivatives with respect to x and t. In what follows we shall state results of all calculations
either in units of the “dimensionless system size” L̃, or the system size L = 2πL̃. Figure 1
presents a typical turbulent evolution for KS. All numerical results presented in this paper are
for the system size L̃ = 22/2π = 3.5014 . . . , for which a structurally stable chaotic attractor is
observed (see Figure 4). Spatial periodicity u(x, t) = u(x+ L, t) makes it convenient to work
in the Fourier space,

(2.2) u(x, t) =

+∞∑
k=−∞

ak(t)e
ikx/L̃ ,

with the 1-dimensional PDE (2.1) replaced by an infinite set of ODEs for the complex Fourier
coefficients ak(t):

(2.3) ȧk = vk(a) = (q2k − q4k) ak − i
qk
2

+∞∑
m=−∞

amak−m ,
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where qk = k/L̃. Since u(x, t) is real, ak = a∗−k, and we can replace the sum by an m > 0
sum.

Due to the hyperviscous damping uxxxx, long-time solutions of the KS equation are
smooth, ak drops off fast with k, and truncations of (2.3) to 16 ≤ N ≤ 128 terms yield
accurate solutions for system sizes considered here (see Appendix A). Robustness of the
long-time dynamics of the KS system as a function of the number of Fourier modes kept in
truncations of (2.3) is, however, a subtle issue. Adding an extra mode to a truncation of the
system introduces a small perturbation in the space of dynamical systems. However, due to
the lack of structural stability as a function of both the truncation N and the system size L, a
small variation in a system parameter can (and often will) throw the dynamics into a different
asymptotic state. For example, an asymptotic attractor which appears to be chaotic in an
N -dimensional state space truncation can collapse into an attractive cycle for (N +1) dimen-
sions. Therefore, the selection of parameter L for which a structurally stable chaotic dynamics
exists and can be studied is rather subtle. We have found that the value of L = 22 studied in
section 4 satisfies these requirements. In particular, all of the equilibria and relative equilibria
persist and remain unstable when N is increased from 32 (the value we use in our numerical
investigations) to 64 and 128. Nearly all of the relative periodic orbits we have found for this
system also exist and remain unstable for larger values of N as well as for smaller values of
the integration step size (see Appendix C for details).

2.1. Symmetries of the KS equation. The KS equation is Galilean invariant: If u(x, t) is
a solution, then u(x−ct, t)−c, with c an arbitrary constant speed, is also a solution. Without
loss of generality, in our calculations we shall set the mean velocity of the front to zero,

(2.4)

∫
dxu = 0.

As ȧ0 = 0 in (2.3), a0 is a conserved quantity fixed to a0 = 0 by the condition (2.4). G, the
group of actions g ∈ G on a state space (reflections, translations, etc.), is a symmetry of the
KS flow (2.1) if g ut = F (g u). The KS equation is time translationally invariant and space
translationally invariant on a periodic domain under the 1-parameter group of O(2) : {τ�/L, R}.
If u(x, t) is a solution, then τ�/L u(x, t) = u(x + �, t) is an equivalent solution for any shift
−L/2 < � ≤ L/2, as is the reflection (“parity” or “inversion”)

(2.5) Ru(x) = −u(−x) .

The translation operator action on the Fourier coefficients (2.2), represented here by a com-
plex-valued vector a = {ak ∈ C | k = 1, 2, . . .}, is given by

(2.6) τ�/L a = g(�) a,

where g(�) = diag(eiqk �) is a complex-valued diagonal matrix, which amounts to the kth mode
complex plane rotation by an angle k �/L̃. The reflection acts on the Fourier coefficients by
complex conjugation,

(2.7) Ra = −a∗ .
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Reflection generates the dihedral subgroup D1 = {1, R} of O(2). Let U be the space of
real-valued velocity fields periodic and square integrable on the interval Ω = [−L/2, L/2],

(2.8) U = {u ∈ L2(Ω) | u(x) = u(x+ L)} .

A continuous symmetry maps each state u ∈ U to a manifold of functions with identical
dynamic behavior. Relation R2 = 1 induces linear decomposition u(x) = u+(x) + u−(x),
u±(x) = P±u(x) ∈ U

±, into irreducible subspaces U = U
+ ⊕ U

−, where

(2.9) P+ =
1 +R

2
, P− =

1−R

2
,

are the antisymmetric/symmetric projection operators. Applying P+, P− on the KS equation
(2.1), we have [33]

u+t = −(u+u+x + u−u−x )− u+xx − u+xxxx ,

u−t = −(u+u−x + u−u+x )− u−xx − u−xxxx .(2.10)

If u− = 0, KS flow is confined to the antisymmetric U
+ subspace,

(2.11) u+t = −u+u+x − u+xx − u+xxxx ,

but otherwise the nonlinear terms in (2.10) mix the two subspaces.
Any rational shift τ1/mu(x) = u(x+L/m) generates a discrete cyclic subgroup Cm of O(2),

also a symmetry of the KS system. Reflection together with Cm generates another symmetry
of the KS system, the dihedral subgroup Dm of O(2). The only nonzero Fourier components
of a solution invariant under Cm are ajm �= 0, j = 1, 2, . . . , while for a solution invariant
under Dm we also have the condition Re aj = 0 for all j. Dm reduces the dimensionality of
state space and aids computation of equilibria and periodic orbits within it. For example, the
1/2-cell translations

(2.12) τ1/2 u(x) = u

(
x+

L

2

)

and reflections generate O(2) subgroup D2 = {1, R, τ, τR}, which reduces the state space into
four irreducible subspaces (for brevity, here τ = τ1/2):

τ R τR

P (1) =
1

4
(1 + τ +R+ τR) S S S

P (2) =
1

4
(1 + τ −R− τR) S A A

P (3) =
1

4
(1− τ +R− τR) A S A(2.13)

P (4) =
1

4
(1− τ −R+ τR) A A S .
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P (j) is the projection operator onto u(j) irreducible subspace, and the last three columns refer
to the symmetry (or antisymmetry) of u(j) functions under reflection and 1/2-cell shift. By the
same argument that identified (2.11) as the invariant subspace of KS, here the KS flow stays
within the U

S = U
(1) + U

(2) irreducible D1 subspace of u profiles symmetric under 1/2-cell
shifts.

While in general the bilinear term (u2)x mixes the irreducible subspaces of Dn, for D2

there are four subspaces invariant under the flow [33]:
{0}: the u(x) = 0 equilibrium,
U
+ = U

(1) + U
(3): the reflection D1 irreducible space of antisymmetric u(x),

U
S = U

(1) + U
(2): the shift D1 irreducible space of L/2 shift symmetric u(x),

U
(1): the D2 irreducible space of u(x) invariant under x �→ L/2− x, u �→ −u.

With the continuous translational symmetry eliminated within each subspace, there are no
relative equilibria and relative periodic orbits, and one can focus on the equilibria and periodic
orbits only, as was done for U

+ in [6, 38, 39]. In the Fourier representation, the u ∈ U
+

antisymmetry amounts to having purely imaginary coefficients, since a−k = a∗k = −ak. The
1/2 cell-size shift τ1/2 generated 2-element discrete subgroup {1, τ1/2} is of particular interest,
because in the U+ subspace the translational invariance of the full system reduces to invariance
under discrete translation (2.12) by half a spatial period L/2.

Each of the above dynamically invariant subspaces is unstable under small perturbations,
and generic solutions of the KS equation belong to the full space. Nevertheless, since all
equilibria of the KS flow studied in this paper lie in the U+ subspace (see section 4), U+ plays
an important role for the global geometry of the flow. The linear stability matrices of these
equilibria have eigenvectors both in and outside of U+ and need to be computed in the full
state space.

