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Manipulating Epileptiform Bursting in the Rat
Hippocampus Using Chaos Control and Adaptive
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Abstract—Epilepsy is a relatively common disease, afflicting
1%–2% of the population, yet many epileptic patients are not
sufficiently helped by current pharmacological therapies. Recent
reports have suggested that chaos control techniques may be
useful for electrically manipulating epileptiform bursting be-
havior in vitro and could possibly lead to an alternative method
for preventing seizures. We implemented chaos control of sponta-
neous bursting in the rat hippocampal slice using robust control
techniques: stable manifold placement (SMP) and an adaptive
tracking (AT) algorithm designed to overcome nonstationarity.
We examined the effect of several factors, including control radius
size and synaptic plasticity, on control efficacy. AT improved
control efficacy over basic SMP control, but relatively frequent
stimulation was still necessary and very tight control was only
achieved for brief stretches. A novel technique was developed for
validating period-1 orbit detection in noisy systems by forcing
the system directly onto the period-1 orbit. This forcing analysis
suggested that period-1 orbits were indeed present but that control
would be difficult because of high noise levels and nonstationarity.
Noise might actually be lowerin vivo, where regulatory inputs to
the hippocampus are still intact. Thus, it may still be feasible to
use chaos control algorithms for preventing epileptic seizures.

Index Terms—Adaptive, control, epilepsy, chaos, hippocampus,
periodic orbit, seizure, synaptic plasticity.

I. INTRODUCTION

M ORE than 50 million people worldwide are afflicted
with epilepsy, and over 20% of these people are not

sufficiently helped by medications. The last resort for some
of these patients is to have the seizure-generating part of the
brain (the focus) surgically removed. While surgery is often
successful in preventing seizures, it can have serious side
effects such as memory loss or speech deficits. Therefore, many
groups are working to develop less-invasive alternatives to
surgery for treating drug-resistant epilepsy [1]. Two currently
available therapies use electrical stimulation to stop seizures.
These implants stimulate either the vagus nerve [2]–[5] or
the centromedian thalamic nucleus [6]. They are moderately
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successful at stopping seizures. Vagus nerve stimulators reduce
the number of seizures by 50% or more in approximately
35%–40% of patients [7]. However, their mechanism of action
is uncertain and they have several adverse effects [8]. In
addition, direct stimulation of the brain at a set frequency
could potentially kindle new epileptic foci in those areas.
Finally, these stimulators have only been available for a few
years, so their long-term sequelae are unknown. It has been
suggested that chaos control techniques might be used to
prevent or stop seizures with intermittent electrical stimuli [9].
These techniques possess the advantage of requiring relatively
infrequent stimulation of the tissue. This would reduce the
likelihood of inducing new epileptic seizures and decrease
power requirements, both important considerations for an
implanted device.

On an electroencephalogram (EEG), the period during which
a seizure takes place is referred to as the ictal period; the period
between seizures is, thus, the interictal period. One of the hall-
marks of epilepsy is the presence of spikes in the EEG during
this interictal period. While the precise role of interictal spikes
in epileptogenesis is not currently certain [10]–[12], it is plau-
sible that developing a method to control them could provide a
way to control seizure activity as well. Bursts are thein vitro
analogues of these spikes and can be induced to occur sponta-
neously in the transverse rat hippocampal slice providing anin
vitro model of epilepsy. It has been suggested that spontaneous
hippocampal bursting is chaotic and, therefore, chaos control
techniques might be appropriate [9]. While this suggestion is
somewhat controversial [13], previous studies have shown that
unstable periodic orbits (UPOs) of low periods are highly preva-
lent in hippocampal bursting [14], and there have been reports
of positive Lyapunov exponents suggesting that chaos exists in
the EEG during seizures [15], [16].

A chaotic attractor can be described by a skeleton of UPOs
[17]. These UPOs are periodic paths in state space to and
from which the system recurrently approaches and recedes.
The presence of UPOs in a system implies the presence of
determinism and suggests chaos. Furthermore, the presence
of UPOs strengthens the rationale for using chaos control
techniques to manipulate bursting, since UPOs are the points
around which control can be applied [9]. However, a relatively
large component of randomness has also been detected in
bursting [14] suggesting that chaos control might be difficult
to achieve in practice, especially if the amplitude of the noise
were larger than the region in which control was desired.
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The goal of chaos control is to keep the system state point
within a certain distance (the control radius) of the fixed
point by capitalizing on the sensitivity of chaotic systems to
small perturbations and thereby minimizing the amount of per-
turbations. Since the concept of controlling a chaotic system
withouta priori knowledge of the underlying dynamics was de-
veloped in 1990 by Ottet al.(OGY control, [18]), many chaos
control algorithms have been advanced [19]–[22]. A simpler al-
gorithm based on linear negative feedback control of a system
parameter was used to control chaos in a diode resonator circuit
[19]. A variant of OGY called proportional perturbation feed-
back (PPF) [21] modifies the system state point [viz., the in-
terburst interval (IBI)] instead of a system parameter. We used
a modification of PPF called stable manifold placement (SMP)
[23] which is simpler and more robust than PPF because it re-
quires less assumptions to be made about system parameters.

In this paper, we explore in detail the modification of
bursting behavior using techniques from chaos control. Accu-
rate fixed-point estimation is crucial to the success of chaos
control. Therefore, in addition to SMP control, we implement
for the first time in a biological system a method of continu-
ously refining the fixed point and stable manifold estimates
[24]. We also develop a novel protocol,state-point forcing,
that helps determine the validity of fixed-point estimates and
assesses the feasibility of chaos control.

