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∗Division of Mathematical Physics, LTH, Lunds Universitet, Sweden
†Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, USA

∗∗Institut für Kernphysik, Jülich, Germany

Abstract. The scattering determinant for the scattering of waves from several obstacles is consid-
ered in the case of elastic solids with voids. The scattering determinant displays contributions from
closed ray splitting orbits. A discussion of the weights of such orbits is presented.
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1. INTRODUCTION

Studies of helmholtz scatterers have shown effects of trapped periodic orbits [1, 2]. We
shall discuss the influence of closed trapped rays on scattering determinants in a medium
with several polarizations each with their own velocity. The example treated will be the
case of elastic wave propagation in a solid filled with a finite number of voids. There
a ray hitting a boundary can either reflect or refract. In that case ray splitting occurs
when the polarization changes. This leads to a ray dynamics which no longer is unique,
where in general a single polarized ray evolves into a tree of rays. A similar behaviour
is observed in microwave resonators with dielectrica. There rays can either reflect or
transmit at the boundaries of the dielectrica.

2. ELASTODYNAMICS

In isotropic elasticity the wave equation in the frequency domain is

µ∆(u)+(λ + µ)∇(∇ ·u)+ρω2u = 0 , (1)

where u(x) is the displacement field in the body, λ , µ are the material dependent
Lamé coefficients and ρ is the density [3, 4]. This wave equation admits two different
polarizations: longitudinal and transverse with velocities

cL =

√

λ +2µ
ρ

and cT =

√

µ
ρ

. (2)
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FIGURE 1. General zone of two–dimensional cavity scattering.

The longitudinal and transverse waves correspond to pressure respective shear deforma-
tions. This leads to the law of refraction for incoming plane waves

cL

cT
=

sinθL

sinθT
, (3)

where θL, θT denote the angle of incident or reflection of the longitudinal and transverse
wave, respectively, measured with respect to the normal to the surface.

The stress tensor in elasticity has the form

σi j = λ ∂kukδi j + µ
(

∂iu j +∂ jui
)

. (4)

The boundary conditions considered here are free. Hence

t(u) = σ(u) ·n = 0 (5)

for the displacement field at the boundary where n denotes the normal to the boundary.
The operator t refers to the traction.

3. EXACT SCATTERING DETERMINANT

Via the null–field method a class of multi–scattering problems can be solved exactly. In
particular exact scattering matrix elements are known for the case of several scatterers
of analytically seperable shapes for various types of media [1, 5, 6]. As mentioned, in
this treatment the medium corresponds to an elastic solid which is assumed isotropic
for simplicity. The scattering geometry consists of parallel cylindrical voids, see fig. 1.
Using line sources parallel to the voids respects this symmetry. This leads to two–
dimensional elasticity referred to as plane strain.



The scattering determinant may be factorized into a part containing single scattering
determinants and the whole set of scatterers [7]

detS(ω) =

{

∏
j∈Cavities

det
[

S
(1) j](ω)

}

Det
[

M(ω∗)†
]

Det
[

M(ω)
] . (6)

As the scatterers are moved around only the latter factor, the cluster determinant,
changes:

M = 1+A (7)

A
j j′

ll′ = (1−δ j j′)
a j

a j′

[

t
(J) j
l

]

·
[

T
(+) j j′

ll′

]

·
[

t
(+) j′

l′
]−1

,

[

T
(+) j j′

ll′

]

σσ ′
= δσσ ′H(+)

l−l′(kσ R j j′)e
ilα( j)

j′ −il′(α( j′)
j −π)

.

The matrix
[

T
(+) j j′

ll′

]

σσ ′
may interpreted as a translation matrix acting on the scattering

states [5, 6]. α( j)
i is the angle to the center of cavity i in the coordinate system of cavity

j.
The single cavity scattering matrices decompose over angular momentum l due to the

rotational symmetry. They have the general form:

[

S
(1) j
l

]

= −
[

t
(+) j
l

]−1 ·
[

t
(−) j
l

]

(8)

with the boundary conditions occurring in two-by-two matrices
[

t
(Z) j
l

]

with l the angular
momentum, “type” Z ∈ {+,−,J} and j the cavity index. The type refers to outgoing,

incoming or regular scattering states and involves H (1)
l ,H(2)

l or Jl Bessel functions. Thus,
for the outgoing case

[

t
(+) j
l

]

=
2µ
a2

j





(l2 − z2
T /2)H(1)

l (zL)− zL
dH(1)

l (zL)

dzL
il(H(1)

l (zT )− zT
dH(1)

l (zT )

dzT
)

il(H(1)
l (zL)− zL

dH(1)
l (zL)

dzL
) −(l2 − z2

T/2)H(1)
l (zT )+ zT

dH(1)
l (zT )

dzT



 .

(9)
The row index i∈ {r,φ} is a geometric index for polar coordinates and the column index
is a polarization index σ ∈ {L,T}. Hence, the single cavity scattering matrix connects
different polarizations. For a full discussion, see [8, 9]. The connection to the interior
problem of a single disc is described in [10].