2.2. Equilibria and relative equilibria. Equilibria (or the steady solutions) are the fixed
profile time invariant solutions,

(2.14) u(x, t) = uq(x).

Due to the translational symmetry, the KS system also allows for relative equilibria (traveling
waves, rotating waves), characterized by a fixed profile uq(x) moving with constant speed c,
that is,

(2.15) u(x, t) = uq(x− ct) .

Here suffix q labels a particular invariant solution. Because of the reflection symmetry (2.5),
the relative equilibria come in counter-traveling pairs uq(x− ct), −uq(−x+ ct).

The relative equilibrium condition for the KS PDE (2.1) is the ODE

(2.16) 1
2(u

2)x + uxx + uxxxx = c ux ,

which can be analyzed as a dynamical system in its own right. Integrating once, we get

(2.17) 1
2u

2 − cu+ ux + uxxx = E.
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Figure 2. The energy (3.6) of the equilibria and relative equilibria that exist up to L = 22, L̃ = 3.5014 . . . ,
plotted as a function of the system size L̃ = L/2π (additional equilibria, not present at L = 22, are given
in [23]). Solid curves denote n-cell solutions E2 and E3, dotted curves the GLMRT equilibrium E1, and dashed
curves the relative equilibria TW±1 and TW±2. The parameter α of [33, 23] is related to the system size by
L̃ =

√
α/4.

This equation can be interpreted as a three-dimensional dynamical system with spatial co-
ordinate x playing the role of “time,” and the integration constant E can be interpreted as
“energy”; see section 3.

For E > 0 there is rich E-dependent dynamics, with fractal sets of bounded solutions
investigated in depth by Michelson [43]. For L̃ < 1 the only equilibrium of the system
is the globally attracting constant solution u(x, t) = 0, denoted E0 from now on. With
increasing system size L the system undergoes a series of bifurcations. The resulting equilibria
and relative equilibria are described in the classical papers of Kevrekidis, Nicolaenko, and
Scovel [33], and Greene and Kim [23], among others. The relevant bifurcations up to the
system size investigated here are summarized in Figure 2: At L̃ = 22/2π = 3.5014 . . . , the
equilibria are the constant solution E0; the equilibrium E1, called GLMRT by Greene and Kim
[40, 23]; the 2- and 3-cell states E2 and E3; and the pairs of relative equilibria TW±1, TW±2.
All equilibria are in the antisymmetric subspace U

+, while E2 is also invariant under D2, and
E3 under D3.

In the Fourier representation the time dependence of the relative equilibria is

(2.18) ak(t)e
−itcqk = ak(0).

Differentiating with respect to time, we obtain the Fourier space version of the relative equi-
librium condition (2.16),

(2.19) vk(a)− iqkcak = 0,
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Figure 3. (a) E1, (b) E2, and (c) E3 equilibria. The E0 equilibrium is the u(x) = 0 solution. (d)
(u, ux, uxx) representation of (red) E1, (green) E2, (blue) E3 equilibria, (purple) TW+1, and (orange) TW−1

relative equilibria. L = 22 system size.

which we solve for (time-independent) ak and c. Periods of spatially periodic equilibria are
L/n with integer n. Every time the system size crosses L̃ = n, n-cell states are generated
through pitchfork bifurcations off the u = 0 equilibrium. Due to the translational invariance
of the KS equation, they form invariant circles in the full state space. In the U

+ subspace
considered here, they correspond to 2n points, each shifted by L/2n. For a sufficiently small L
the number of equilibria is small and concentrated on the low wavenumber end of the Fourier
spectrum.

In a periodic box of size L both equilibria and relative equilibria are periodic solutions
embedded in 3-dimensional space, conveniently represented as loops in (u, ux, uxx) space;
see Figure 3(d). In this representation the continuous translation symmetry is automatic—a
rotation in the [0, L] periodic domain only moves the points along the loop. For an equilibrium
the points are stationary in time; for relative equilibrium they move in time, but in either
case, the loop remains invariant. So we do not have the problem that we encounter in the
Fourier representation, where, seen from the frame of one of the equilibria, the rest trace out
circles under the action of continuous symmetry translations.

From (2.3) we see that the origin u(x, t) = 0 has Fourier modes as the linear stability
eigenvectors (see Appendix B). The |k| < L̃ long wavelength perturbations of the flat-front
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equilibrium are linearly unstable, while for |k| sufficiently larger than L̃ the short wavelength
perturbations are strongly contractive. The high k eigenvalues, corresponding to rapid vari-
ations of the flame front, decay so fast that the corresponding eigendirections are physically
irrelevant. Indeed, [50] shows that the chaotic solutions of spatially extended dissipative
systems evolve within an inertial manifold spanned by a finite number of physical modes,
hyperbolically isolated from a set of residual degrees of freedom with high k, themselves indi-
vidually isolated from each other. The most unstable mode, nearest to |k| = L̃/

√
2, sets the

scale of the mean wavelength
√
2 of the KS turbulent dynamics; see Figure 1.

2.3. Relative periodic orbits, symmetries, and periodic orbits. The KS equation (2.1) is
time translationally invariant, and space translationally invariant under the 1-dimensional Lie
group of O(2) rotations: If u(x, t) is a solution, then u(x+ �, t) and −u(−x, t) are equivalent
solutions for any −L/2 < � ≤ L/2. As a result of invariance under τ�/L, the KS equation can
have relative periodic orbit solutions with a profile up(x), period Tp, and a nonzero shift �p,

(2.20) τ�p/Lu(x, Tp) = u(x+ �p, Tp) = u(x, 0) = up(x) .

Relative periodic orbits (2.20) are periodic in the cp = �p/Tp corotating frame (see Figure 16),
but in the stationary frame their trajectories are quasi-periodic. Due to the reflection symme-
try (2.5) of the KS equation, every relative periodic orbit up(x) with shift �p has a symmetric
partner −up(−x) with shift −�p.

Due to invariance under reflections, the KS equation can also have relative periodic orbits
with reflection, which are characterized by a profile up(x) and period Tp,

(2.21) Ru(x+ �, Tp) = −u(−x− �, Tp) = u(x+ �, 0) = up(x),

giving the family of equivalent solutions parameterized by � (as the choice of the reflection
point is arbitrary, the shift can take any value in −L/2 < � ≤ L/2).

Armbruster, Guckenheimer, and Holmes [2, 1] and Brown and Kevrekidis [4] (see also [35])
link the birth of relative periodic orbits to an infinite period global bifurcation involving a
heteroclinic loop connecting equilibria or a bifurcation of relative equilibria, and also report
creation of relative periodic orbit branches through bifurcation of periodic orbits.

As � is continuous in the interval [−L/2, L/2], the likelihood of a relative periodic orbit
with �p = 0 shift is zero, unless an exact periodicity is enforced by a discrete symmetry, such
as the dihedral symmetries discussed above. If the shift �p of a relative periodic orbit with
period Tp is such that �p/L is a rational number, then the orbit is periodic with period nTp.
The likelihood of finding such periodic orbits is also zero.

However, due to the KS equation invariance under the dihedral Dn and cyclic Cn sub-
groups, the following types of periodic orbits are possible:

(a) The periodic orbit lies within a subspace pointwise invariant under the action of
Dn or Cn. For instance, for D1 this is the U+ antisymmetric subspace, −up(−x) = up(x), and
u(x, Tp) = u(x, 0) = up(x). The periodic orbits found in [6, 39] are all in U

+, as the dynamics
is restricted to antisymmetric subspace. For L = 22 the dynamics in U

+ is dominated by
attracting (within the subspace) heteroclinic connections, and thus we have no periodic orbits
of this type, or in any other of the Dn-invariant subspaces; see section 4.
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(b) The periodic orbit satisfies

(2.22) u(x, t+ Tp) = γu(x, t)

for some group element γ ∈ O(2) such that γm = e for some integer m so that the orbit repeats
after time mTp (see [22] for a general discussion of conditions on the symmetry of a periodic
orbit). If an orbit is of reflection type (2.21), Rτ�/Lu(x, Tp) = −u(−x− �, Tp) = u(x, 0), then
it is preperiodic to a periodic orbit with period 2Tp. Indeed, since (Rτ�/L)

2 = R2 = 1 and the
KS solutions are time translation invariant, it follows from (2.21) that

u(x, 2Tp) = Rτ�/Lu(x, Tp) = (Rτ�/L)
2u(x, 0) = u(x, 0).

