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Abstract

We present two continuous symmetry reduction methods for reducing high-
dimensional dissipative flows to local return maps. In the Hilbert polynomial
basis approach, the equivariant dynamics is rewritten in terms of invariant coor-
dinates. In the method of moving frames (or method of slices) the state space is
sliced locally in such a way that each group orbit of symmetry-equivalent points
is represented by a single point. In either approach, numerical computations
can be performed in the original state-space representation, and the solutions
are then projected onto the symmetry-reduced state space. The two methods
are illustrated by reduction of the complex Lorenz system, a 5-dimensional dis-
sipative flow with rotational symmetry. While the Hilbert polynomial basis
approach appears unfeasible for high-dimensional flows, symmetry reduction by
the method of moving frames offers hope.
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1. Introduction

In his seminal paper, E. Lorenz [1] reduced the continuous time and dis-
crete spatial symmetries of the 3-dimensional Lorenz equations, resulting in a
1-dimensional return map that yields deep insights [2] into the nature of chaos
in this flow. For strongly contracting, low-dimensional flows, Gilmore, Lefranc
and Letellier [3, 4] systematized construction of such discrete time return maps,
through use of topological templates, Poincaré sections (to reduce the contin-
uous time invariance) and invariant polynomial bases (to reduce the spatial
symmetries). They showed that in presence of spatial symmetries one has to
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‘quotient’ the symmetry and replace the dynamics by a physically equivalent
reduced, desymmetrized flow, in which each family of symmetry-related states
is replaced by a single representative. This approach leads to symbolic dynam-
ics and labeling of all periodic orbits up to a given topological period. Periodic
orbit theory can then yield accurate estimates of long-time dynamical averages,
such as Lyapunov exponents and escape rates [5].

In a series of papers Cvitanović, Putkaradze, Christiansen and Lan [6, 7, 8, 9,
10, 11] showed that effectively low-dimensional return maps can be constructed
for high-dimensional (formally infinite dimensional) flows described by dissi-
pative partial differential equations (PDEs) such as the Kuramoto-Sivashinsky
equation (KS). Such flows have state-space topology vastly more complicated
than the Lorenz flow, and collections of local Poincaré sections together with
maps from a section to a section are required to capture all of the important
asymptotic dynamics. These KS studies were facilitated by a restriction to the
flow-invariant subspace of odd solutions, but at a price: elimination of the trans-
lational symmetry of the KS system and with it physically important phenom-
ena, such as traveling waves. Traveling (or relative) unstable coherent solutions
are ubiquitous and play a key role in organization of turbulent hydrodynamic
flows, as pointed already in 1982 by Rand [12], and confirmed both by simula-
tions and experimentation [13, 14, 15, 16, 17, 18]. For KS [19, 20], and even for
a relatively low-dimensional flow such as the complex Lorenz equations [21, 22]
used as an example here, with the simplest possible continuous (rotational) spa-
tial symmetry, the symmetry-induced drifts obscure the underlying hyperbolic
dynamics.

The question that we address here is how one can construct suitable return
maps for arbitrarily high-dimensional but strongly dissipative flows in pres-
ence of continuous symmetries. Our exposition is based in part on refs. [20, 5,
23]. The reader is referred to the monographs of Golubitsky and Stewart [24],
Hoyle [25], Olver [26], Bredon [27], and Krupa [28] for more depth and rigor
than would be wise to wade into here.

In sect. 2 we review the basic notions of symmetry in dynamics. Sect. 2.1
introduces the SO(2) equivariant complex Lorenz equations (CLE), a 5-dimen-
sional set of ODEs that we use throughout the paper to illustrate the strengths
and drawbacks of different symmetry reduction methods. In sect. 3 we describe
important classes of solutions and their symmetries: equilibria, relative equilib-
ria, periodic and relative periodic orbits, and use them to motivate the need for
symmetry reduction.

In sect. 4 we describe the problem of symmetry reduction. The action of
a symmetry group endows the state space with the structure of a union of
group orbits, each group orbit an equivalence class. The goal of symmetry
reduction is replace each group orbit by a unique point a lower-dimensional
reduced state space. In sect. 5 we briefly review the standard approach to spatial
symmetry reduction, projection to a Hilbert basis, and explain why we find it
impracticable. In sect. 6 we review the method of moving frames, a direct
and efficient method for computing symmetry-invariant bases that goes back to
Cartan, and in sect. 6.1 we apply the method to the complex Lorenz equations.
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The method maps all solutions to a slice, a submanifold of state space that
plays a role for group orbits akin to the role Poincaré sections play in reducing
continuous time invariance. In contrast to the Hilbert basis approach, slices are
local, with a generic trajectory within a slice bound to encounter singularities,
and more than one slice might be needed to capture the flow globally. In sect. 6.2
we show that a single local slice can suffice for the purpose of reducing the
complex Lorenz equations flow to a return map. In sect. 7 we recast the method
of moving frames into the equivalent, differential method of slices, with time
integration restricted to a slice fixed by a given state space point.

2. Symmetries of dynamical systems

Consider a system of ODEs of the form

ẋ = v(x) (1)

with v a smooth vector field and x ∈ M ⊂ R
d. Here we are interested in the role

continuous symmetries play in dynamics. While the key concepts and methods
we develop here are well illustrated by the 1-parameter Lie SO(2) group, they
are in principle applicable to any compact Lie group, and the generalization to
translational and rotational symmetries of PDEs such as Kuramoto-Sivashinsky
and plane Couette flow is immediate.

A linear action g is a symmetry of (1) if

v(gx) = g v(x) (2)

for all x ∈ R
d. One says that v commutes with g or that v is g-equivariant.

When v commutes with the set of group elements g ∈ G, the vector field v is
said to be G-equivariant. The group G is said to be a symmetry of dynamics if
for every solution x(τ) = f τ (x), g x(τ) is also a solution. The finite time flow
f τ (gx) through gx then satisfies the equivariance condition

f τ (gx) = gf τ(x) . (3)

In physics literature the term invariant is most commonly used; for example, in
Hamiltonian systems a symmetry is manifested as invariance of the Hamiltonian
under the symmetry group action.

An element of a compact Lie group continuously connected to identity can
be written as

g(θ) = eθ·T , θ ·T =
∑

θaTa, a = 1, 2, · · · , N , (4)

where θ · T is a Lie algebra element, and θa are the parameters of the trans-
formation. Repeated indices are summed throughout this chapter, and the dot
product refers to a sum over Lie algebra generators. The Euclidian product of
two vectors x, y is indicated by x-transpose times y, i.e., xT y =

∑d
i xiyi. Finite
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transformations exp(θ · T) are generated by sequences of infinitesimal steps of
form

g(δθ) � 1 + δθ ·T , δθ ∈ R
N , |δθ| � 1 , (5)

where Ta, the generators of infinitesimal transformations, are a set of N linearly
independent [d×d] anti-hermitian matrices, (Ta)† = −Ta, acting linearly on
the d-dimensional state space M. The flow at the state space point x induced
by the action of the group is given by the set of N tangent fields

ta(x)i = (Ta)ijxj . (6)

For an infinitesimal transformation (5) the G-equivariance condition (2) be-
comes

v(x) � (1 − θ ·T) v(x + θ ·Tx) = v(x) − θ · T v(x) +
dv

dx
θ · Tx .

Denote the group flow tangent field at x by ta(x)i = (Ta)ijxj . Thus the in-
finitesimal, Lie algebra G-equivariance condition is

ta(v) − A(x) ta(x) = 0 , (7)

where A = ∂v/∂x is the stability matrix. The left-hand side,

Ltav =
(
Ta − ∂

∂y
(Tax)

)
v(y)

∣∣∣∣
y=x

, (8)

is known as the Lie derivative of the dynamical flow field v along the direction
of the infinitesimal group-rotation induced flow ta(x) = Tax. The equivariance
condition (7) states that the two flows, one induced by the dynamical vector field
v, and the other by the group tangent field t, commute if their Lie derivatives
(or the Lie brackets or Poisson brackets) vanish.