II. M ETHODS

A. Experimental Methods

Male Sprague–Dawley rats, age 20–25 days, were anes-
thetized (Isoflurane) and decapitated. Cerebral hemispheres
were removed, hemisected, and the hippocampus dissected
out during perfusion with chilled artificial cerebrospinal fluid
(ACSF) containing (in mM): 1.25, 1.3,
NaCl 124, 24, D-Glucose 10, KCl 3.5,
2.4. Slices 400 m thick were cut using a tissue chopper
(Stoelting; Wood Dale, IL). Slices were maintained in ACSF
at room temperature, perfused by 95% . Slices
were placed in the bottom of a 1-ml experimental bath under
a dissecting microscope and perfused by oxygenated ACSF.
The bath temperature was kept at C, at a flow rate
of 5–6 ml/min. Slices were allowed to equilibrate to the bath
temperature for at least 20 min before initiating recording
procedures. A glass micropipette recording electrode (3–5 M)
was filled with 2 M NaCl and placed in the cell body layer of
the CA3 region [Fig. 1(A)]. Bursting was induced by bathing
the slices in ACSF containing high potassium concentration

mM . A bipolar tungsten stimulating electrode
was placed in the Schaffer collaterals. Stimuli consisted of
single, 80 s square-wave current pulses with amplitudes
0.1–0.3 mA.

B. Burst Detection

All equipment was electrically insulated from noise and vi-
brations using a Faraday cage and air table, respectively. Signals
from the recording electrode were passed through a bandpass
filter on an AC differential amplifier (DAM 80, World Precision

Fig. 1. Bursting in the hippocampal slice. (A) Schematic diagram of
hippocampal slice organization. Granule cells in the dentate gyrus (DG) send
mossy fiber (MF) axons to the CA3 region, where they synapse onto pyramidal
cells. The recording electrode was placed in the pyramidal cell body layer (P)
of the CA3 region. These cells send axons [Schaffer collaterals (SCs)] to the
CA1 region. The stimulating electrode was placed among these axons. (B) An
example of a spontaneous burst recorded extracellularly in the CA3 pyramidal
layer. (C) A return map of 1000 IBIs recorded during spontaneous bursting.
Fixed points lie along the identity (45) line.

Instruments) with cutoff frequencies of 0.3 Hz and 3 kHz. Bursts
were detected using an analog circuit consisting of a 20 dB/dec
low-pass filter with unity gain and an adjustable window dis-
criminator. The window discriminator [25] used a comparator
to produce a two-state output: high (5 V) if the input was be-
tween a low and high threshold and low (0 V) if
the input was outside of this window. Since the recording am-
plifier had a gain of 1000, and burst amplitudes typically were
on the order of 1 mV, the inputs to the window discriminator
were on the order of 1 V. The low threshold was set in the
range of 60–400 mV, with potentiometers used to allow fine ad-
justment of the threshold. Settings for the low threshold varied
because of the variation in noise amplitude in different experi-
ments. However, was constant within each experiment. The
high threshold was set to at least 3 V. An additional criterion
was added in the software to ensure that the positive detection
was indeed a burst: the IBI had to be at least 250 ms.

A real-time data acquisition board (Adwin 4L, Keithley
Instruments), which contained its own 486 microprocessor,
recorded the IBIs, calculated when a stimulus needed to be de-
livered, and sent out the stimulus signal. The board’s processor
was programmed using a compiled version of BASIC called
Adbasic. The host computer ran the neurocontrol software
(written in Visual C++ 5.0) that performed fixed-point detec-
tion, adaptive control techniques, data storage, and display, and
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enabled changes to system parameters and control techniques
in real-time.

C. UPO Detection

Each series of IBIs was delay embedded into two-dimen-
sional (2-D) state space. The system state was, thus, visualized
by plotting the current IBI versus the previous IBI—i.e., a return
map. A recently developed transform technique [26] was used to
search for unstable period-1 orbits (also known as fixed points)
in real-time. This technique used a transformation to concen-
trate data around UPOs making it easy to identify them as peaks
in a histogram of the data. A sample of 256 IBIs was passively
recorded and then transformed to scan for fixed points. The pro-
gram re-analyzed the last 256 IBIs after every ten IBIs until it
found a peak in the histogram of 90% or greater significance. In
the interest of time, only ten Gaussian-shuffled surrogates of the
256 IBIs [14], [27], were used to calculate the statistical signifi-
cance of these peaks; more surrogates might have increased our
specificity but would have excessively increased the execution
time (each surrogate added about 2 s). Because only ten surro-
gates were used, an additional criterion was used—the peak also
had to be at the location of the maximum difference between the
data and surrogate distributions.

D. Control Procedures

1) Control Algorithms: All saddle fixed points (the type de-
tected in previous studies of excitable systems [9], [14], [21],
[23], [28], [29]) have an associated set of stable and unstable
manifolds which can be approximated as lines within a small
distance of the fixed point. The slopes of these manifolds were
determined from the Jacobian matrix of the fixed point. Points
along the stable manifold are attracted to the fixed point, while
points along the unstable manifold are repelled by the fixed
point. When the system state point wandered far enough away
from the fixed point, the control algorithm issued a stimulus to
shift the state point onto the stable manifold. The state point
then moved toward the fixed point along the stable manifold on
its own without further stimulation.