Thus any shift acquired during time 0 to Tp is compensated by the opposite shift during
evolution from Tp to 2Tp. All periodic orbits we have found for L = 22 are of type (2.22)
with γ = R. Preperiodic orbits with γ ∈ Cn have been found by Brown and Kevrekidis [4] for
KS system sizes larger than ours, but we have not found any for L = 22. Preperiodic orbits
are a hallmark of any dynamical system with a discrete symmetry, where they have a natural
interpretation as periodic orbits in the fundamental domain [13, 12].

3. Energy transfer rates. In physical settings where the observation times are much longer
than the dynamical turnover and Lyapunov times (statistical mechanics, quantum physics,
turbulence), periodic orbit theory [12] provides highly accurate predictions of measurable
long-time averages such as the dissipation and the turbulent drag [20]. Physical predictions
have to be independent of a particular choice of ODE representation of the PDE under con-
sideration and, most importantly, invariant under all symmetries of the dynamics. In this
section we discuss a set of such physical observables for the 1-dimensional KS invariant under
reflections and translations. They offer a representation of dynamics in which the symmetries
are explicitly factored out. We shall use these observables in section 8 to visualize a set of
solutions.

The space average of a function a = a(x, t) = a(u(x, t)) on the interval L,

(3.1) 〈a〉 = 1

L

∮
dx a(x, t),

is in general time-dependent. Its mean value is given by the time average

(3.2) a = lim
t→∞

1

t

∫ t

0
dτ 〈a〉 = lim

t→∞
1

t

∫ t

0

1

L

∮
dτ dx a(x, τ) .

The mean value of a = a(uq) ≡ aq evaluated on equilibrium or relative equilibrium u(x, t) =
uq(x− ct), labeled by q as in (2.15), is

(3.3) aq = 〈a〉q = aq.

Evaluation of the infinite time average (3.2) on a function of a periodic orbit or relative
periodic orbit up(x, t) = up(x+ �p, t+ Tp) requires only a single Tp traversal,

(3.4) ap =
1

Tp

∫ Tp

0
dτ 〈a〉.
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Equation (2.1) can be written as

(3.5) ut = −Vx, V (x, t) = 1
2u

2 + ux + uxxx .

If u is “flame-front velocity,” then E, defined in (2.17), can be interpreted as the mean
energy density. So, even though KS is a phenomenological small-amplitude equation, the
time-dependent L2 norm of u,

(3.6) E =
1

L

∮
dxV (x, t) =

1

L

∮
dx

u2

2
,

has a physical interpretation [23] as the average “energy” density of the flame front. This
analogy to the mean kinetic energy density for the Navier–Stokes equation motivates what
follows.

The energy (3.6) is intrinsic to the flow and independent of the particular ODE basis set
chosen to represent the PDE. However, as the Fourier amplitudes are eigenvectors of the
translation operator, in the Fourier space the energy is a diagonalized quadratic norm,

(3.7) E =
∞∑

k=−∞
Ek, Ek =

1

2
|ak|2 ,

and explicitly invariant term-by-term under translations (2.6) and reflections (2.5).
Take time derivative of the energy density (3.6), substitute (2.1), and integrate by parts.

Total derivatives vanish by the spatial periodicity on the L domain:

Ė = 〈ut u〉 = −
〈(

u2

2
+ ux + uxxx

)
x

u

〉

=

〈
ux u

2

2
+ u2x + ux uxxx

〉
.(3.8)

The first term in (3.8) vanishes by integration by parts, 3
〈
ux u

2
〉
=

〈
(u3)x

〉
= 0, and inte-

grating the third term by parts yet again, one gets [23] that the energy variation

(3.9) Ė = P −D, P =
〈
u2x

〉
, D =

〈
u2xx

〉
balances the power P pumped in by antidiffusion uxx against the energy dissipation rate D
by hyperviscosity uxxxx in the KS equation (2.1).

The time averaged energy density E computed on a typical orbit goes to a constant, so
the mean values (3.2) of drive and dissipation exactly balance each other:

(3.10) Ė = lim
t→∞

1

t

∫ t

0
dτ Ė = P −D = 0.

In particular, the equilibria and relative equilibria fall onto the diagonal in Figure 14(a) below,
and so do time averages computed on periodic orbits and relative periodic orbits:

(3.11) Ep =
1

Tp

∫ Tp

0
dτ E(τ), P p =

1

Tp

∫ Tp

0
dτ P (τ) = Dp.
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Figure 4. A typical chaotic orbit of the KS flow, system size L = 22.

In the Fourier basis (3.7) the conservation of energy on average takes the form

(3.12) 0 =

∞∑
k=−∞

(q2k − q4k)Ek, Ek(t) =
1

2
|ak(t)|2 .

The large k convergence of this series is insensitive to the system size L; Ek have to decrease
much faster than q−4

k . Deviation of Ek from this bound for small k determines the active
modes. For equilibria an L-independent bound on E is given by Michelson [43]. The best
current bound [18, 3] on the long-time limit of E as a function of the system size L scales as
E ∝ L2.

4. Geometry of state space with L = 22. We now turn to exploring Hopf’s vision
numerically, on a specific KS system. An instructive example is offered by the dynamics for
the L = 22 system to which we specialize for the rest of this paper. The size of this small
system is ∼ 2.5 mean wavelengths (L̃/

√
2 = 2.4758 . . .), and the competition between states

with wavenumbers 2 and 3 leads to what, in the context of boundary shear flows, would be
called [24] the “empirically observed sustained turbulence,” but in the present context may
equally well be characterized as a “chaotic attractor.” A typical long orbit is shown in Figure 4.
Asymptotic attractor structure of small systems like the one studied here is very sensitive to
system parameter variations, and, as is true of any realistic unsteady flow, there is no rigorous
way of establishing that this turbulence is sustained for all time, rather than being merely a
very long transient on its way to an attracting periodic state. For large system size, as shown
in Figure 1, it is hard to imagine a scenario under which attracting periodic states (as shown
in [17], they do exist) would have significantly large immediate basins of attraction. Regardless
of the (non)existence of a t → ∞ chaotic attractor, study of the invariant unstable solutions
and the associated Smale horseshoe structures in a system’s state space offers valuable insights
into the observed unstable “coherent structures.”
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Figure 5. Leading equilibrium stability eigenvalues, L = 22 system size.

Because of the strong k4 contraction, for a small system size the long-time dynamics
is confined to a low-dimensional inertial manifold [30]. Indeed, numerically the covariant
Lyapunov vectors [21] of the L = 22 chaotic attractor separate into eight “physical” vectors
with small Lyapunov exponents (λj) = (0.048, 0, 0, −0.003, −0.189, −0.256, −0.290, −0.310)
and the remaining 54 “hyperbolically isolated” vectors with rapidly decreasing exponents
(λj) = (−1.963, −1.967, −5.605, −5.605, −11.923, −11.923, . . .) ≈ −(j/L̃)4, in full agreement
with the investigations by Yang et al. [50] of KS equations for large system sizes. The chaotic
dynamics mostly takes place close to an 8-dimensional manifold, with strong contraction
in other dimensions. The two zero exponents are due to the time and space translational
symmetries of the KS equation, and the two corresponding dimensions can be quotiented
out by means of discrete-time Poincaré sections and O(2) group orbit slices. It was shown
in [6, 39] that within unstable-manifold curvilinear coordinate frames, the dynamics on the
attractor can sometimes be well approximated by local 1- or 2-dimensional Poincaré return
maps. Hence a relatively small number of real Fourier modes, such as the 62 to 126 used
in calculations presented here, suffices to obtain invariant solutions numerically accurate to
within 10−5.