Any representation of a compact Lie group G is fully reducible, and invariant
tensors constructed by contractions of Ta are useful for identifying irreducible
representations. The simplest such invariant is

TT ·T =
∑

α

C
(α)
2 11(α) , (9)

where C
(α)
2 is the quadratic Casimir for irreducible representation labeled α,

and 11(α) is the identity on the α-irreducible subspace, 0 elsewhere. The dot
product of two tangent fields is thus a sum weighted by Casimirs,

t(x)T · t(x′) =
∑

α

C
(α)
2 xi δ

(α)
ij x′

j . (10)
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2.1. An example: Complex Lorenz equations
Consider a complex generalization of Lorenz equations,

ẋ = −σx + σy , ẏ = (ρ − z)x − ay

ż = (xy∗ + x∗y)/2 − bz , (11)

where x, y are complex variables, z is real, while the parameters σ, b are real and
ρ = ρ1 + iρ2, a = 1− ie are complex. Recast in real variables, x = x1 + ix2 , y =
y1 + iy2 this is a set of five coupled ODEs

ẋ1 = −σx1 + σy1 , ẋ2 = −σx2 + σy2

ẏ1 = (ρ1 − z)x1 − ρ2x2 − y1 − ey2

ẏ2 = ρ2x1 + (ρ1 − z)x2 + ey1 − y2

ż = −bz + x1y1 + x2y2 . (12)

In all numerical examples that follow, the parameters will be set to ρ1 = 28, ρ2 =
0, b = 8/3, σ = 10, e = 1/10, unless explicitly stated otherwise. Why worry

x1 x2

z

E0

Q1

x1 x2

z W
�
�0�
u

W
�
�0�
u

E0

Q101

Figure 1: State space portrait of complex Lorenz flow. Plotted are a generic chaotic trajectory
(blue), the E0 equilibrium, a representative of its unstable manifold (green), the Q1 relative
equilibrium (red), its unstable manifold (brown), and one repeat of the 01 relative periodic
orbit(black).

about continuous symmetries? The visualization in figure 1 of typical long-time
dynamics of complex Lorenz flow suffices to illustrate the effect a continuous
symmetry has on dynamics. A generic trajectory slowly drifts along the direc-
tion of continuous symmetry while tracing a Lorenz-butterfly like attractor. It
is a mess.

The complex Lorenz equations are a dynamical system with a continuous
(but no discrete) symmetry, equivariant under the one-parameter rotation group
U(1) ∼= SO(2) acting by

(x, y, z) �→ (eiθx, eiθy, z) , θ ∈ [0, 2π] . (13)
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Alternatively, substituting the Lie algebra generator

T =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ (14)

acting on a 5-dimensional space (12) into (4) yields the R
5 representation of a

finite angle action (13) of SO(2)

g(θ) =

⎛
⎜⎜⎜⎜⎝

cos θ − sin θ 0 0 0
sin θ cos θ 0 0 0

0 0 cos θ − sin θ 0
0 0 sin θ cos θ 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (15)

We see that the linear action of SO(2) on the state space of the complex Lorenz
equations decomposes into the m = 0 G-invariant subspace (z-axis) and the
m = 1 subspace of multiplicity 2.

The generator T is anti-hermitian, T† = −T, and the group is compact,
its elements parametrized by θ mod 2π. Locally, at x ∈ M, the infinites-
imal action of the group is given by the group tangent field t(x) = Tx =
(−x2, x1,−y2, y1, 0). In other words, the flow induced by the group action is
normal to the radial direction in the (x1, x2) and (y1, y2) planes, while the z-axis
is left invariant.

The equivariance of the complex Lorenz flow under SO(2) rotations (15)
can be verified by substituting the Lie algebra generator (14) and the stability
matrix for complex Lorenz flow (12),

A =

⎛
⎜⎜⎜⎜⎝

−σ 0 σ 0 0
0 −σ 0 σ 0

ρ1 − z −ρ2 −1 −e −x1

ρ2 ρ1 − z e −1 −x2

y1 y2 x1 x2 −b

⎞
⎟⎟⎟⎟⎠ , (16)

into the equivariance condition (7). For the parameter values (12) the flow is
strongly volume contracting,

∂ivi =
5∑

i=1

λi(x, t) = −b − 2(σ + 1) = −24 − 2/3 . (17)

The complex Lorenz equations (11) were introduced by Gibbon and McGuin-
ness [21, 22] as a low-dimensional model of baroclinic instability in the atmo-
sphere. Zeghlache and Mandel [29] and Ning and Haken [30] have shown that
equations isomorphic to the complex Lorenz equations, with e + ρ2 = 0, also
appear as a truncation of Maxwell-Bloch equations describing a single mode,
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detuned, ring laser. The choice e + ρ2 = 0 is degenerate (see (21)) in the sense
that it leads to non-generic bifurcations. We follow Bakasov and Abraham [31]
who set ρ2 = 0 and e 	= 0 to describe detuned ring lasers.

Here, however, we are not interested in the physical applications of these
equations; rather, we study them as a simple example of a dynamical system
with continuous (but no discrete) symmetries, with a view of testing methods of
reducing the dynamics to a lower-dimensional reduced state space. We investi-
gate various ways of quotienting its SO(2) symmetry, and reducing the dynamics
to a 4-dimensional reduced state space. As we shall show, the dynamics has a
nice ‘stretch & fold’ action, but that is totally masked by the continuous sym-
metry drifts. We shall not rest until we attain the simplicity of figure 6, and
the bliss of 1-dimensional return map of figure 4.

3. Symmetries of solutions

In order to explore the implications of equivariance on solutions of dynamical
equations, we start by examining the way a compact Lie group acts on a state
space M. The group orbit or G-orbit of the point x ∈ M is the set

Mx = {g x | g ∈ G} (18)

of all state space points into which x is mapped under the action of G. The
symmetry Gx (isotropy or stabilizer group) of a state space point x is the largest
subgroup of G

Gx = {g ∈ G : gx = x} (19)

that leaves x fixed. The symmetry GX of a set MX ∈ M is the largest subgroup
of G that leaves MX invariant as a set:

GX = {g : g MX = MX} .

If Gp is a symmetry, intrinsic properties of a solution Mp (such as equilibrium
or a cycle stability eigenvalues, period, Floquet multipliers) evaluated anywhere
along its Gp-orbit are the same. A symmetry thus reduces the number of in-
equivalent solutions. So we also need to describe the symmetry of a solution, as
opposed to (3), the symmetry of the system.

The fixed-point subspace Fix (H) of a subgroup H ⊂ G is the subspace of M
containing all fixed points of H :

Fix (H) = {x ∈ M, g ∈ H | gx = x} .

The physical importance of fixed-point subspaces lies in the fact that they are
invariant under G-equivariant dynamics [24],

f τ (Fix (H)) ⊆ Fix (H)

and thus flow invariant for all times τ . Therefore if x(τ) is a solution of an
equivariant ODE, then its symmetry Gx(τ) = Gx(0) is preserved for all times.
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Figure 2: (a) A relative equilibrium orbit starts at some point x(0), with the dynamical flow
field v(x) = c · t(x) pointing along the group tangent space. For the SO(2) symmetry depicted
here, the flow traces out the group orbit of x(0) in time T = 2π/c. An equilibrium lives either
in the Fix (G) subspace (x3 axis in this sketch), or on a group orbit as the one depicted here,
but with zero angular velocity c. In the latter case the circle (in general, N-torus) depicts a
continuous family of fixed equilibria, related only by the group action. (b) A relative periodic
orbit starts out at x(0) with the dynamical v and group tangent t flows pointing in different
directions, and returns to the group orbit of x(0) after time Tp at x(Tp) = gpx(0), a rotation
of the initial point by gp.