All of the experiments used SMP as the basic algorithm.
When the state point fell outside of the control radius, control
was activated. The control algorithm sent a stimulus to the slice
to trigger a burst at the exact time needed to shift the state point
onto the stable manifold. The advantage of using SMP was that
the calculation of the desired IBI did not require estimation of
the next “natural” IBI; instead, it was obtained through simple
algebra. That is, the desired IBI value was given by

(1)

where was the current IBI, was the fixed point, and
was the eigenvalue (slope) of the stable manifold. The displayed
IBIs were marked as stimulated or unstimulated. This assisted
our assessment of the quality of control attained.

2) Effect of Control Radius on Control Efficacy:The effect
of the size of on control efficacy was investigated. After a
fixed point was found by the UPO transform (UPOT), was
initially set to a large value (200 ms) and decreased in steps
down to 2 ms during each experiment. No adaptive control algo-

rithms were used. Control efficacy was assessed using the vari-
ance of the IBIs as well as the percentage of IBIs that were stim-
ulated versus natural.

3) Adaptive Control Techniques:Accurate estimates of the
fixed point location and stable manifold slope were the two key
elements needed to achieve good control. A technique devel-
oped by Christini and Kaplan [24] was used in an attempt to
dynamically refine the approximation of these parameters. This
method fits data to linear approximations of the dynamics in the
neighborhood of the fixed point to re-estimate the fixed point
and stable manifold slope. It was based on the assumption that
the data were in the neighborhood of a UPO. As long as this
was true, the unperturbed system dynamics could be approxi-
mated by the linear equation , where
the current state point was ( , ). Rewritten in terms of the
fixed-point parameters, this equation became

(2)
where was the fixed point and and were the stable and
unstable eigenvalues, respectively. When a control stimulus was
applied, the system dynamics were described by

(3)

where signifies that and were estimates, not the ac-
tual values. That is, when control stimuli were applied, they
circumvented the normal fixed-point dynamics. Therefore, the
natural values of and could not be estimated from stimu-
lated bursts. However, when unstimulated bursts occurred, the
system would behave according to (2). The parameters, ,
and could then be estimated by a least-squares fit of the data
triplets ( , , ). Only “natural triplets”—those where

was an unstimulated IBI—were used. This regression was
performed after every new natural triplet (or, equivalently, every
natural IBI). This provided a method to refine the estimate of
the fixed point and stable and unstable eigenvalues in real-time,
which would improve the control of the system. Singular value
decomposition (SVD) was used to perform the least-squares fit,
in order to prevent poor fits. If the ratio between the fit’s largest
and smallest singular values were very large , then the
fit would be poor. In that case, the parameter estimates would
not be adjusted.

E. State-Point Forcing

To help ascertain exactly what were the obstacles to control, a
novel control protocol was developed [30]. Previously, the con-
trol algorithm only applied a single stimulus that placed the state
point on the stable manifold estimate and let the system drift
in to the fixed point on its own. In contrast, the new approach
kept stimulating until the state point was on (or very close to)
the fixed point in two dimensions. (Due to limitations in stim-
ulus-burst interval precision, the state point could not always
be forced exactly onto the fixed point, so it merely had to be
within a small radius, , of the fixed point.) The stable man-
ifold slope estimate was set to zero to minimize the amount of
stimuli needed. If the fixed-point estimate were accurate, then
the state point should remain close to the fixed point on the next
iterate. However, if the fixed-point estimate were not accurate



562 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 50, NO. 5, MAY 2003

(or no fixed point existed at that time), then the state point could
end up anywhere on the next iterate. We, therefore, hypothe-
sized that if we first forced the state point onto the fixed point
and then forced it onto some other arbitrary point in the system
attractor, the subsequent iterates should in general stay closer to
the fixed point than to the arbitrary point. If there were a signif-
icant difference between the two cases, it would imply that the
fixed-point estimate was relatively accurate.

To quantify these differences, we used the change in the
center of mass of the cluster of points around the
forced point and after an iterate. The center of mass was
calculated by computing the 2-D mean of the cluster of points
that were within the fixed-point radius, and then the 2-D mean
of the next iterates (images) of these points. The difference of
these two means was . If the system state were forced
onto a true fixed point, then should be small, while
if it were forced onto an arbitrary point (or an inaccurate
fixed-point estimate), then should be relatively big.
Statistical comparisons of were made using the paired
t-test or Wilcoxon signed rank test when the data did not pass
a normality test (all tests computed with SigmaStat, Jandel
Scientific).

III. RESULTS

Bursts were recorded from the CA3 cell body layer and
stimuli were applied in the Schaffer collaterals [Fig. 1(a)]. An
example of a burst is shown in Fig. 1(b). The system state
information was encoded as IBIs as seen in Fig. 1(c). One
interesting result that was seen without control is shown in
Fig. 2. These data came from a slice that went through a control
experiment and then was allowed to spontaneously burst in
preparation for another round of control. In Fig. 2(a), a return
map, the bursting data resemble a checkerboard which would
suggest a periodic pattern. When the 256 spontaneous IBIs
are plotted versus IBI number in Fig. 2(b), it is evident that
this is not a periodic pattern, but more like a chaotic one. We
do not have an explanation for this intriguing behavior, which
occurred in only one experiment.