We next investigate the properties of equilibria and relative equilibria and determine
numerically a large set of the short period relative periodic orbits for KS in a periodic cell of
size L = 22.

5. Equilibria and relative equilibria for L = 22. In addition to the trivial equilibrium
u = 0 (denoted E0), we find three equilibria with dominant wavenumber k (denoted Ek) for
k = 1, 2, 3. All equilibria, shown in Figure 3, are symmetric with respect to the reflection
symmetry (2.5). In addition, E2 and E3 are symmetric with respect to translation (2.12), by
L/2 and L/3, respectively. E2 and E3 essentially lie in the 2nd and 3rd Fourier component
complex planes, with small deformations of the k = 2j and k = 3j harmonics, respectively.

The stability of the equilibria is characterized by the eigenvalues λj of the stability ma-
trix. The leading 10 eigenvalues for each equilibrium are listed in Table 1; those with
μ > −2.5 are also plotted in Figure 5. We have computed (available upon request) the
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Table 1
Leading eigenvalues λj = μj ± iνj and symmetries of the corresponding eigenvectors of KS equilibria and

relative equilibria for L = 22 system size. We have used as our reference states those that lie within the
antisymmetric subspace U

+, and also listed the symmetries of the L/4 translated ones.

E1 μj νj Symmetry τ1/4En Symmetry

λ1,2 0.1308 0.3341 - -

λ3,4 0.0824 0.3402 U
+

U
(1)

λ5 0 - -

λ6,7 −0.2287 0.1963 U
+

U
(1)

λ8 −0.2455 - -

λ9 −2.0554 U
+

U
(1)

λ10 −2.0619 - -

E2

λ1,2 0.1390 0.2384 U
+

U
(1)

λ3 0 τ1/2 τ1/2
λ4,5 −0.0840 0.1602 U

(1)
U

+

λ6 −0.1194 τ1/2 τ1/2
λ7,8 −0.2711 0.3563 U

+, U(1), τ1/2 U
+, U(1), τ1/2

λ9 −2.0130 U
(1)

U
+

λ10 −2.0378 U
+

U
(1)

E3

λ1 0.0933 U
+

U
(1)

λ2 0.0933 - -
λ3 0 τ1/3 τ1/3
λ4 −0.4128 U

+, τ1/3 U
(1), τ1/3

λ5,6 −0.6108 0.3759 U
+

U
(1)

λ7,8 −0.6108 0.3759 - -
λ9 −1.6641 - -

λ10 −1.6641 U
+

U
(1)

TW±1

λ1,2 0.1156 0.8173 - -
λ3,4 0.0337 0.4189 - -
λ5 0 - -
λ6 −0.2457 - -
λ7,8 −0.3213 0.9813 - -

TW±2

λ1 0.3370 - -
λ2 0 - -
λ3,4 −0.0096 0.6288 - -
λ5,6 −0.2619 0.5591 - -
λ7,8 −0.3067 0.0725 - -

corresponding eigenvectors as well. As an equilibrium with Reλj > 0 is unstable in the
direction of the corresponding eigenvector e(j), the eigenvectors provide flow-intrinsic (PDE
discretization–independent) coordinates which we use for visualization of unstable manifolds
and homo/heteroclinic connections between equilibria. We find such coordinate frames, intro-
duced by Gibson and coworkers [20, 19], better suited to visualization of nontrivial solutions
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Figure 6. Relative equilibria: TW+1 with velocity c = 0.737 and TW+2 with velocity c = 0.350. The
upper panels show the relative equilibria profiles. The lower panels show evolution of slightly perturbed relative
equilibria and their decay into generic turbulence. Each relative equilibrium has a reflection symmetric partner
related by u(x) → −u(−x) traveling with velocity −c.

than the more standard Fourier mode (eigenvectors of the u(x, t) = 0 solution) projections.
The eigenvalues of E0 are determined by the linear part of the KS equation (B.4): λk =

(k/L̃)2 − (k/L̃)4. For L = 22, there are three pairs of unstable eigenvalues, corresponding, in
decreasing order, to three unstable modes k = 2, 3, and 1. For each mode, the corresponding
eigenvectors lie in the plane spanned by Re ak and Im ak. Table 1 lists the symmetries of the
stability eigenvectors of equilibria E1 to E3.

Consistent with the bifurcation diagram of Figure 2, we find two pairs of relative equilibria
(2.15) with velocities c = ±0.73699 and ±0.34954, which we label TW±1 and TW±2, for
“traveling waves.” The profiles of the two relative equilibria and their time evolution with
eventual decay into the chaotic attractor are shown in Figure 6. The leading eigenvalues of
TW±1 and TW±2 are listed in Table 1.

Table 2 lists equilibrium energy E, the local Poincaré section return time T , radially
expanding Floquet multiplier Λe, and the least contracting Floquet multiplier Λc for all L = 22
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Table 2
Properties of equilibria and relative equilibria determining the system dynamics in their vicinity. T is the

characteristic time scale of the dynamics, Λe and Λc are the leading expansion and contraction multipliers, and
E is the energy (3.6).

E T Λe Λc

E1 0.2609 18.81 11.70 0.01
E2 0.4382 26.35 39.00 0.11
E3 1.5876 10.72 2.72 0.01
TW±1 0.4649 7.69 2.43 0.15
TW±2 0.6048 2.97 2.72 0.97

equilibria and relative equilibria. The return time T = 2π/νe is given by the imaginary part
of the leading complex eigenvalue, the expansion multiplier per one turn of the most unstable
spiral-out by Λe ≈ exp(μeT ), and the contraction rate along the slowest contracting stable
eigendirection by Λc ≈ exp(μcT ). For E3 and TW±2, whose leading eigenvalues are real, we
use T = 1/λ1 as the characteristic time scale. While the complex eigenvalues set time scales
of recurrences, this time scale is useful for comparison of leading expanding and the slowest
contracting multiplier. We learn that the shortest “turn-over” time is ≈ 10–20, and that if
there exist horseshoe sets of unstable periodic orbits associated with these equilibria, they
have unstable multipliers of order of Λe ∼ 5–10, and that they are surprisingly thin in the
folding direction, with contracting multipliers of order of 10−2, as also observed in [39].

5.1. Unstable manifolds of equilibria and their heteroclinic connections. As shown in
Table 1, the E1 equilibrium has two unstable planes within which the solutions are spiralling
out (that is, two pairs of complex conjugate eigenvalues). The E2 has one such plane, while
the E3 has two real positive eigenvalues, so the solutions are moving radially away from the
equilibrium within the plane spanned by the corresponding eigenvectors. Since E1 has a
larger unstable subspace, it is expected to have much less influence on the long-time dynamics
compared to E2 and E3.

Many methods have been developed for visualization of stable and unstable manifolds;
see [34] for a survey. For high-dimensional contracting flows, visualization of stable manifolds
is impossible, unless the system can be restricted to an approximate low-dimensional inertial
manifold, as, for example, in [29]. The unstable manifold visualization also becomes harder
as its dimension increases. Here we concentrate on visualizations of 1- and 2-dimensional
unstable manifolds. Our visualization is unsophisticated compared to the methods of [34], yet
sufficient for our purposes since, as we shall see, the unstable manifolds we study terminate
in another equilibrium, and thus there is no need to track them for long times.