In contrast to equilibrium solutions that satisfy f τ (x) = x, relative equilibria
(or traveling waves) satisfy f τ (x) = g(τ)x for any τ . In a co-moving frame mov-
ing along the group orbit with velocity v(x) = c · t(x), the relative equilibrium
appears as an equilibrium. Here t is the group tangent field (6).

A relative periodic orbit is an orbit Mp for which the initial point exactly
recurs

xp(0) = gpxp(Tp) , xp(τ) ∈ Mp , (20)

at a fixed relative period Tp, but shifted by a fixed group action gp which brings
the endpoint xp(Tp) back into the initial point xp(0), see figure 2 (b). The
group action gp = gp(θ) parameters θp = (θ1, θ2, · · · θN ) will be referred to as
phases, or shifts. For dynamical systems with only continuous (no discrete)
symmetries, the parameters {t, θ1, · · · , θN} are real numbers, the ratios π/θj

are almost never rational, and the likelihood of closing into a periodic orbit is
zero. Thus the trajectory of relative periodic orbit generically sweeps out the
group orbit ergodically.

A relative periodic orbit is periodic in its mean velocity cp = θp/Tp co-
rotating frame, figure 3, but in the stationary frame its trajectory is quasiperi-
odic. A co-moving frame is helpful in visualizing a single ‘relative’ orbit, but
useless for viewing collections of orbits, as each one drifts with its own group
velocity. A simultaneous visualization of all relative periodic orbits as periodic
orbits can be attained only by symmetry reduction, to be undertaken in sects. 5
and 6.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of periodic orbit theory
from unstable 1-dimensional closed periodic orbits to unstable (N +1)-dimens-
ional compact manifolds Mp invariant under continuous symmetries, there are
either no or proportionally few periodic orbits. In presence of a continuous and
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Figure 3: A relative periodic orbit of the Kuramoto-Sivashinsky flow, traced for four periods
Tp and projected on (a) a stationary state space coordinate frame {v1, v2, v3}; (b) a co-moving
{ṽ1, ṽ2, ṽ3} coordinate frame, moving with the mean velocity cp = θp/Tp. (From ref. [19].)

no discrete symmetry, likelihood of finding a periodic orbit is zero. Relative
periodic orbits are almost never eventually periodic, i.e., they almost never lie
on periodic trajectories in the full state space, so looking for periodic orbits in
systems with only continuous symmetries is a fool’s errand.

A historical note. Relative equilibria and relative periodic orbits are related
to equilibria and periodic orbits of dynamics reduced by the symmetries. They
appear in many physical situations, such as motion of rigid bodies, gravita-
tional N -body problems, molecules, nonlinear waves, spiralling patterns and
turbulence. According to Cushman, Bates [32] and Yoder [33], C. Huygens [34]
understood the relative equilibria of a spherical pendulum many years before
publishing them in 1673. A reduction of the translation symmetry was obtained
by Jacobi (for a modern, symplectic implementation, see Laskar et al. [35]). Ac-
cording to Chenciner [36], the first attempt to find (relative) periodic solutions
of the N -body problem was the 1896 short note by Poincaré [37], in the context
of the 3-body problem. Relative equilibria of the N -body problem (known in
this context as Lagrange points, stationary in the co-rotating frame) are cir-
cular motions in the inertial frame, and relative periodic orbits correspond to
quasiperiodic motions in the inertial frame. Relative equilibria that exist in a
rotating frame are called central configurations. For relative periodic orbits in
celestial mechanics see also ref. [38]. A striking application of relative periodic
orbits has been the discovery of ‘choreographies’ of N -body problems [39, 40, 41].

The modern story on equivariance and dynamical systems starts perhaps
with M. Field [42], and on bifurcations in presence of symmetries with Ru-
elle [43]. Ruelle proves that the stability matrix/Jacobian matrix evaluated at
an equilibrium/fixed point x ∈ MG decomposes into linear irreducible represen-
tations of G, and that stable/unstable manifold continuations of its eigenvectors
inherit their symmetry properties, and shows that an equilibrium can bifurcate
to a rotationally invariant periodic orbit (i.e., relative equilibrium).
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3.1. An example: Solutions of the complex Lorenz equations
In the case of the complex Lorenz equations the origin E0 is an equilibrium

of (11) for any value of the parameters. It is stable for 0 < ρ1 < ρ1c and unstable
for ρ1c < ρ1, where [22]

ρ1c = 1 + (e + ρ2)(e − σρ2)/(σ + 1)2 .

At the bifurcation [43] a pair of eigenvalues crosses the imaginary axis with
imaginary part

ωc = σ(e + ρ2)/(σ + 1) , (21)

and a relative equilibrium Q1 with constant angular velocity ωc is born. For
ωc = 0 the relative equilibrium degenerates to an SO(2)-orbit of equilibria. As
the existence of a relative equilibrium in a system with SO(2) symmetry is the
generic situation, we follow ref. [31] and set ρ2 = 0 and e 	= 0.

To find the location of the relative equilibrium it is convenient to work in
polar coordinates

(x1, x2, y1, y2, z) = (r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2, z) , (22)

where r1 ≥ 0 , r2 ≥ 0. The complex Lorenz equations (11) take the form
⎛
⎜⎜⎜⎜⎝

ṙ1

θ̇1

ṙ2

θ̇2

ż

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−σ (r1 − r2 cos θ)
−σ r2

r1
sin θ

−r2 + r1 ((ρ1 − z) cos θ − ρ2 sin θ)
e + r1

r2
((ρ1 − z) sin θ + ρ2 cos θ)
−bz + r1r2 cos θ

⎞
⎟⎟⎟⎟⎠ ,

For rotationally invariant flows the dynamics depends only on the relative angle
θ = θ1 − θ2 (which is why one speaks of ‘relative’ equilibria). This observation
enables us to recast the complex Lorenz equations in the 4-dimensional reduced
state space:

⎛
⎜⎜⎝

ṙ1

ṙ2

θ̇
ż

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−σ (r1 − r2 cos θ)
−r2 + (ρ1 − z)r1 cos θ

−e −
(
σ r2

r1
+ (ρ1 − z) r1

r2

)
sin θ

−bz + r1r2 cos θ

⎞
⎟⎟⎟⎠ , (23)

where we have set ρ2 = 0. The full 5-dimensional evolution can be regained by
integrating the driven reconstruction equation for the mean angular velocity:

θ̇1 + θ̇2 = e − [σ r2/r1 − (ρ1 − z) r1/r2] sin θ . (24)

In general θ1 and θ2 change in time, but for the relative equilibria the difference
between them is constant. The condition for a relative equilibrium is that all
time derivatives in (23) vanish, while θ̇1 = θ̇2 	= 0 (if θ̇1 = θ̇2 = 0 we have a
group orbit of equilibria instead). The relative equilibrium Q1 is given by

(r1, r2, θ, z) =
(√

b (ρ1 − d),
√

bd (ρ1 − d), cos−1(1/
√

d), ρ1 − d
)

, (25)
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where d = 1 + e2/(σ + 1)2, and its angular velocity is

θ̇i = σe/(σ + 1) , (26)

with period TQ1 = 2π(σ + 1)/σe. For the parameter values (12), the relative
equilibrium is at

xQ1 = (r1, r2, θ, z) = (8.48527, 8.48562, 0.00909, 26.9999) , (27)

rotating with the period TQ1 = 69.1150.
As ρ1 is increased, a secondary bifurcation from Q1 results in a relative pe-

riodic orbit (20), or, more precisely, in the quasiperiodic 2-frequency modulated
traveling wave [28]. With further increase in ρ1 the dynamics turns chaotic,
with an infinity of unstable relative periodic orbits. Once symmetry reduced
maps are constructed (see figure 4 (b) below), a large numbers of these can be
computed by methods described elsewhere [19, 20]. Calculation of the Q1 sta-
bility eigenvalues for the parameter values (12) (see ref. [20] for a calculation of
stability of relative equilibria in equivariant variables) yields a weakly unstable
spiral-out equilibrium

(λ1,2, λ3, λ4) = (0.0938179± 10.1945i,−11.0009,−13.8534) . (28)

The role of the above exact invariant solutions is illustrated by the portrait
of complex Lorenz flow state space in figure 1, with the relative equilibrium
Q1 and three repetitions of the 01 relative periodic orbit superimposed over
a generic chaotic orbit. Repeats of 01 trace out a torus ergodically, so in a
system with a 1-dimensional continuous symmetry the organizational blocks of
a strange attractor are circles (relative equilibria) instead of points (equilibria),
and partially hyperbolic tori (relative periodic orbits) instead of closed loops
(periodic orbits). It is difficult to understand the geometry of the flow by looking
at such tori.