A. Control of the Hénon Map

The control algorithms were first tested on the Hénon system
to ensure their functionality.

1) Basic SMP Control:The basic SMP algorithm was tested
first. A geometric interpretation of SMP control is shown in
Fig. 3. Here, represents the current IBI,
is the current state point, and is the fixed point.
When fell outside of the control radius, the control algorithm
stimulated a “burst” at the exact time needed to shift the state
point onto the stable manifold at (instead of ).

The Hénon attractor is shown in Fig. 4(a). SMP control was
tested for the Hénon map with and without added Gaussian
noise. For the noiseless Hénon system, control worked well,
but often produced period-2 or higher orbits, even though the
algorithm was trying to control it to a period-1 orbit. An ex-
ample of control to a period-1 orbit is shown in Fig. 4(b1). The
system was confined within a very narrow range. Fig. 4(b2)

Fig. 2. Unusual spontaneous hippocampal bursting pattern. (a) When plotted
as a return map, the IBIs form a checkerboard pattern, clustering around certain
points. This appears to suggest a periodic pattern. However, when the IBIs
are plotted versus IBI number (b), the behavior appears more chaotic than
periodic. The system seems to jump chaotically between a few finite states (at
approximately 2, 3, 4, and 5 s).

Fig. 3. Schematic of SMP control. Here,z is the fixed point andz is the
current state point. Sincez is outside the control region, the goal is to getz

onto the stable manifold (SM). Since this is a return map, and the equation of SM
is known,z can be placed directly onto the stable manifold by “reflecting”
(dotted line) off of the identity line and stimulating at this time. The unstable
manifold does not need to be estimated for SMP.

shows a magnification of the controlled region. Iterates that
were “stimulated” are shown as solid circles, and open circles
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Fig. 4. Control of the Hénon system. (a) The Hénon attractor in delay coordinates, given byx = 1� 1:4x + 0:3x . (b) Control of the noiseless Hénon
system. After 500 “unstimulated” iterates(�), the fixed point was detected, and the control algorithm kept the system to within a very tight region. (B2) A magnified
view of the box in (B1) shows that the system stayed within the control radius (R , dashed lines) for about nine iterates before needing another “stimulus”(�).
(c) A magnified view of control using AT without noise andR = 0:001 (dashed lines). Only 1 in 18 iterates were stimulated. (d) When low amplitude noise
(� = 0:0005) was added, more stimuli were needed, but control was still very tight. (e) At higher noise levels(� = 0:05), control was not very tight and
more stimuli were needed. However, the overall variance was still lower than before control started (0.026 versus 0.57). A scanning procedure (seen as a ramp of
stimulated iterates of increasing length) was sometimes used to detect UPOs [32]. The presence of a period-doubling bifurcation denoted the location of the fixed
point.

are “unstimulated” iterates. The dashed lines designate the con-
trol region around the fixed point. As expected, stimuli were not
needed very frequently, approximately once in every nine iter-
ates. When Gaussian noise was added, the quality of control de-
teriorated. As the standard deviation of the noise increased

from 0.0005 to 0.05, the ability to control the system decreased:
the variance of the data during control increased from
to 0.07. These values were calculated with the control radius

set to . The variance was reduced to 0.004 for
when ; however, more stimuli were needed. Also, the
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Fig. 5. An example of basic SMP control of bursting. After approximately 420
spontaneous bursts, a fixed point was found and the SMP control algorithm was
applied with limited success. The variance during control was slightly lower
than before control. The system did not stay within the control radius (0.2 s,
dashed lines). IBIs were stimulated(�) versus natural(�).

resulting data looked less and less like a periodic orbit as noise
increased.

2) Adaptive Re-Estimation by Triplet Regression:Adaptive
re-estimation, or tracking, immensely improved the quality of
control. Adaptive tracking (AT) was also tested on the Hénon
system with the addition of a small amount of drift to simulate
nonstationarity. The drift was specified by the following modi-
fication to the Hénon equation:

(4)

(5)

where is an iterate of a correlated noise process and
is a random number from a Gaussian distribution with unity
standard deviation [24]. The noiseless Hénon system, seen in
Fig. 4(c), was controlled using only one stimulus for every
18 iterates. As noise was added, control was still maintained,
but more stimuli were needed. For example, Fig. 4(d) shows
control for a noise level of , where about one in
nine iterates were stimulated. For these experiments,
(0.001 for ), the number of natural triplets (NT) used
in the SVD fit was ten, and the sample size for the UPOT
was 250. When high-level noise was added , the
algorithm had a much more difficult time achieving control
[Fig. 4(e)]. Many more stimuli were needed, and the system did
not remain within the control radius for very long. However,
it remained very close to the control region, and was still kept
to a much smaller region of phase space than the
uncontrolled attractor . The system controlled with
added noise up to . In addition, when drift was added
to the system, the adaptive control algorithm continued to track
well.

B. Control of Epileptiform Bursting

1) Basic SMP Control:Tight control was not achieved for
bursting data using basic SMP (Fig. 5). However, some reduc-

tion in variance was made over the uncontrolled bursting. There
were several parameters that could affect the performance of
this algorithm, including several parameters in the UPO detec-
tion algorithm. The number of nearest neighbors used to fit the
Jacobian matrix for the UPOT was optimized to four, the same
number for the Hénon map, since there was no notable effect of
changing it. The control algorithm also had to account for the
delay between the stimulus and the recorded burst due to finite
conduction velocity in the tissue. This stimulus-burst delay was
varied from 15–50 ms depending on the properties of each slice.
It was kept constant during each experiment. Since the linear ap-
proximation of the stable manifold was only accurate within a
small distance of the fixed point, we also tried applying con-
trol only when the previous state point was within a set radius

of the fixed point. was varied from 0.5–10 s, but
there was no noticeable improvement in control quality. When

was small (0.5–1 s) and there were several long IBIs,
sometimes it would take a long time before the system state
would get close enough to the fixed point for control to resume.