To construct an invariant manifold containing solutions corresponding to the pair of unsta-
ble complex conjugate eigenvalues, λ = μ± iν, μ > 0, we start with a set of initial conditions
near equilibrium Ek,

(5.1) a(0) = aEk
+ ε exp(δ)e(j),

where δ takes a set of values uniformly distributed in the interval [0, 2πμ/ν], e(j) is a unit
vector in the unstable plane, and ε > 0 is small.

The manifold starting within the first unstable plane of E1, with eigenvalues 0.1308 ±
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Figure 7. The left panel shows the unstable manifold of equilibrium E1 starting within the plane corre-
sponding to the first pair of unstable eigenvalues. The coordinate axes v1, v2, and v3 are projections onto three
orthonormal vectors v1, v2, and v3, respectively, constructed from vectors Re e(1), Ime(1), and Ree(6) by
Gram–Schmidt orthogonalization. The right panel shows spatial representation of two orbits A and B. The
change of color from blue to red indicates increasing values of u(x), as in the colorbar of Figure 1.
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Figure 8. The left panel shows the unstable manifold of equilibrium E1 starting within the plane corre-
sponding to the second pair of unstable eigenvalues. The coordinate axes v1, v2, and v3 are projections onto
three orthonormal vectors v1, v2, and v3, respectively, constructed from vectors Ree(3), Im e(3), and Ree(6)

by Gram–Schmidt orthogonalization. The right panel shows spatial representation of three orbits. Orbits B and
C pass close to the equilibrium E3.

i 0.3341, is shown in Figure 7. It appears to fall directly into the chaotic attractor. The
behavior of the manifold starting within the second unstable plane of E1, eigenvalues 0.0824±
i 0.3402, is remarkably different: As can be seen in Figure 8, almost all orbits within the
manifold converge to the equilibrium E2. The manifold also contains a heteroclinic connection
from E1 to E3, and is bordered by the λ1-eigendirection unstable manifold of E3.
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Figure 9. The left panel shows the 2-dimensional unstable manifold of equilibrium E2. The coordinate
axes v1, v2, and v3 are projections onto three orthonormal vectors v1, v2, and v3, respectively, constructed
from vectors Ree(1), Im e(1), and Ree(7) by Gram–Schmidt orthogonalization. The right panel shows spatial
representation of three orbits. Orbits B and C pass close to the equilibrium E3. See Figure 10 for a different
visualization.

(a) (b)

E3

E2

Figure 10. (a) (blue/green) The unstable manifold of the E2 equilibrium, projection in the coordinate axes
of Figure 9. (black line) The circle of E2 equilibria related by the translation invariance. (purple line) The
circle of E3 equilibria. (red) The heteroclinic connection from the E2 equilibrium to the E3 equilibrium splits the
manifold into two parts, colored blue and green. (b) E2 equilibrium to E3 equilibrium heteroclinic connection,
(Ree(2),Re e(3), (Ime(2) + Ime(3))/

√
2) projection. Here we omit the unstable manifold of E2, keeping only

a few neighboring trajectories in order to indicate the unstable manifold of E3. The E2 and E3 families of
equilibria arising from the continuous translational symmetry of the KS equation on a periodic domain are
indicated by the two circles.

The 2-dimensional unstable manifold of E2 is shown in Figure 9. All orbits within the
manifold, except for the heteroclinic connections from E2 to E3, converge to E2 shifted by L/4,
so this manifold, minus the heteroclinic connections, can be viewed as a homoclinic connection.

The equilibrium E3 has a pair of real unstable eigenvalues equal to each other. Therefore,
within the plane spanned by the corresponding eigenvectors, the orbits move radially away
from the equilibrium. In order to trace out the unstable manifold, we start with a set of initial
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Figure 11. The left panel shows the 2-dimensional unstable manifold of equilibrium E3. The coordinate
axes v1, v2, and v3 are projections onto three orthonormal vectors v1, v2, and v3, respectively, constructed
from vectors e(1), e(2), and e(4) by Gram–Schmidt orthogonalization. The black line shows a family of E2

equilibria related by translational symmetry. The right panel shows spatial representation of three orbits. Orbits
B and C are two different heteroclinic orbits connecting E3 to the same point on the E2 line.

conditions within the unstable plane,

(5.2) a(0) = aE3 + ε(v1 cosφ+ v2 sinφ) , φ ∈ [0, 2π] ,

where v1 and v2 are orthonormal vectors within the plane spanned by the two unstable
eigenvectors. The unstable manifold of E3 is shown in Figure 11. The 3-fold symmetry of the
manifold is related to the symmetry of E3 with respect to translation by L/3. The manifold
contains heteroclinic orbits connecting E3 to three different points of the circle of translated
E2 equilibrium solutions. Note also that the segments of orbits B and C between E3 and E2

in Figures 8 and 9 represent the same heteroclinic connections as orbits B and C in Figure 11.
Heteroclinic connections are nongeneric for high-dimensional systems, but can be robust

in systems with continuous symmetry; see [36] for a review. Armbruster, Guckenheimer, and
Holmes [2] study a fourth order truncation of KS dynamics on the center-unstable manifold
of E2 close to a bifurcation off the constant u(x, t) = 0 solution and prove existence of a
heteroclinic connection; see also [1]. Kevrekidis, Nicolaenko, and Scovel [33] study the dy-
namics numerically and establish the existence of a robust heteroclinic connection for a range
of parameters close to the onset of the 2-cell branch in terms of the symmetry and a flow
invariant subspace. We adopt their arguments to explain the new heteroclinic connections
shown in Figure 12 that we have found for L = 22. For our system size there are exactly two
representatives of the E2 family that lie in the intersection of U+ and U

(1) related to each
other by an L/4 shift. Denote them by E2 and τ1/4E2, respectively. The unstable eigenplane

of E2 lies on U
+, while that of τ1/4E2 lies on U

(1); cf. Table 1. The E3 family members that
live in U

+ have one of their unstable eigenvectors (the one related to the heteroclinic connec-
tion to the E2 family) on U

+, while the other does not lie on symmetry invariant subspace.
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Figure 12. Heteroclinic connections on U
+: (red) The unstable manifold of E1 equilibrium. (blue/green)

The unstable manifold of E2 equilibrium. (black) Heteroclinic connections from the E3 equilibrium to the τ1/4E2

equilibrium, where τ1/mu(x) = u(x + L/m) is a rational shift (2.6). Projection from 128 dimensions onto the
plane given by the vectors aE2 − aτ1/4E2 and aE3 − aτ1/2E3 .

Similarly, for the E1 family we observe that the equilibria in U
+ have an unstable plane on

U
+ (again related to the heteroclinic connection) and a second one with no symmetry. Thus

τ1/4E2 appears as a sink on U
+, while all other equilibria appear as sources. This explains the

heteroclinic connections from E1, E2, and E3 to τ1/4E2. Observing that τ1/4U
+ = U

(1) and

taking into account Table 1, we understand that within U
(1) we have connections from τ1/4E2

(and members of E1 and E3 families) to E2 and the formation of a heteroclinic loop. Due to
the translational invariance of the KS system there is a heteroclinic loop for any two points
of the E2 family related by an τ1/4-shift.

6. Relative periodic orbits for L = 22. The relative periodic orbits satisfy the condition
(2.20), u(x + �p, Tp) = u(x, 0), where Tp is the period and �p the phase shift. We have
limited our search to orbits with Tp < 200 and found over 30,000 relative periodic orbits with
�p > 0. The details of the algorithm used and the search strategy employed are given in
Appendix C. Each relative periodic orbit with phase shift �p > 0 has a reflection symmetric
partner up(x) → −up(−x) with phase shift −�p.