The large imaginary part of λ1 in (28) implies that the simulation has to be
run up to time of order of at least 70 for the strange attractor in figure 1 to start
filling in. Dynamics is organized by the interplay of the stable and unstable
manifolds of equilibrium E0 and relative equilibrium Q1, but the symmetry-
induced drift along the direction of rotation blurs the picture and the notion of
recurrence becomes relative. In what follows, it is this confusing situation (as
well as the theoretical fact [44] that dynamical zeta functions have their support
on relative periodic orbits) that motivates the search for effective methods to
project the dynamics onto a reduced state space.

4. Symmetry reduction

The action of a symmetry group G on M endows the state space with the
structure of a union of group orbits, each group orbit an equivalence class.
The goal of symmetry reduction is the identification of a unique point as the
representative of a group orbit, and the replacement of the original state space
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by the space of such points, the reduced state space. In the literature this space
is alternatively called desymmetrized state space, symmetry-reduced space, orbit
space, or quotient space M/G because symmetry has been ‘divided out.’ The
symmetry group G of equivariant dynamics acts trivially in the reduced state
space, and the resulting dynamical system, called by Gilmore and Lettelier [4]
the image, is symmetry invariant, in the sense that its symmetry group is the
identity. Reduced state space is in general not a manifold but rather a union of
manifolds of different dimensions [45].

In sect. 5 we briefly review one of the standard tools by which spatial sym-
metry reduction can be achieved: projection to a Hilbert basis, and show in
sect. 5.1 how it works for complex Lorenz flow. A wonderful symmetry reduc-
tion tool for low-dimensional flows, the Hilbert basis approach turns out to be
too cumbersome to be applicable to high-dimensional flows. Next we describe
the method of moving frames (sect. 6) and apply it to the complex Lorenz flow
example to illustrate the form of a general linear slice (sect. 6.1), show how
the method enables us to explicitly compute G-invariant coordinates, and re-
late these to the Hilbert invariant polynomial basis (sect. 6.2). Then we discus
different choices of slice-fixing points (sect. 6.3), and the associated singular
sets. Since rotations commute with time integration, one can start with a point
on the slice, integrate for short time and then rotate the end point back into
the slice. In sect. 7 the limit of infinitesimal time steps yields the equivalent
but differential formulation, the method of slices for which the flow is restricted
to the reduced state space. In practice we find it more convenient to use the
numerical code as given, and post-process the data by the method of moving
frames, rather than rewriting the equations in the method of slices form.

5. Hilbert polynomial bases

In atomic physics and other low-dimensional physical problems with spatial
symmetries, symmetry reduction is customarily implemented just as we did it in
(22), by going to the natural coordinate system (polar, cylindrical, etc.). That
works well for linear systems, but not so well for nonlinear flows, and some
take pride in using no polar coordinates in symmetry reduction of Hamiltonian
flows [46, 32]; note, for example, that these coordinate transformations introduce
singularities in (23) at r1 = r2 = 0.

What are we really doing when redefining dynamics in terms of such invariant
coordinates? We are recasting equivariant dynamics of (x1, x2, · · · ) coordinates
in terms of rotationally invariant lengths (r1 = (x2

1 + x2
2)

2, · · · ), volumes and
other invariant quantities. Physical laws have the same form in all coordinate
frames, so they are often formulated in terms of functions (Hamiltonians, La-
grangians, · · · ) that are invariant under a given set of symmetries. Given a
symmetry, what is the most general functional form of such law? The general
problem of symmetry reduction in this sense was elegantly solved nearly a cen-
tury ago. According to the Hilbert-Weyl theorem, for a compact group G there
exists a finite G-invariant Hilbert polynomial basis {u1, u2, . . . , um}, m ≥ d,
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such that any G-invariant polynomial can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) , x ∈ M . (29)

The Gilmore and Lettelier monograph [4] offers a clear, detailed and user friendly
discussion of symmetry reduction by means of invariant polynomial bases (do
not look for Hilbert in the index, though). The invariant dynamical equations
follow from the equivariant ones by chain rule

u̇i =
∂ui

∂xj
ẋj , (30)

upon substitution {x1, x2, · · · , xd} → {u1, u2, · · · , um}. One can either rewrite
the dynamics in this basis, or one can simply plot the ‘image’ of solutions com-
puted in the original, equivariant basis in terms of these invariant polynomials.

Unfortunately, while the idea is elegant, an explicit construction of G-invari-
ant basis can in practice be a daunting undertaking. The set of m ≥ d invariant
polynomials {u1, u2, · · · , um} is not unique, and while these polynomials are lin-
early independent, they are functionally dependent through m−d+N nonlinear
relations called syzygies. Their determination becomes quickly computationally
prohibitive as the dimension of the system and/or group increases [47, 45], and
in practice computations are confined to dimensions less than ten. As our goal
is to quotient continuous symmetries of high-dimensional flows, as high as 102-
106 coupled ODEs arising from truncations of the Kuramoto-Sivashinsky and
Navier-Stokes flows, reduction by the method of Hilbert basis is at present not
a feasible option.

Nevertheless, as symmetry reduction of moderate-dimension flows by the
method of invariant polynomials offers a clean benchmark for other approaches
to symmetry reduction, we start by showing how it works for complex Lorenz
flow.

5.1. An example: Complex Lorenz equations recast in Hilbert basis
As the Hilbert basis approach turns out to be too cumbersome for our main

goal, symmetry reduction of high-dimensional flows, we forgo here a systematic
discussion of how to construct invariant polynomials bases. The pedagogical
literature mostly focuses on discrete symmetry groups [4, 47, 45], while general
algorithms are a domain of advanced algebraic geometry monographs. For the
purpose at hand it suffices to use the Gilmore and Letellier [4, 48] invariant
polynomial basis for the action (15). They apply it to the symmetry reduc-
tion of the Zeghlache-Mandel system [29], a flow much like the complex Lorenz
equations. As it can be easily verified, the Hilbert basis

u1 = x2
1 + x2

2 , u2 = y2
1 + y2

2

u3 = x1y2 − x2y1 , u4 = x1y1 + x2y2 (31)
u5 = z
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is invariant under (15), the SO(2) action on a 5-dimensional state space. That
implies, in particular, that the image of the full state space relative equilibrium
Q1 group orbit of figure 1 is the equilibrium point in figure 4 (a), while the image
of a relative periodic orbit, such as 01, is a periodic orbit. The five polynomials
are linearly independent, but related through one syzygy,

u1u2 − u2
3 − u2

4 = 0 , (32)

yielding a 4-dimensional M/SO(2) reduced state space, a symmetry-invariant
representation of the 5-dimensional SO(2) equivariant dynamics.