2) Effect of and Synaptic Plasticity on Control Ef-
ficacy: Previous work [31] suggested that stimulating the
Schaffer collaterals at low frequencies (1 Hz) could some-
times cause a form of synaptic plasticity called long-term
depression (LTD), which could cause IBIs to lengthen over
time. To assess whether some of the nonstationarity and imped-
iments to control were due to this form of synaptic plasticity,
the NMDA-receptor antagonist AP-5 was used. While LTD
might occur using other receptors besides the NMDA type,
AP-5 should block the majority of LTD via this pathway.
Slices were bathed in high- ACSF for 20 min, and then
in high- ACSF containing 50 M AP-5 (Tocris). The
AP-5 solution was washed in for 5 min before starting the same
control sequence used above with high- . was again
decreased in stepwise fashion.

The effect of was assessed both with and without AP-5.
Six experiments were done with high- only, and four were
done using high- plus AP-5. Fig. 6 shows examples of
experiments in which was varied using high- only
[Fig. 6(a)] or high- with AP-5 [Fig. 6(b)]. The inset to
the right in Fig. 6(a) demonstrates the region wherewas so
small that nearly every IBI was stimulated. This phenomenon
occurred because was smaller (2 ms) than the precision of
the stimulus-burst interval. That is, the interval from when the
stimulus was applied to when the burst was detected fluctu-
ated by a few milliseconds from burst to burst and, therefore,
the estimate could be off by as much as 5 ms. Thus, the con-
trol algorithm kept stimulating but could not get the IBI within
the control region. Since the algorithm was designed to con-
tinue stimulating until the last IBIwaswithin the control region,
the program was essentially effecting the equivalent of demand
pacing, a protocol used in cardiac electrophysiology. This de-
mand pacing-like phenomenon was consistently seen when
dipped down to 2 ms, and sometimes even at 10 ms.

In general, as decreased, the variance of the IBIs (both nat-
ural and stimulated) decreased [Fig. 7(a)], and the percentage
of IBIs that were stimulated increased [Fig. 7(b)]. This trend,
while somewhat weak in the case of variance, was true for ex-
periments both with and without AP-5. The mean of the
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Fig. 6. Examples of experiments varyingR and demand pacing. (a) A high-[K ] experiment using basic SMP control while varying control radius (R , solid
lines). AsR decreased, the variance also decreased, but the ratio of stimulated(�) to unstimulated(�) IBIs increased. The magnification (right) of the boxed area
shows the demand pacing phenomenon: all of the IBIs after IBI 1370 are stimulated, since the system never can get within the tinyR . (b) WhenR was varied
in an experiment using AP-5, similar results were found. Thus, there did not appear to be any effects from LTD.

variances decreased from 1810 ms for ms to 390
ms for ms without AP-5, and from 450 ms to 76 ms
with AP-5. Calculations using the median (instead of the mean)
of the variances produced similar results. These experiments
suggested that the optimal value of was in the 50–100 ms
range, depending on the variance of the system before control
was started. Optimization consisted of balancing the percentage
of stimuli used and the resulting tightness of control (variance)
obtained. No apparent difference was seen between experiments
with or without AP-5.

3) Control Using AT via Triplet Regression:Many trials
of control using AT were performed. AT noticeably

improved control over basic SMP alone. Our refinements of
the tracking algorithm and its parameters produced small but
incremental improvements in control quality. An example of
relatively good control using tracking is shown in Fig. 8(a).
The control region (and, hence, the fixed point) tracks along
smoothly with the drift of the system.

The least-squares fit itself had several notable caveats. The
number of natural triplets used for the fit (NT) varied from 4–20.
Too few triplets could cause poor fits and result in volatile fluc-
tuations of the parameter values. Too many would not allow
the algorithm to track the system quickly enough. Also, the

fit would sometimes not accurately represent the natural fixed-
point dynamics. If most of the IBIs were stimulated, and then
control were turned off, the state point would tend to shoot out
from the fixed point along the unstable manifold. In this case,
the stable manifold could not be estimated accurately since the
state point would not approach the fixed point at all. If the ma-
jority of the NT triplets behaved this way, the fit would be very
poor.

The number of triplets (NT) used in the fit was set to ten
for all of the later experiments. Even when large values of NT
(e.g., 10) were used, the fixed-point estimates often fluctuated.
Therefore, the distance by which the fixed-point estimate could
change from the current estimate in any one fit was limited. This
parameter, called the fixed-point adjustment maximum (FAM),
was optimized and normally set in the range of 0.5–1 s, in pro-
portion to the initial variance of the system. This adjustment
helped a good deal in reducing variability. However, if FAM was
set too small, the algorithm would not adapt well. Another mod-
ification allowed the algorithm to only include natural triplets in
the fit if the natural IBIs were within a certain radius of
the current fixed-point location. Since the linear least squares
fit was only valid within a small radius of the fixed-point loca-
tion, any natural IBIs that were far away from the current fixed
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Fig. 7. Summary of effects ofR and synaptic plasticity on control of bursting.
(a) AsR decreased, the mean variance of the IBIs also tended to decrease. This
was true for experiments with(�) and without( ) AP-5. (b) AsR decreased,
the fraction of IBIs that were stimulated increased for both types of experiments.

point (i.e., outliers) but were still included in previous fits would
cause a poor fit. Improving the fit also reduced fluctuations in
the fixed-point estimates. The optimal range for was about
0.4–1 s, depending on the variance of all the data.