The small period relative periodic orbits outline the coarse structure of the chaotic attrac-
tor, while the longer period relative periodic orbits resolve the finer details of the dynamics.
The first four orbits with the shortest periods we have found are shown in Figure 13(a)–(d).
The shortest relative periodic orbit with Tp = 16.4 is also the most unstable, with one positive
Floquet exponent equal to 0.328. The other short orbits are less unstable, with the largest
Floquet exponent in the range 0.018–0.073, typical of the long-time attractor average.

We have found relative periodic orbits which stay close to the unstable manifold of E2.
As is illustrated in Figure 13(e)–(h), all such orbits have shift �p ≈ L/4, similar to the shift
of orbits within the unstable manifold of E2, which start at E2 and converge to τ1/4E2 (see
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Figure 13. Selected relative periodic and preperiodic orbits of KS flow with L = 22: (a) Tp = 16.3,
�p = 2.86; (b) Tp = 32.8, �p = 10.96; (c) Tp = 33.5, �p = 4.04; (d) Tp = 34.6, �p = 9.60; (e) Tp = 47.6,
�p = 5.68; (f) Tp = 59.9, �p = 5.44; (g) Tp = 71.7, �p = 5.503; (h) Tp = 84.4, �p = 5.513; (i) Tp = 10.3;
(j) Tp = 32.4; (k) Tp = 33.4; (l) Tp = 35.2. Horizontal and vertical white lines indicate periodicity and phase
shift of the orbits, respectively.

Figure 9). This confirms that the cage of unstable manifolds of equilibria plays an important
role in organizing the chaotic dynamics of the KS equation.

7. Preperiodic orbits. As discussed in section 2.3, a relative periodic orbit will be periodic,
that is, �p = 0, if it either (a) lives within the U+ antisymmetric subspace, −u(−x, 0) = u(x, 0),
or (b) returns to its reflection or its discrete rotation after a period, u(x, t + Tp) = γu(x, t),
γm = e, and is thus periodic with period mTp. The dynamics of KS flow in the antisymmetric
subspace and periodic orbits with symmetry (a) have been investigated previously [6, 38, 39].
The KS flow does not have any periodic orbits of this type for L = 22.

Using the algorithm and strategy described in Appendix C, we have found over 30,000
preperiodic orbits with Tp < 200 which possess symmetry of type (b) with γ = R ∈ D1. Some
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Figure 14. (a) Power input P vs. dissipation rate D, and (b) energy E vs. power input P , for several equi-
libria and relative equilibria, a relative periodic orbit, and a typical turbulent long-time trajectory. Projections
of the heteroclinic connections are given in Figure 15. System size L = 22.

of the shortest such orbits that we have found are shown in Figure 13(i)–(l). Several were
found as repeats of preperiodic orbits during searches for relative periodic orbits with nonzero
shifts, while most have been found as solutions of the preperiodic orbit condition (2.21) with
reflection, which takes the form

(7.1) −g(−�)a∗(Tp) = a(0)

in the Fourier space representation (compare this to the condition (C.1) for relative periodic
orbits).

8. Energy transfer rates for L = 22. In Figure 14 we plot (3.9), the time-dependent
Ė in the power input P versus dissipation rate D plane, for L = 22 equilibria and relative
equilibria, a selected relative periodic orbit, and for a typical turbulent long-time trajectory.

Projections from the ∞-dimensional state space onto the 3-dimensional (E,P,D) repre-
sentation of the flow, such as Figures 14 and 15, can be misleading. The most one can say
is that if points are clearly separated in an (E,P,D) plot (for example, in Figure 14, E1

equilibrium is outside the recurrent set), they are also separated in the full state space. The
converse is not true—states of very different topology can have similar energies.

An example is the relative periodic orbit (Tp, �p) = (32.8, 10.96) (see Figure 13(b)), which
is the least unstable short relative periodic orbit that we have detected in this system. It
appears to be well embedded within the turbulent flow. The mean power Pp evaluated as in
(3.11) (see Figure 14) is numerically quite close to the long-time turbulent time average P .
Similarly close prediction of mean dissipation rate in the plane Couette flow from a single-
period periodic orbit computed by Kawahara and Kida [32] has lead to optimistic hopes that



24 P. CVITANOVIĆ, R. L. DAVIDCHACK, AND E. SIMINOS

(a) (b)

0.3 0.6 0.9 1.2 1.5
E

0

0.6

1.2

1.8

2.4

P

E3

E1

E2

“Turbulence”

0 0.6 1.2 1.8 2.4
P

0.2

0

0.2

E

E3

E1

E2

“Turbulence”

Figure 15. Two projections of the (E,P, Ė) representation of the flow. (a) Heteroclinic connections from
E2 to E3 (green), from E1 to E3 (red), and from E3 to E2 (shades of blue), superimposed over a generic
long-time turbulent trajectory (grey). (b) A plot of Ė = P −D yields a clearer visualization than (a). System
size L = 22.

turbulence is different from low-dimensional chaos, insofar as the determination of one special
periodic orbit could yield all long-time averages. Regrettably, this is not true—as always,
here too one needs a hierarchy of periodic orbits of increasing length to obtain accurate
predictions [12].

For any given relative periodic orbit a convenient visualization is offered by the mean
velocity frame, that is, a reference frame that rotates with velocity cp = �p/Tp. In the mean
velocity frame a relative periodic orbit becomes a periodic orbit, as in Figure 16(b). However,
each relative periodic orbit has its own mean velocity frame, and thus sets of relative periodic
orbits are difficult to visualize simultaneously.

9. Summary. In this paper we study the Kuramoto–Sivashinsky flow as a staging ground
for testing dynamical systems approaches to moderate Reynolds number turbulence in full-
fledged (not a few-modes model), infinite-dimensional state space PDE settings [26], and
present a detailed geometrical portrait of dynamics in the KS state space for the L = 22
system size, the smallest system size for which this system empirically exhibits “sustained
turbulence.”

Compared to earlier work [6, 38, 39, 41], the main advances here are the new insights into
the role that continuous symmetries, discrete symmetries, low-dimensional unstable manifolds
of equilibria, and the connections between equilibria play in organizing the flow. The key new
feature of the translationally invariant KS system on a periodic domain are the attendant
continuous families of relative equilibria (traveling waves) and relative periodic orbits. We
have now understood the preponderance of solutions of relative type, and lost fear of them:
A large number of unstable relative periodic orbits and periodic orbits has been determined
here numerically.
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Figure 16. The relative periodic orbit with (Tp, �p) = (33.5, 4.04) from Figure 13(c) which appears well
embedded within the turbulent flow: (a) A stationary state space projection, traced for four periods Tp. The
coordinate axes v1, v2, and v3 are those of Figure 9. (b) In the comoving mean velocity frame.

Visualization of infinite-dimensional state space flows, especially in presence of continuous
symmetries, is not straightforward. At first glance, turbulent dynamics visualized in the state
space appears hopelessly complex, but under a detailed examination it is much less so than
feared: For strongly dissipative flows (KS, Navier–Stokes) it is pieced together from low-
dimensional local unstable manifolds connected by fast transient interludes. In this paper we
offer two low-dimensional visualizations of such flows: (1) projections onto 2- or 3-dimensional
PDE representation–independent dynamically invariant frames, and (2) projections onto the
physical, symmetry invariant but time-dependent, energy transfer rates.

Relative periodic orbits require a reformulation of the periodic orbit theory [11], as well
as a rethinking of the dynamical systems approaches to constructing symbolic dynamics,
outstanding problems that we hope to address in the near future [46, 45]. What we have
learned from the L = 22 system is that many of these relative periodic orbits appear organized
by the unstable manifold of E2, closely following the homoclinic loop formed between E2 and
τ1/4E2.