(a) (b)

Figure 4: (a) Invariant image of complex Lorenz flow, figure 1, projected onto the invariant
polynomials basis (31). Note the unstable manifold connection from the equilibrium E0 at
the origin to the strange attractor controlled by the rotation around the reduced state space
image of relative equilibrium Q1; as for the Lorenz flow [1], the natural measure close to E0

is vanishingly small but non-zero. (b) The return map for the Poincaré surface of section
u1 = u4 for the complex Lorenz equations projected on invariant polynomials (31). The
return map coordinate is the Euclidean length (35) along the Poincaré section of the unstable
manifold of Q1.

Application of the chain rule (30) brings the equivariant complex Lorenz
equations (12) to the invariant form (31):

u̇1 = 2 σ (u3 − u1) , u̇2 = −2 u2 − 2 u3 (u5 − ρ1)
u̇3 = σ u2 − (σ − 1)u3 − e u4 + u1 (ρ1 − u5) (33)
u̇4 = e u3 − (σ + 1)u4 , u̇5 = u3 − b u5 .

As far as visualization goes, we need neither construct the invariant equations
(33) nor integrate them. It suffices to integrate the original, unreduced flow of
Figure 1, but plot the solution in the image space, i.e., the invariant, Hilbert
polynomial coordinates ui, as in figure 4 (a). A minor drawback of the Hilbert
polynomial basis projections is that the folding mechanism is harder to view
since the dynamics is squeezed near the z-axis.

We chose a Poincaré section which contains the z-axis and the relative equi-
librium, here defined by the condition u1 = u4. Even though in the complex
Lorenz equations case we could use one of the ui’s as a coordinate to construct
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a return map, for high dimensional flows a dynamically intrinsic parametriza-
tion is the only option. Following ref. [6], we construct the first return map of
figure 4 (b) using as a coordinate the Euclidean length along the intersection of
the unstable manifold of Q1 within the Poincaré surface of section, measured
from Q1.

5.2. Symmetry reduced return map
Successive trajectory intersections with a Poincaré section, a (d − 1)-dim-

ensional manifold or a set of manifolds P embedded in the d-dimensional state
space M, define the Poincaré return map P (x), a (d − 1)-dimensional map of
form

x′ = P (x) = f τ(x)(x) , x′, x ∈ P . (34)

Here the first return function τ(x), sometimes referred to as the ceiling function,
is the time of flight to the next section for a trajectory starting at x. A good
choice of the section manifold P is basically a dark art.

We begin by sprinkling evenly spaced points {x(1), x(2), · · · , x(N−1)} between
the relative equilibrium point xQ1 = x(0) and the point x = x(N), along the 1d

intersection of Poincaré section and unstable manifold continuation x(k) ∈ Ŵu
(1)

of the unstable ê(1) eigenplane (we shall omit the eigendirection label (1) in what
follows). Then the arclength in Euclidean metric from the relative equilibrium
point xQ1 = x(0) to x = x(N) is given by

s = lim
N→∞

√√√√ N∑
k=1

(
dx(k)

)2
. (35)

By definition f τ(x)(x) ∈ Ŵu
(j), so f t(x) induces a 1d map s(s0, τ) = s(f τ(x0)(x0)).

Turning points are points on the unstable manifold for which the local un-
stable manifold curvature diverges for forward iterates of the map, i.e., points at
which the manifold folds back onto itself arbitrarily sharply. The 1d curve Ŵu

(1)

starts out linear at xQ1 , then gently curves until it folds back sharply at the
‘turning point’ along a possible heteroclinic connection to E0, and then nearly
retraces itself.

The trick is to figure out a good base segment to the nearest turning point
L = [0, sb], and after the foldback assign to s(x, t) > sb the nearest point s on
the base segment. Since here the stable manifold contraction is strong, the 2nd
coordinate connecting s(x, t) → s can be neglected.

Armed with this intrinsic curvilinear coordinate parametrization, we are now
in a position to construct a 1-dimensional model of the dynamics on the non–
wandering set. If x̂n is the nth Poincaré section of a trajectory in neighborhood
of xq, and sn is the corresponding curvilinear coordinate, then sn+1 = f τn(sn)
models the full state space dynamics x̂n → x̂n+1. We approximate f(sn) by a
smooth, continuous 1-dimensional map f : Lq → Lq by taking x̂n ∈ Lq, and
assigning to x̂n+1 the nearest base segment point sn+1 = s(x̂n+1). Thanks to
the extreme contraction rate (17), the return map turns out to be unimodal for

15



all practical purposes, so binary symbolic dynamics are easily constructed and
admissible periodic orbits of the map up to desired length can be systemati-
cally obtained. A multiple shooting routine [5] can then be used to determine
the corresponding relative periodic orbits of the complex Lorenz equations to
machine precision.

6. The method of moving frames

The method of moving frames, introduced by G. Darboux and systematized
by É. Cartan [49], is interpreted by Fels and Olver [50, 51] as a map from a
manifold to a Lie group acting on it. Moving frames are then used to compute
d−N functionally independent fundamental invariants for general group actions
in relation to general equivalence problems. ‘Fundamental’ here means that they
can be used to generate all other invariants, and, in particular, they serve to
distinguish group orbits in an open neighborhood of the slice point, i.e., two
points lie on the same group orbit if and only if all fundamental invariants
agree. For an introduction to the method we recommend Olver’s pedagogical
monograph [26]. Here we emphasize the application of the method to dynamical
symmetry reduction. We are not concerned with the explicit determination of
the fundamental invariants as in ref. [50, 51]; instead we focus on implementation
of a moving frame transformation as a numerically fast and efficient linear map
of the full state space dynamics onto its desymmetrized, reduced state space
projection.

The main idea behind method of moving frames is that we can, at least
locally, map each point along any solution x(τ) to a unique representative x(τ)
of the associated group orbit equivalence class, by a suitable rotation

x(τ) = g(τ)x(τ) . (36)

Equivariance implies the two points are equivalent. In the method of moving
frames the reduced state space representative x of a group orbit equivalence
class is picked by slicing across the group orbits by a fixed manifold.

In the following it will be useful to introduce the notion of a slice, an (d−N)-
dimensional submanifold M ⊂ M such that M intersects all group orbits in an
open neighborhood of x′ ∈ M transversally and at most once. In other words,
slice is the analogue of a Poincaré section, but for group orbits. As is the case
for the dynamical Poincaré sections, in general a single slice does not suffice to
intersect all group orbits of points in M. One can construct a local slice passing
through any point x ∈ M if the group orbits of G have the same dimension,
i.e. they are away from fixed-point subspaces of continuous subgroups of G, see
ref. [51] for details.

The simplest slice condition defines a linear slice as a (d−N)-dimension-
al hyperplane M normal to the N group rotation tangents t′a at point x′, see
figure 5:

(x − x′)T t′a = 0 , t′a = ta(x′) = Ta x′ , a = 1, 2, · · · , N . (37)
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Figure 5: (a) Slice M is a hyperplane (37) passing through the slice-fixing point x′, and
normal to the group tangent t′ at x′. It intersects all group orbits (indicated by dotted lines
here) in an open neighborhood of x′. The full state space trajectory x(τ) and the reduced
state space trajectory x(τ) belong to the same group orbit Mx(τ) and are equivalent up to a
group rotation g(τ). (b) The method of moving frames for a flow SO(2)-equivariant under
(15) with slice through x′ = (0, 1, 0, 0, 0), group tangent t′ = (−1, 0, 0, 0, 0). The orientation
condition restricts the slice to half-hyperplane x1 = 0, x2 ≥ 0. A trajectory started on the
slice at x(0) evolves to a state space point with a non-zero x1(τ1). Compute angle θ1 through
slice condition (38). Rotate x(τ1) counter-clockwise by θ1 to x(τ1) = g(θ1) x(τ1), so that the
equivalent point on the circle lies on the slice, x1(τ1) = 0. Repeat for all sample points x(τi)
along the trajectory.