At times, the control algorithm appeared to produce a pe-
riod-1,-2 or -3 orbit that would last for some 6–12 IBIs during
the course of an experiment. Two such period-2 orbits are seen
in Fig. 8(b). The first one alternated between 2.3 and 2.7 s, for
about 10–12 IBIs, starting near IBI #375. The second one oc-
curred near IBI #920 in the same experiment but only remained
for about six IBIs. These “close approaches” to period-2 orbits
were seen in different experiments, but recurrence to the same
period-2 orbit later in the experiment was not usually seen prob-
ably due to nonstationarity. Similar encounters were seen with
period-1 orbits.

4) Feasibility of Control and Fixed-Point Detection by State-
Point Forcing: The state-point forcing protocol was first tested
on the Hénon map to make sure it could distinguish valid fixed
points. There was a clear difference between forcing to the fixed
point and forcing to an arbitrary point [Fig.9(a)], even with
added noise (which inhibited the accuracy of fixed-point de-
tection). State-point forcing was then applied to bursting in 22
experiments (on 16 slices from 11 rats) to a total of 102 fixed
points. Slices were bathed in high- ACSF and fixed points
were detected as described above. When a significant fixed point

Fig. 8. Control of bursting using AT. (a) An example of a tracking experiment.
The fixed-point estimate and control region (solid lines) tracks along well with
the system. Variance is relatively low, but a large amount of stimulated IBIs(�)
are still needed. (b) Two brief encounters with possible period-2 orbits in one
experiment, shown in the dashed boxes near IBIs 375 and 920.

was found, the state point was forced onto the fixed point for
30–40 IBIs, and then onto an arbitrary point for 30–40 IBIs.
The fixed-point radius, , was set to 40 ms. The forcing point
alternated between the fixed point and the arbitrary point from
2–5 times, until the fixed point seemed to be drifting due to non-
stationarity. At this point, if the slice was still bursting quickly
enough, state-point forcing was turned off and AT was initi-
ated to relocate the fixed point. If a suitable fixed-point estimate
was found (i.e., tracking seemed to be working and had stabi-
lized at one location after a while), then tracking was turned off,
state-point forcing was turned back on, andwas set to zero.
Again the forcing point alternated between the new fixed point
and an arbitrary point 2–5 times. An example of a state-point
forcing experiment is shown in Fig. 9(b).

The value of was computed for each fixed point
and its corresponding arbitrary forcing point. The fixed-point
trials were evenly split (51 each) between those detected with
the UPOT and those found with the AT algorithm. Statistical
comparisons of were made with the paired t-test or
the Wilcoxon signed rank test. The data were first compared
for both UPO types combined, and was significantly
smaller when forcing to the fixed points than to the arbitrary
points (median values 0.258 s versus 0.404 s, P0.004, signed



SLUTZKY et al.: MANIPULATING EPILEPTIFORM BURSTING IN THE RAT HIPPOCAMPUS USING CHAOS CONTROL AND ADAPTIVE TECHNIQUES 567

Fig. 9. State-point forcing for Hénon and bursting experiments. State-point
forcing was first tested on the Hénon map with added noise(� = 0:1). (a) Once
the fixed point was found, the system state was forced to it untiln = 1000; then
the system state was forced to a point 0.2 away from the fixed point. As expected,
when the system was forced to the fixed-point estimate (at 0.6, actual fixed point:
0.6314) by stimulating(�), the next (unstimulated,�) iterates stayed very close
to the fixed point. But when the system state was forced to an arbitrary point (at
0.4), the next iterates were up near 0.9. (b) An example of forcing in a bursting
experiment. Forcing alternated between the fixed point and arbitrary points four
times (counted as four fixed-point trials in analysis). Then tracking was turned
on (at n�700) until a new fixed point was found atn = 820. Tracking was then
turned off and forcing turned back on. Natural IBIs stayed closer to fixed points
than to arbitrary points.

rank test). The UPOT fixed points alone did not show a sig-
nificant difference in , but the AT fixed points did have
significantly smaller when forcing to the fixed versus
arbitrary point.

The data were split up in several ways for further analysis
(Table I). The arbitrary forcing point was set both greater than
(positive) and less than (negative) the fixed point in several
trials. When it was positive, the natural IBIs were sometimes
shorter than the forcing point, so not enough data points could
be obtained for the analysis. The arbitrary point was 0.1–0.4 s
away (both positive and negative) from the fixed point, pro-
portional to the size of the system attractor. Usually the shift
was 5%–15% of the attractor width. The differences in
were significant for negative shifts, but were not significant
for positive shifts. When AT and UPOT data were analyzed
separately, negative shifts were significantly different for both

TABLE I
SUMMARY OF FORCING PROTOCOL

RESULTSUSING�X FOR DIFFERENTCATEGORIES OFFIXED POINTS.
P-VALUES WERE DETERMINED USING EITHER PAIRED T-TEST (PTT) OR

(WHEN NORMALITY TEST WASFAILED) THE WILCOXON SIGNED RANK TEST

(WSRT). UPOT, FIXED POINTS FOUND WITH THE UPO TRANSFORM; AT,
FIXED POINTS FOUND WITH ADAPTIVE TRACKING

AT and UPOT, while positive shifts were not significantly
different for either. The AT fixed points tended to have smaller
P values than UPOT fixed points.