In the spirit of the parallel studies of boundary shear flows [24], the KS system size of
L = 22 was chosen as the smallest system size for which KS empirically exhibits “sustained
turbulence.” This is convenient both for the analysis of the state space geometry, and for
the numerical reasons, but the price is high—much of the observed dynamics is specific to
this unphysical, externally imposed periodicity. What needs to be understood is the nature
of equilibrium and relative periodic orbit solutions in the L → ∞ limit, and the structure of
the L = ∞ periodic orbit theory.

In summary, KS equilibria (and plane Couette flow; see [20]), relative equilibria, periodic
orbits, and relative periodic orbits embody Hopf’s vision [27]: together they form the repertoire
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of recurrent spatio-temporal patterns explored by turbulent dynamics.

Appendix A. Integrating the KS equation numerically. The KS equation in terms of
Fourier modes,

(A.1) ûk = F [u]k =
1

L

∫ L

0
u(x, t)e−iqkxdx, u(x, t) = F−1[û] =

∑
k∈Z

ûke
iqkx,

is given by

(A.2) ˙̂uk =
(
q2k − q4k

)
ûk −

iqk
2
F [(F−1[û])2]k .

Since u is real, the Fourier modes are related by û−k = û∗k.
The above system is truncated as follows: The Fourier transform F is replaced by its

discrete equivalent

(A.3) ak = FN [u]k =

N−1∑
n=0

u(xn)e
−iqkxn , u(xn) = F−1

N [a]n =
1

N

N−1∑
k=0

ake
iqkxn ,

where xn = nL/N and aN−k = a∗k. Since a0 = 0 due to Galilean invariance and setting
aN/2 = 0 (assuming N is even), the number of independent variables in the truncated system
is N − 2:

(A.4) ȧk = vk(a) =
(
q2k − q4k

)
ak −

iqk
2
FN [(F−1

N [a])2]k ,

where k = 1, . . . , N/2 − 1, although in the Fourier transform we need to use ak over the full
range of k values from 0 to N − 1. As ak ∈ C, (A.4) represents a system of ODEs in R

N−2.
The discrete Fourier transform FN can be computed by FFT. In Fortran and C, the

FFTW library [15] can be used.
In order to find the fundamental matrix of the solution, or compute Lyapunov exponents

of the KS flow, one needs to solve the equation for a displacement vector b in the tangent
space:

(A.5) ḃ =
∂v(a)

∂a
b.

Since FN is a linear operator, it is easy to show that

(A.6) ḃk =
(
q2k − q4k

)
bk − iqkFN [F−1

N [a]⊗F−1
N [b]]k,

where ⊗ indicates the componentwise product of two vectors; that is, a ⊗ b = diag(a) b =
diag(b) a. This equation needs to be solved simultaneously with (A.4).

Equations (A.4) and (A.6) were solved using the exponential time differencing fourth order
Runge–Kutta method (ETDRK4) [7, 31].

Appendix B. Determining stability properties of equilibria, traveling waves, and relative
periodic orbits. Let f t be the flow map of the KS equation; that is, f t(a) = a(t) is the
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solution of (A.4) with initial condition a(0) = a. The stability properties of the solution f t(a)
are determined by the fundamental matrix J(a, t) consisting of partial derivatives of f t(a)
with respect to a. Since a and f t are complex-valued vectors, the real-valued matrix J(a, t)
contains partial derivatives evaluated separately with respect to the real and imaginary parts
of a, that is,

(B.1) J(a, t) =
∂f t(a)

∂a
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂f t
R,1

∂aR,1

∂f t
R,1

∂aI,1

∂f t
R,1

∂aR,2

∂f t
I,1

∂aR,1

∂f t
I,1

∂aI,1

∂f t
I,1

∂aR,2
· · ·

∂f t
R,2

∂aR,1

∂f t
R,2

∂aI,1

∂f t
R,2

∂aR,2

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where ak = aR,k + iaI,k and f t
k = f t

R,k + if t
I,k. The partial derivatives ∂f t

∂aR,j
and ∂f t

∂aI,j
are

determined by solving (A.6) with initial conditions bk(0) = bN−k(0) = 1 + 0i and bk(0) =
−bN−k(0) = 0 + 1i, respectively, for k = j and bk(0) = 0 otherwise.

The stability of a periodic orbit with period Tp is determined by the location of eigenvalues
of J(ap, Tp) with respect to the unit circle in the complex plane.

Because of the translation invariance, the stability of a relative periodic orbit is determined
by the eigenvalues of the matrix g(�p)J(ap, Tp), where g(�) is the action of the translation
operator introduced in (2.6), which in real-valued representation takes the form of a block
diagonal matrix with the 2× 2 blocks(

cos qk� sin qk�
− sin qk� cos qk�

)
, k = 1, 2, . . . , N/2 − 1 .

For an equilibrium solution aq, f
t(aq) = aq, and so the fundamental matrix J(aq, t) can

be expressed in terms of the time-independent stability matrix A(aq) as follows:

J(aq, t) = eA(aq)t,

where

(B.2) A(aq) =
∂v

∂a

∣∣∣∣
a=aq

.

Using the real-valued representation of (B.1), the partial derivatives of v(a) with respect to
the real and imaginary parts of a are given by

∂vk
∂aR,j

=
(
q2k − q4k

)
δkj − iqkFN [F−1

N [a]⊗F−1
N [b

(j)
R ]]k,

∂vk
∂aI,j

=
(
q2k − q4k

)
iδkj − iqkFN [F−1

N [a]⊗F−1
N [b

(j)
I ]]k,(B.3)

where b
(j)
R and b

(j)
I are complex-valued vectors such that b

(j)
R,k = b

(j)
R,N−k = 1 + 0i and b

(j)
I,k =

−b
(j)
I,N−k = 0 + 1i for k = j and b

(j)
R,k = b

(j)
I,k = 0 otherwise. In terms of aR,k and aI,k we have
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∂vR,k

∂aR,j
=

(
q2k − q4k

)
δkj + qk(aI,k+j + aI,k−j),

∂vR,k

∂aI,j
= −qk(aR,k+j − aR,k−j),(B.4)

∂vI,k
∂aR,j

= −qk(aR,k+j + aR,k−j),

∂vI,k
∂aI,j

=
(
q2k − q4k

)
δkj − qk(aI,k+j − aI,k−j),

where δkj is Kronecker delta.
The stability of equilibria is characterized by the sign of the real part of the eigenvalues of

A(aq). The stability of a relative equilibrium is determined in the comoving reference frame,
so the fundamental matrix takes the form g(cqt)J(aq, t). The stability matrix of a relative
equilibrium is thus equal to A(aq) + cqL, where L = iqkδkj is the Lie algebra translation
generator, which in the real-space representation takes the form L = diag(0, q1, 0, q2, . . .).

Appendix C. Levenberg–Marquardt searches for relative periodic orbits. To find relative
periodic orbits of the KS flow, we use multiple shooting and the Levenberg–Marquardt (LM)
algorithm implemented in the routine lmder from the MINPACK software package [44].

In order to find periodic orbits, a system of nonlinear algebraic equations needs to be
solved. For flows, this system is underdetermined, so, traditionally, it is augmented with a
constraint that restricts the search space to be transversal to the flow (otherwise, most of
the popular solvers of systems of nonlinear algebraic equations, e.g., those based on Newton’s
method, cannot be used). When detecting relative periodic orbits, a constraint is added
for each continuous symmetry of the flow. For example, when detecting relative periodic
orbits in the complex Ginzburg–Landau equation, López et al. [41] introduce three additional
constraints.