As x′T t′a = 0 by the antisymmetry of Ta, the slice condition (37) fixes θ for a
given x by orthogonality,

0 = xT t′a = xT g(θ)T t′a , (38)

where gT denotes the transpose of g. A group orbit will in general intersect a
slice more than once (for example in the case of SO(2), two π-separated points),
so we need to impose further conditions on the slice, in the form of either
inequalities or orientation conditions, so as to ensure unique intersection. These
restrictions are rather arbitrary, the only requirement being that M remains
a connected manifold. We illustrate this point for the complex Lorenz flow
example in sect. 6.1.

For group orbits intersected by a slice, we can identify the unique group
element g = g(x) that rotates x into the slice, gx = x ∈ M. The map that
associates to a state space point x a Lie group action g(x) is called a moving
frame. The method of moving frames can be thought of as a change of variables
x = g−1(x)x , to a frame of reference for which the slice-fixing condition (38) is
identically satisfied–hence the name ‘moving frame.’

The method of moving frames is a post-processing method; trajectories are
computed in the full state space, then rotated into the slice whenever desired,
with the slice condition easily implemented. The slice group tangent t′ is a given
vector, and rotation parameters θ are determined numerically, by a Newton
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method, through the slice condition (38). For given θ, g(θ)x is another vector,
linear in x.

A slice can be identified with M/G in an open neighborhood of x′. As is
the case for the dynamical Poincaré sections, a single slice does not suffice to
reduce M → M/G globally as one cannot expect the group orbit of any point
in M to intersect a given slice.

How does one pick a slice point x′? A generic point x′ not in an invariant
subspace (on the z axis of the complex Lorenz equations, for example) should
suffice to fix a slice. The rules of thumb are much like the ones for picking
Poincaré sections. The intuitive idea is perhaps best visualized in the context
of fluid flows. Suppose the flow exhibits an unstable coherent structure that is
frequently visited at different spatial dispositions. One can fit a ‘template’ to
one recurrence of such structure, and describe other recurrences as its transla-
tions. A well-chosen slice point belongs to equivalence class that is dynamically
important in this way (i.e., a group orbit). We discuss, in the context of our
complex Lorenz equations example, several slice fixing choices in sects. 6.2 and
6.3.

A historical note. For the definition of slice see, for example, Chossat and
Lauterbach [45]. Slices tend to be discussed in contexts much more difficult than
our application - symplectic groups, sections in absence of global charts, non-
compact Lie groups. We follow ref. [52] in referring to a local group-orbit section
as a slice. The usage goes back at least to Palais [53] in 1961 and Mastow [54]
in 1957. Some [51, 27] refer to global group-orbit sections as cross-sections, a
term that we would rather avoid, as it has an honest, well-established meaning
in physics. Guillemin and Sternberg [55] define the cross-section, but emphasize
that finding it is very rare: “existence of a global section is a very stringent
condition on a group action. The notion of slice is weaker but has a much
broader range of existence.”

6.1. An example: Moving frame for complex Lorenz equations
In case of the complex Lorenz equations we can, due to equivariance, rotate

any slice fixing point in (38) so that we have x′
1 = 0. As only the group tangent

direction matters, a slice that goes through point (0,x′
2, y

′
1, y′

2, z
′) is equivalent

to (0, 1, y′
1/x′

2, y′
2/x′

2, 0), so we can specify the most general slice fixing point
for the complex Lorenz equations by two numbers,

x′ = (0, 1, y′
1, y′2, 0) . (39)

The group orbit tangent then becomes t′ = (−1, 0, −y′2, y′
1, 0) and slice condi-

tion (38) leads to

θ = tan−1 x1 + y′
2y1 − y′1y2

x2 + y′
1y1 + y′2y2

. (40)

To ensure a unique intersection with the slice, we have to further restrict M
by choosing a representative out of the two group orbit points that intersect
the slice. One can impose an orientation condition, for example choosing the

18



point that is at minimum distance from x′, or one can define the inverse tangent
function tan−1(b/a) so that it distinguishes quadrants in the (a, b) plane. Either
condition works equally well.

We observe that (40) is undefined when

x1 + y′2y1 − y′
1y2 = 0 , (41a)

x2 + y′1y1 + y′
2y2 = 0 , (41b)

are both satisfied. We will refer to this 3-dimensional linear subspace as the
singular set of the moving frame associated with (40). Condition (41a) implies
that point x is already on the slice, xT x′ = 0. Condition (41b) implies that
the group tangent at point x is perpendicular to group tangent at slice fixing
point, t(x)T t′ = −xT x′ = 0. The problem lies in the fact that the limit of (41)
as we approach the singular set does not exist. For instance, consider points
for which (41b) holds; as we approach the singularity with positive values of
the numerator in (40) we have θ = π/2, while for negative values θ = −π/2.
A π-jump occurs as we cross the singular set. In general such crossings are
expected to occur, since the singular set is not flow invariant. Even worse, the
singularity distorts the way trajectories are mapped onto the slice, even if they
merely approach it rather than cross it, as we will see in the next two examples.

6.2. Irreducible subspace slice and explicit invariants
We now show how a particular choice of the slice point enables us to express

the transformation to invariant variables in a simple analytic form. Place the
slice point in one of the linearly irreducible subspaces of SO(2) action (15),
for instance x′ = (0,−1, 0, 0, 0). The group-tangent at the slice point is then
t′ = (1, 0, 0, 0, 0) and the slice fixing condition is

x1 = x1 cos θ − x2 sin θ = 0 . (42)

The orientation condition restricts the slice to half-hyperplane x1 = 0, x2 ≥ 0.
Solving (42) for the polar angle θ in (x1, x2) we get

θ = tan−1(x1/x2) . (43)

The transformation that rotates x counter-clockwise by θ to x = g(θ)x onto the
slice is found by inserting (43) into the expression for the action of SO(2) on x,

x1 = x1 cos θ − x2 sin θ , x2 = x1 sin θ + x2 cos θ (44)
y1 = y1 cos θ − y2 sin θ , y2 = y1 sin θ + y2 cos θ

yielding the transformations in analytic form:

x2 = r1 =
√

x2
1 + x2

2 , z = z

y1 = (x2y1 − x1y2)/r1 , y2 = (x1y1 + x2y2)/r1 . (45)

19



This transformation rotates point x into the slice point x. Alternatively, the
transformation can be viewed as providing invariant variables on which to
project dynamics, as we did in Hilbert basis case. Note the relation to the
invariant polynomials (31), and observe that as the rotational degree of free-
dom has been explicitly used, the method of moving frames requires no syzygies.
Analytical determination of invariant variables through moving frame transfor-
mations and particular slice conditions can be carried out systematically for
general group representations [50], but for reasons explained in sect. 6.3, we
shall not take this path here.
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Figure 6: State space portrait of complex Lorenz flow in reduced state space, projected on
the slice, taking as the slice fixing point x′ (a) the irreducible subspace slice condition (42),
(b) the relative equilibrium xQ1 .

As in sect. 6.1, note that the invariants are not well defined in the x1, x2 → 0
limit. Using x = r1 eiφ1 , y = r2 eiφ2 we can write

x2 = r1 , y1 = r2 sin(φ1 − φ2)
y2 = r2 cos(φ1 − φ2) , z = z . (46)

For any given y (therefore also for given φ2), the limit of y for x → 0 does not
exist, as the above expression depends on the direction in the complex x-plane
along which we approach zero.

From a different perspective, we may redefine the slice so that x1 = x2 = 0
is excluded, that is by x1 = 0, x2 > 0. Then we may say that group orbits of
points in the x1 = x2 = 0 subspace fail to intersect the slice. In figure 6 (a)
this becomes apparent by the trajectories in reduced space being stretched as
they come closer to x1 = x2 = 0 subspace, where transverse intersection would
eventually fail.