IV. DISCUSSION

A. Insights From the Hénon Simulations

Control of the Hénon map was achieved with the basic SMP
algorithm. AT using triplet re-estimation was successful in con-
trolling the Hénon map with noise levels up to (15%
of the attractor size; more noise made the system state approach
infinity) and with added random drift. However, while the vari-
ance was low relative to the system as a whole, many more
stimuli were used at high noise levels. This implied that in a
strongly deterministic system, if enough stochastic noise were
present it would be difficult to achieve control with few stimuli.
Yet control to a relatively small region would still be possible,
and the number of stimuli needed would still be fewer than pe-
riodic pacing would use.

Another important implication from the Hénon simulation
was that the fixed-point location was not found precisely very
often for the Hénon map, even without noise. The fixed-point
estimate often varied by up to 0.1 (3%) from the correct esti-
mate of 0.631. This may seem small, but the result of control,
even with AT, was usually a period-2 orbit.

B. Control of Bursting With SMP and AT

Control of bursting using the basic SMP algorithm showed
limited success. The variance during control did decrease but
not enough to be considered tight control.

1) Effect of Control Radius Size and Synaptic Plasticity on
Control Efficacy: The size of the control radius was an im-
portant determinant of the quality of control obtained. Exper-
iments that varied were often difficult to interpret because
of several confounding factors. Nonstationarity was a problem
because the fixed-point locations had to be constant over the
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course of the experiment which could last up to 2500 IBIs. Thus,
there was plenty of time for the fixed points to drift or disappear.
Also, when stimulating the slice more frequently (as tended to
happen as decreased), the natural IBIs often lengthened, ei-
ther because the slice was “fatigued” or because of synaptic
plasticity (i.e., LTD). Extremely long IBIs (15–40 s) sometimes
occurred, and these “outliers” skewed the results by dispro-
portionately increasing the variance. Previous studies had sug-
gested that low frequency stimulation could cause LTD during
bursting with lengthened IBIs as time passed [31]. Some exper-
iments did seem to produce this gradual lengthening effect as
the experiment progressed; however, the same effect was seen
in some of the experiments using the NMDA-receptor antago-
nist AP-5. The majority of experiments varying did not show
lengthening of the IBIs. Moreover, in one experiment, control
was shut off near the end of the experiment and the IBI pro-
file was the same as it was before control had started—i.e., the
length did not increase due to stimulation.

With these caveats taken into account, the results of our
experiments nonetheless indicated that asdecreased, vari-
ance decreased but the proportion of IBIs that were stimulated
increased. This conclusion was true for both the standard
high- experiments and for experiments using AP-5. This
similarity of results suggested that synaptic plasticity does
not significantly influence the quality of control obtained. We
found that the control radius that optimally balanced variance
versus number of stimuli was usually 50–100 ms depending on
the initial variance of the bursting.

At extremely small control radii, the system performed
almost identically to demand pacing. Interestingly, the results
looked very similar to those obtained by Schiffet al. [9], as
well as Christini and Collins [13], especially if the IBIs were
not designated as stimulated or natural. Since their work did
not make this distinction, it could be possible that their control
algorithm was constantly stimulating due to a very small
control radius. This could explain why the control of bursting
results in the present study do not seem as striking as those
reported earlier [9].

2) AT: To overcome the obstacle of nonstationarity, we used
the method of AT to refine our estimates of the fixed point
and stable manifold slope after every natural IBI. While the re-
sults using this technique were not dramatic, they were a defi-
nite improvement over basic SMP control. At first, the tracking
algorithm produced some fluctuations in the fixed-point esti-
mates which inhibited control. After adding regulating parame-
ters such as the FAM and , the fixed-point estimate tracked
with the system smoothly over time. Even with these modifi-
cations, triplet regression would still occasionally make “illog-
ical” adjustments to the fixed-point location. For example, when
all the natural IBIs were greater than the fixed point, the new
fixed-point estimate would still sometimes be set smaller than
the current estimate. We, therefore, required that the new es-
timate move in the same direction as most of the natural IBIs
are located relative to the current fixed point. This modification
helped stabilize control. The variance during tracking control
was much less than that during basic SMP but not as low, rela-
tive to the initial variance before control, as for the Hénon map
with the highest level of noise .

On several occasions in tracking experiments, the system
briefly remained in a period-1, -2, or -3 orbit for a short time.
These close encounters provided tantalizing hints that control
was indeed possible, at least for short periods of time. The fact
that higher-period orbits were attained more often than period-1
orbits suggested that the fixed-point estimate was close but not
quite accurate enough.

C. State-Point Forcing

We designed the state-point forcing protocol to ascertain
whether control was at all feasible and to help identify the
obstacles in detail. Specifically, we sought to verify that our
fixed-point estimates were valid. Also, if the system state would
not stay close to the fixed point for a few iterates even when
placed directly onto the fixed point, then no control short of
pacing would have much chance of working. The results of the
forcing experiments suggested that the fixed-point estimates
were indeed valid, since forcing onto the fixed points produced
significantly less divergence in the subsequent iterate than did
forcing onto the arbitrary points.