Our approach differs from those used previously in that we do not introduce the con-
straints. Being an optimization solver, the LM algorithm has no problem with solving an
underdetermined system of equations, and, even though lmder explicitly restricts the number
of equations to be not smaller than the number of variables, the additional equations can
be set identically equal to zero [8, 9]. In fact, there is numerical evidence that, when imple-
mented with additional constraints, the solver usually takes more steps to converge from the
same seed, or fails to converge at all [8, 9]. In what follows we give a detailed description of
the algorithm and the search strategy which we have used to find a large number of relative
periodic orbits defined in (2.20) and preperiodic orbits defined in (2.21).

When searching for relative periodic orbits of truncated KS equation (A.4), we need to
solve the system of N − 2 equations

(C.1) g(�)fT (a)− a = 0,

with N unknowns (a, T, �), where f t is the flow map of the KS equation. In the case of
preperiodic orbits, the system has the form

(C.2) −g(−�)[fT (a)]∗ − a = 0

(see (7.1)).
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We have tried two different implementations of the multiple shooting. The emphasis
was on the simplicity of the implementations, so, even though both implementations worked
equally well, each of them had its own minor drawbacks.

In the first implementation, we fix the total number of steps within each shooting stage
and change the numerical integrator step size h in order to adjust the total integration time
to a desired value T.

Let (â, T̂, �̂) be the starting guess for a relative periodic orbit obtained through a close
return within a chaotic attractor (see below). We require that the initial integration step size
not exceed h0, so we round off the number of integration steps to n = �T̂/h0�, where �x�
denotes the nearest integer larger than x.

The integration step size is equal to h = T/n. With the number of shooting stages equal
to m, the system in (C.1) is rewritten as follows:

F (1) = f τ (a(1))− a(2) = 0,

F (2) = f τ (a(2))− a(3) = 0,

· · ·(C.3)

F (m−1) = f τ (a(m−1))− a(m) = 0,

F (m) = g(�)f τ ′(a(m))− a(1) = 0,

where τ = �n/m�h (�x� is the nearest integer smaller than x), τ ′ = nh − (m − 1)τ , and
a(j) = f (j−1)τ (a), j = 1, . . . ,m. For the detection of preperiodic orbits, the last equation in
(C.3) should be replaced with

F (m) = −g(−�)[f τ ′(a(m))]∗ − a(1) = 0.

With the fundamental matrix of (C.3) written as

(C.4) J =

(
∂F (j)

∂a(k)
∂F (j)

∂T

∂F (j)

∂�

)
, j, k = 1, . . . ,m ,

the partial derivatives with respect to a(k) can be calculated using the solution of (A.6) as
described in Appendix B. The partial derivatives with respect to T are given by

(C.5)
∂F (j)

∂T
=

{
∂fτ (a(j))

∂τ
∂τ
∂T = v(f τ (a(j)))�n/m�/n , j = 1, . . . ,m− 1 ,

g(�)v(f τ ′(a(j)))(1 − m−1
n �n/m�), j = m.

Note that, even though ∂f t(a)/∂t = v(f t(a)), it should not be evaluated using the equation
for the vector field v. The reason for this is that, since the flow f t is approximated by a
numerical solution, the derivative of the numerical solution with respect to the step size h
may differ from the vector field v, especially for larger step sizes. We evaluate the derivative
by a forward difference using numerical integration with step sizes h and h+ δ:

(C.6)
∂f jh(a)

∂t
=

1

jδ

[
f j(h+δ)(a)− f jh(a)

]
, j ∈ Z

+ ,
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with t = jh and δ = 10−7 for double precision calculations. Partial derivatives ∂F (j)/∂� are
all equal to zero except for j = m, where it is given by

(C.7)
∂F (m)

∂�
=

dg

d�
f τ ′(a(m)) = diag(iqke

iqk �)f τ ′(a(m)) .

This fundamental matrix is supplied to lmder augmented with two rows of zeros corre-
sponding to the two identical zeros augmenting (C.3) in order to make the number of equations
formally equal to the number of variables, as discussed above.

In the second implementation, we keep h and τ fixed and vary only τ ′ = T − (m − 1)τ .
In this case, we need to be able to determine the numerical solution of the KS equation not
only at times tj = jh, j = 1, 2, . . . , but at any intermediate time as well. We do this by a
cubic polynomial interpolation through points f tj (a) and f tj+1(a) with slopes v(f tj (a)) and
v(f tj+1(a)). The difference from the first implementation is that partial derivatives ∂F (j)/∂T
are zero for all j = 1, . . . ,m− 1, except for

(C.8)
∂F (m)

∂T
= g(�)v(f τ ′(a(m))) ,

which, for consistency, needs to be evaluated from the cubic polynomial, not from the flow
equation evaluated at f τ ′(a(m)).

For detecting relative periodic orbits of the KS flow with L = 22, we usedN = 32, h = 0.25
(or h0 = 0.25 within the first implementation), and a number of shooting stages such that
τ ≈ 40.0. While both implementations were equally successful in detecting periodic orbits of
KS flow, we found the second implementation more convenient.

The following search strategy was adopted: The search for relative periodic orbits with
T ∈ [10, 200] was conducted within a rectangular region containing the chaotic attractor.
To generate a seed, a random point was selected within the region, and the flow (A.4) was
integrated for a transient time t = 40, sufficient for an orbit to settle on the attractor at
some point â. This point was taken to be the seed location. In order to find orbits with
different periods, the time interval [10, 200] was subdivided into windows of length 10, i.e.,
[tmin, tmax], where tmin = 10j and tmax = 10(j + 1), with j = 1, 2, . . . , 19. To determine the
seed time T̂ and shift �̂, we located an approximate global minimum of ‖g(�)f t(a) − a‖ (or
of ‖−g(−�)[f t(a)]∗ − a‖ in the case of preperiodic orbits) as a function of t ∈ [tmin, tmax] and
� ∈ (−L/2, L/2]. We did this simply by finding the minimum value of the function on a grid
of points with resolution h in time and L/50 in �.

Approximately equal numbers of seeds were generated for the detection of relative periodic
orbits and preperiodic orbits and within each time window. The hit rate, i.e., the fraction of
seeds that converged to relative periodic orbits or preperiodic orbits, varied from about 70%
for windows with tmax ≤ 80 to about 30% for windows with tmin ≥ 160. The total number of
hits for relative periodic orbits and preperiodic orbits was over 106 each. Each newly found
orbit was compared, after factoring out the translation and reflection symmetries, to those
already detected. As the search progressed, we found fewer and fewer new orbits, with the
numbers first saturating for smaller period orbits. At the end of the search we could find
very few new orbits with periods T < 120. Thus we found over 30,000 distinct prime relative
periodic orbits with � > 0 and over 30,000 distinct prime preperiodic orbits with T < 200.
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Figure 17. Numbers of detected relative periodic orbits (RPOs) and pre-periodic orbits (PPOs) with periods
smaller than T . The lines indicate the linear fit to the logarithm of the number of orbits as functions of T in
the range T ∈ [70, 120].

In Figure 17 we show the numbers of detected relative periodic orbits and preperiodic
orbits with periods less than T . The figure shows that the numbers of relative periodic
orbits and preperiodic orbits are approximately equal and that they grow exponentially with
increasing T up to T ∼ 130, so that we are mostly missing orbits with T > 130. The straight
line fits to the logarithm of the numbers of orbits in the interval T ∈ [70, 120], represented
by the lines in Figure 17, indicate that the total numbers of relative periodic orbits and
preperiodic orbits with T < 200 could be over 105 each.

To test the structural stability of the detected orbits and their relevance to the full
KS PDE, the numerical accuracy was improved by increasing the number of Fourier modes
(N = 64) and reducing the step size (h = 0.1). Only a handful of orbits failed this higher-
resolution test. These orbits were not included in the list of the 60,000+ orbits detected.
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