It is instructive to rewrite the complex Lorenz equations (11) in terms of
the invariant variables (45). This is achieved by using the chain rule (30) and
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expressing the result in terms of variables (45). The moving frames symmetry-
reduced complex Lorenz equations are a 4-dimensional ODE system

ẋ2 = −σ (x2 − y2) , ẏ1 = −y1 + ρ2x2 − (e + σ y1/x2) y2

ẏ2 = −y2 + (ρ1 − z)x2 + (e + σ y1/x2) y1 , ż = −b z + x2y2 . (47)

Note the singularity as x2 = r1 → 0.
The projections in figure 6 help us understand the topology of the dynamics

but also present large discontinuous jumps. Note that the invariants (45) are
related to the invariant polynomials (31) by division by

√
x2

1 + x2
2. This is

the reason we get a clearer visualization of the dynamics than with invari-
ant polynomials: All invariants scale as the original coordinates. At the same
time division by

√
x2

1 + x2
2 causes the jumps in the y components whenever the

magnitude of x comes close to zero.
So what does this imply for the ultimate goal of this paper, “Continuous

symmetry reduction and return maps for higher-dimensional flows?” In this
example there is no problem. It is obvious by inspection of figure 6 that one can
chose a Poincaré section away from the singular set. Repeating the construction
of sect. 5.2 results in a return map very much like the one of figure 4 (b), with
the same admissible orbits, so there is no need to plot further return maps for
various choices of slices.

6.3. Complex Lorenz equations: the general linear slice
The irreducible subspace slice condition (42) yields the invariant variables

(45) in explicit, analytic form. As explained in sect. 6.1, the method of moving
frames also introduces artificial singularities in reduced state space, the location
of which depend on the choice of slice point, and one might suspect that the
singularities encountered by the strange attractor are due to very special choice
of the slice fixing condition. How does a general choice of the slice fixing point
affect the singular set? In this setting it is no longer convenient to explicitly write
out transformations to invariant variables as we did in sect. 6; we will implement
the moving frame map numerically, mapping computed trajectories to the slice.
Even though the analytical computation of invariants by the method of moving
frames can be implemented by computer algebra [20] for system dimensions of
the order of 100, it is both computationally prohibitive and utterly unnecessary
for symmetry reduction of very high dimensional flows of order 100, 000 required
for fully resolved 3-D fluid simulations [56].

Since Q1 organizes reduced space dynamics around it, but also sets the
scale of angular velocity of symmetry induced rotations in the system, we find
it natural to choose slice-fixing point (39) computed from group orbit of the
relative equilibrium xQ1 , given in (27) for the parameter values used here. We
can use (40) to compute θ for any point x, but keeping up with the numerical
approach of this section, we use a Newton’s method. As an initial guess we use
the angle from previous point along the trajectory, while for the first point we
choose among the two possible solutions by demanding that the rotation brings
the point to a minimum distance from x′. Projections of complex Lorenz flow
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to the slice defined in this manner are shown in figure 6 (b). This projection
of the strange attractor also clearly exhibits the moving frame angle π-jumps.
Figure 7(a) shows the projection of singular set in 3-dimensions (x1, x2, y1); the
attractor collides with the singular set head on.

The linear relation (41b) and figure 7 suggest that we can manipulate the
singular set so that the attractor avoids the singularity by increasing the ratio
y′2/y′1. Choosing the slice fixing point as x′ = xQ1 + (5, 0, 0, 0, 0) we can ‘tilt’
the singular set so that trajectories approach it in a smoother manner, see
figure 7 (b).

(a)

x1

x2

y1

E0

Q1

W
�
�0�
u

(b)

x2

y2

z

W
�
�0�
u

01

Q1

Figure 7: State space portraits of complex Lorenz flow in reduced state space. We use a
moving frame map to a slice fixed by point (a) x′ = xQ1 , with the gray plane indicating the
singular set. (b) x′ = xQ1 + (5, 0, 0, 0, 0). Compare with figure 6 (b).

For more pointers on how to pick good slices and combine them with well-
chosen Poincaré sections, the reader is referred to ref. [20].

7. Differential formulation: the method of slices

Instead of post-processing a full state space trajectory, we can proceed as
follows: Split up the integration into a sequence of short time steps, each fol-
lowed by a rotation of the final point such that the next segment’s initial point
is in the slice fixed by a point x′. In the infinitesimal steps limit this leads to the
method of slices, a differential form of the method of moving frames for which
the trajectory never leaves the reduced state space.

Consider an N -dimensional Lie group G acting on d-dimensional space and
which, at least locally near x′, has N -dimensional orbits. For points that can be
mapped by a moving frame to slice through x′ we can write, using decomposition
(36), the full state space trajectory as x(τ) = g(τ)x(τ), where the (d−N)-dim-
ensional reduced state space trajectory x(τ) is to be fixed by some condition,
and g(τ) is then the corresponding group action on the N -dimensional group
manifold that rotates x into x at time τ . The time derivative is ẋ = v(gx) = ġx+
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gu, with the reduced state space velocity field given by u = dx/dτ . Rewriting
this as u = g−1v(g x)− g−1ġ x and using the equivariance condition (3) leads to

u = v − g−1ġ x .

The Lie group element (4) and its time derivative describe the group tangent
flow

g−1ġ = g−1 d

dτ
eθ·T = θ̇ · T .

This is the group tangent velocity g−1ġ x = θ̇ · t(x) evaluated at the point x,
i.e., with g = 1, see figure 5 (a). The flow in the (d−N) directions transverse to
the group flow is now obtained by subtracting the flow along the group tangent
direction,

u(x) = v(x) − θ̇(x) · t(x) , u = dx/dτ , (48)

for any factorization of the flow of form x(τ) = g(τ)x(τ). To integrate these
equations we first have to fix a particular flow factorization by imposing con-
ditions on x(τ), and then integrate phases θ(τ) on a given reduced state space
trajectory x(τ).

Here we shall demand that the reduced state space is confined to a linear
hyperplane slice. Substituting (48) into the time derivative of the fixed slice
condition (38),

u(x)T t′a = v(x)T t′a − θ̇a · t(x)T t′a = 0 ,

yields the equation for the group phases flow θ̇ for the slice fixed by x′, together
with the reduced state space M flow u(x):

θ̇a(x) =
v(x)T t′a
t(x)T · t′ (49)

u(x) = v(x) − θ̇(x) · t(x) , x ∈ M . (50)

Each group orbit Mx = {g x | g ∈ G} is an equivalence class; the method of
slices represents the class by its single slice intersection point x. By construction
uT t′a = 0, and the motion stays in the (d−N)-dimensional slice. We have thus
replaced the original dynamical system {M, f} by a reduced system {M, f̄}.

These equations are easily integrated (provided some care is taken about how
the trajectories cross the singular set), and given the same slice-fixing conditions,
the integrations reproduce the plots obtained by the method of moving frames,
such as figure 6.

For example, consider the complex Lorenz equations slice condition of sect. 6.2:
x1 = 0, x2 > 0. The reduced state space equations are given by

u(x) = v(x) − v1

x2
t(x) . (51)

Substitution of the complex Lorenz equations equations recovers (47), obtained
by the method of moving frames. The integration of (47) recovers the strange
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attractor in figure 6 (a), obtained by simulation in the full state space, followed
by moving frame rotation into the slice.

In pattern recognition and ‘template fitting’ settings, (49) is called the re-
construction equation. We have already encountered it in our polar coordinates
exercise (24). Integrated together, the reduced state space trajectory (50), the
integrated phase (49), and g(τ) = exp[θ(τ) · T] reconstruct the full state space
trajectory x(τ) = g(τ)x(τ) from the reduced state space trajectory x(τ), so no
information about the flow is lost in the process of symmetry reduction.

The denominator in (49) vanishes and the phase velocity θ̇(x) diverges when-
ever the direction of group action on the reduced state space point is perpendic-
ular to the direction of group action on the slice point x′. Therefore the method
of slices has the same singular set as its post-processing variant, the method of
moving frames: the intersection of the slice with the set of points with group
tangent perpendicular to t′.