More detailed analysis revealed that forcing to fixed points
found with AT produced significant results whereas those found
with the UPOT did not. This suggested that perhaps the AT pro-
vided better estimates of the fixed point than did the UPOT al-
gorithm. When the UPOT was applied offline to 22 sets of state-
point forcing data, only 23% of the fixed points detected online
(using ten surrogates) were found to be statistically significant
offline (using 50 surrogates). This could be the reason that the
forcing protocol did not produce significant results for UPO-
transformed fixed points. Moreover, it is possible that much of
the difficulty we had with control was due to inaccurate or false
fixed-point estimates. Another notable result was that when the
arbitrary forcing point was shorter than the fixed point, the dif-
ference in was strongly significant (P0.0001), whereas
when the arbitrary forcing point was longer than the fixed point,
the difference in was not significant . This re-
sult could be explained in two ways. The first is artifactual: when
the arbitrary point was shifted up, the neurons often burst natu-
rally before stimuli could be applied and, thus, there were fewer
points that could be used in the calculation of . Alterna-
tively, when the arbitrary point was shifted down, the stimuli
would be occurring more quickly, thus giving the slice less time
to recover and, therefore, the next natural bursts could have been
longer simply because the slice was “fatigued” or refractory.
We tried to avert this second possibility by shifting the arbitrary
point by different amounts, in a range from 0.1 s to 0.4 s.

D. Obstacles to Control and Necessary Assumptions

The implications of these results for the feasibility of con-
trol were not as clear. The next IBIs (after a stimulated burst)
stayed relatively close to the fixed points, although not as close
as would be required to obtain tight control. This may have
been due to the high levels of stochastic dynamical noise that
were also present in the system. A high level of noise certainly
would have hindered attempts to control the system—especially
if it were on the order of the control radius—since the system
state would often bounce out of the control region as soon as
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it was placed within it. It would have also complicated the cal-
culation of the fixed point and stable manifold. Unfortunately,
there was no way of empirically determining the level of noise
in the system, so we could not determine whether noise was the
biggest impediment to control.

Estimation of the stable manifold was itself a very difficult
task. Even with a low-noise system, the method of fitting
local neighbors of the fixed point using a linear least-squares
algorithm was a simplification. It is doubtful that the manifolds
were linear, so any linear approximation would only be accurate
within a very small radius of the fixed point. It is possible
(due to small sample size) that the four neighbors used for
the Jacobian were often outside of this linear region. With the
addition of high-level noise, fitting the stable manifold could
become problematic because there are too few natural triplets
that approach the fixed point.

Several necessary assumptions were made that may have had
an effect on the ability to control the system. The use of IBIs
as our state variable was somewhat arbitrary. It was mainly a
matter of convenience and convention [9], [21]. The use of IBIs
may have contributed to the effect of noise since they vary on a
long time scale and, thus, many factors can change in between
each measurement. Perhaps using a variable such as the raw ex-
tracellular voltage could have improved the results. However, it
would have been extremely difficult to precisely control extra-
cellular voltage levels using a point-source electrode. Also, the
embedding dimension equal to two that was used could have
been too small. However, we used it because it greatly simpli-
fied the calculations and because it was the same dimension used
as previously reported by Schiffet al. [9]. All of these assump-
tions were necessary to make but also could have compromised
control efficacy if they were inaccurate.

Finally, the phenomenon of nonstationarity was a large
obstacle to control. Large drifting was evident by inspection
(e.g., monitoring the mean IBI rate). There were many potential
sources for drift. Fluctuations in flow rate could easily have
altered the system behavior by affecting the concentrations of
key nutrients and temperature. Fluctuations of temperature due
to bath levels and ambient air temperature may also have been
a problem. There also could have been intrinsic nonstationarity
in the bursting itself. Synaptic plasticity did not appear to have
a significant effect, but it is possible that the slice became
“fatigued” or refractory. We attempted to control for fatigue by
ensuring that burst amplitudes remained constant throughout
the experiment, since burst amplitude is an indicator of neuro-
transmitter supply [31].

V. CONCLUSION

Chaos control techniques showed modest success at control-
ling spontaneous epileptiform bursting. AT noticeably improved
control over nonadaptive methods and seemed to counter non-
stationarity, but intrinsic randomness may have prevented us
from obtaining tight control. The process of slicing the hip-
pocampus itself severs many regulatory connections, both ex-
trinsic and intrinsic. It is possible that the intact brain could be
less noisy or more stationary than thein vitro hippocampal slice
and, hence, easier to control.

In this investigation, we have attempted to manipulate the
system from a chaotic trajectory to a low-period orbit. It is still
not known whether controlling interictal bursts or spikes (or an-
ticontrolling, i.e., making them more disordered) could prevent
a seizure. Nor is it known how tightly the spikes would have to
be controlled to be successful. However, if we could maneuver
the system from a chaotic to a periodic state, then it is likely
that we could also convert it from a periodic to a chaotic one.
Once we have established the ability to manipulate the system,
we could then determine whether a chaotic or periodic rhythm
would be desirable to stop or prevent seizure activity. Thus, con-
tinued exploration should help reveal whether chaos control is
a practical solution for preventing epileptic seizures.
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