A historical note. The basic idea of the method of slices is intuitive and
frequently reinvented, often under a different name; for example, it is stated
without attribution as problem 1. of Sect. 6.2 of Arnol’d Ordinary Differen-
tial Equations [57]. The factorization (36) is stated on p. 31 of Anosov and
Arnol’d [58], who note, without further elaboration, that in the vicinity of a
point that is not fixed by the group one can reduce the order of a system of
differential equations by the dimension of the group. Fiedler, in the influential
1995 talk at the Newton Institute, and Fiedler, Sandstede, Wulff, Turaev and
Scheel [59, 60, 61, 62] treat Euclidean symmetry bifurcations in the context
of spiral wave formation. The central idea is to utilize the semidirect product
structure of the Euclidean group E(2) to transform the flow into a ‘skew prod-
uct’ form, with a part orthogonal to the group orbit, and the other part within
it, as in (50). They refer to a linear slice M near a relative equilibrium as a
Palais slice, with Palais coordinates. As the choice of the slice is arbitrary, these
coordinates are not unique. According to these authors, the skew product flow
was first written down by Mielke [63], in the context of buckling in elasticity
theory. However, this decomposition is no doubt much older. For example, it
was used by Krupa [28, 45] in his local slice study of bifurcations of relative
equilibria. Biktashev, Holden, and Nikolaev [64] cite Anosov and Arnol’d [58]
for the ‘well-known’ factorization (36) and write down the slice flow equations
(50). Haller and Mezić [65] reduce symmetries of three-dimensional volume
preserving flows and reinvent method of moving frames, under the name ‘or-
bit projection map.’ There is extensive literature on reduction of symplectic
manifolds with symmetry; the Marsden and Weinstein 1974 article [66] is an
important early reference. Then there are studies of the reduced phase spaces
for vortices moving on a sphere such as ref. [67], and many, many others.

Neither Fiedler et al. [59] nor Biktashev et al. [64] implemented their meth-
ods numerically. That was done by Rowley and Marsden for the Kuramoto-
Sivashinsky [52] and the Burgers [68] equations, and Beyn and Thümmler [69,
70] for a number of reaction-diffusion systems, described by parabolic partial
differential equations on unbounded domains. We recommend the Barkley pa-
per [71] for a clear explanation of how the Euclidean symmetry leads to spirals,
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and the Beyn and Thümmler paper [69] for inspirational concrete examples of
how freezing/slicing simplifies the dynamics of rotational, traveling and spiraling
relative equilibria.

Beyn and Thümmler write the solution as a composition of the action of a
time dependent group element g(τ) with a ‘frozen,’ in-slice solution û(τ) (36).
In their nomenclature, making a relative equilibrium stationary by going to a
co-moving frame is ‘freezing’ the traveling wave, and the imposition of the phase
condition (i.e., slice condition (37)) is the ‘freezing ansatz.’ They find it more
convenient to make use of the equivariance by extending the state space rather
than reducing it, by adding an additional parameter and a phase condition.
The freezing ansatz [69] is identical to the Rowley and Marsden [68] and our
slicing, except that freezing is formulated as an additional constraint, just as
when we compute periodic orbits of ODEs we add Poincaré section as an addi-
tional constraint, i.e., increase the dimensionality of the problem by 1 for every
continuous symmetry.

Our derivation of method of slices follows most closely Rowley and Mars-
den [68] who in the pattern recognition setting refer to the slice point as a
template, and call (49) the reconstruction equation [72]. They also describe the
‘method of connections’ (called ‘orthogonality of time and group orbit at succes-
sive times’ in ref. [69]), for which the reconstruction equation (49) denominator
is t(x)T ·t(x) and thus nonvanishing as long as the action of the group is regular.
This avoids the spurious slice singularities, but it is not clear what the method
of connections buys us otherwise. It does not reduce the dimensionality of the
state space, and it accrues geometric phases which prevent relative periodic
orbits from closing into periodic orbits.

One would think that with all the literature on desymetrization the case is
shut and closed, but not so. Applied mathematicians are inordinately fond of
bifurcations, and almost all of the previous work focuses on equilibria, relative
equilibria (traveling waves), and their bifurcations, and for these problems a
single slice works well. Only when one tries to describe the totality of chaotic
orbits does the non-global nature of slices become a serious nuisance.

8. Discussion and conclusions

We have presented two approaches to continuous symmetry reduction of
higher-dimensional flows and illustrated them with reductions of the complex
Lorenz system, a 5-dimensional dissipative flow with rotational symmetry. In
either approach numerical computations can be performed in the original, full
state-space representation, and then the solutions can be projected onto the
symmetry-reduced state space.

In the Hilbert polynomial basis approach, one transforms the equivariant
state space coordinates into invariant coordinates by a nonlinear coordinate
transformation

{x1, x2, · · · , xd} → {u1, u2, · · · , um} ,

and studies the invariant image of dynamics rewritten in terms of invariant co-
ordinates. These invariant polynomial bases can be algorithmically determined
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for both Hamiltonian and dissipative systems. Our goal is to reduce symmetries
of fully-resolved simulations of PDEs, with state space dimensions of the order
of a few tens to few hundreds (for Kuramoto-Sivashinsky flow), and well into
the tens or hundreds of thousands (for pipe and plane Couette flows). Unfor-
tunately, the computational cost of polynomial basis algorithms is at present
prohibitive for state space dimensions larger than ten, so the invariant polyno-
mial basis approach is not a feasible option. We have discussed it here solely
for illustrative purposes.

In the method of moving frames (or its continuous time, differential version,
the method of slices), one fixes a local slice (x−x′)T t′ = 0, a hyperplane normal
to the group tangent t′ that cuts across group orbits in the neighborhood of the
slice-fixing point x′. The state space is sliced locally in such a way that each
group orbit of symmetry-equivalent points is represented by a single point, with
the symmetry-reduced dynamics in the reduced state space M/G given by (50):

u = v − θ̇ · t , θ̇ = (v · t′)/(t · t′) .

The method of moving frames turns out to be an efficient method for reducing
the flow to a symmetry-invariant reduced state space, suited to reduction of
even very high-dimensional dissipative flows to local return maps: one runs the
dynamics in the full state space and post-processes the trajectory by the method
of moving frames. Importantly, from a numerical point of view, there is no need
to actually recast the dynamics in the new coordinates or write new code. Either
approach can be used as a visualization tool, with all computations carried out
in the original coordinates, and then, when done, projecting the solutions onto
the symmetry reduced state space by post-processing the data. In contrast to
co-moving frames local to each traveling solution, restricting the dynamics to a
slice renders all relative equilibria stationary in the same set of coordinates.

An inconvenience inherent in the linear slices formulation is that they are
local, and the reduced flow encounters singularities in subsets of the reduced
state space, with the reduced trajectory exhibiting large, slice-induced jumps.
This singular set is introduced by and depends on the slice-fixing condition. We
have shown, in the 5-dimensional complex Lorenz equations example, that the
location of the singular set can be manipulated by judicious choice of the slice
fixing point, and geometrical information about the dynamics can be extracted
by constructing a return map through a Poincaré section that does not intersect
the singular set. The trick is to construct a good set of symmetry invariant
Poincaré sections, and that is always a dark art, with or without a symmetry. In
higher-dimensional flows, with more involved symmetry group actions and larger
sets of stationary solutions, where a single slice and Poincaré section will not
suffice, we can still expect to cover the reduced state space with multiple slices,
obtaining a set of discrete maps involving multiple Poincaré sections. As to high-
dimensional applications, it was shown in ref. [20] that the coexistence of four
equilibria, two relative equilibria and a nested fixed-point subspace structure
in an effectively 8-dimensional Kuramoto-Sivashinsky system [19] complicates
matters considerably. This application of symmetry reduction to a spatially
extended, PDE system is the subject of a forthcoming publication [73].
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