The poles of the cluster determinant DetM(ω) cancel by construction the poles of
the single determinants. Likewise for the poles DetM(ω∗) which cancel the zeros of
the single determinants. Thus all scattering resonances corresponding to poles of the
scattering determinant can be found from the zeros of the cluster determinant. As an
example consider the resonances in fig. 2 of a two–cavity system for a material with
cL = 1950 m/s, cT = 540 m/s, cavity radii equal to 1 m and intercavity separation as
measured from the centers equal to 6 m. The regular spaced horizontal set of resonances
in fig. 2 is placed below an irregular set. This is opposite to the scalar Helmholtz case
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FIGURE 2. Elastodynamic scattering resonances for two cavities ( A1-representation).

for the same geometry where the regular spaced resonances are above the irregular
[11, 12]. The regular resonances particular to the fundamental A1-representation are
well described by the following condition

0 = 1− exp(ikLL)/
√

Λ (10)

with the length L = 4a and instability Λ = 5+2
√

6. L corresponds to that of the shortest
orbit moving in a symmetry reduced domain bouncing between a cavity and the center
of mass of the two cavities. Λ is obtained from the product of ray matrices as the leading
eigenvalue of the corresponding (geometric acoustic) ray system. This next raises the
question about the effect of the remaining set of orbits.

4. ORBITS IN TIME–DELAY

For real frequencies the total scattering phase Θ is seen to be a sum over cluster phase Θc
and single cavity phases Θ j, see (6). Likewise the derivative with respect to frequency
dΘ/dω , the Wigner-Smith time delay, decomposes. The numerics of the cluster time–
delay dΘc/dω show fluctuations which are related to trapped orbits in the scattering
geometry, see fig. 3, where the results for two identical cavities (same as those of
fig. 2) are presented 1. Some of these orbits are diffractive including segments of surface
propagation of Rayleigh type, ie. earthquakes [13]. For these proceedings we discuss
the purely non-diffractive contributions, called geometrical ray splitting orbits. Although

1 Due to symmetries the cluster delay decomposes further into a sum over four ireps, two of which are
shown.
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FIGURE 3. Power spectrum of cluster fluctuations in time–delay for two cavities. Symbols Pi and
Si denote orbits bouncing i times of pressure respective shear polarization. The circular arcs indicate
Rayleigh–surface waves.

these orbits are essential in most geometries, our work done on scattering has shown the
importance of the Rayleigh orbits at intermediate frequencies. This is indicated in the
title which refers to that such orbits are complex. A short discussion of the diffractive
orbits is given in [14].

5. EXPANDING THE CLUSTER DETERMINANT

A first step towards orbits is to consider the definition of the infinite cluster determinant
in terms of traces:

F(z) = det(1+ zA) ≡ exp

(

−
∞

∑
n=1

zn tr(−A)n

n

)

(11)

which at z = 1 evaluates to the desired. This holds if M is Fredholm and (11) is called
a Fredholm expansion. This translates into well behaved numerical properties. For
example the determinant converges as the dimension of the truncation of M increases. To
obtain M with such properties a regularization has been performed. This regularization
may be thought of as a Jacobi preconditioner to the original problem in which a matrix
is replaced by the one divided by the diagonal. Presently the Fredholm properties of
M has only been proved in detail in the scalar case [2]. Nevertheless, we proceed as if
this is true also in our more general case. As numerical evidence we mention, that the



resonances of the Fredholm expansion of the determinant to fourth order z4 agree well
with the exact resonances, the latter plotted in fig. 2.

6. RAY LIMIT AND ORBITS

The expansion (11) indicates that the cluster determinant can be obtained from the
knowledge of an increasing number of traces. In the saddle point approximation closed
orbits bouncing n times are seen to contribute to traces of powers of the kernel trAn [15].
These orbits fulfill the laws of reflection and refraction and have phases corresponding
to their time periods of revolution Tp.

In the calculation of a trace, the single cavity scattering matrices (8) are inserted as
operators between the translation operators. To do so, use the identity

Jl(z) =
1
2

(

H(1)
l (z)+H(2)

l (z)
)

giving a similar identity for the single cavity matrices that encode the boundary condi-
tion:

[

t
(J)
l

]

=
1
2

(

[

t
(+)
l

]

+
[

t
(−)
l

]

)

, (12)

which is finally is substituted into A in (7). The ray limit of the single cavity scattering
matrix gives unitary reflection coefficients similar to those of scattering from an infinite
half–plane [3, 10]. This leads to an overall amplitude αp defined as a product over all
reflection coefficients along the orbit. This amplitude describes the leakage from the
orbit due to ray splitting.

The calculation of their geometric amplitudes requires more work. For a general
reference in the interior scalar case, see [16]. Asymptotic wave theory indicates [17–
20] that for open trajectories in two dimensions the amplitude goes as (kR)−1/2 where k
is the wave number in question and R is the radius of curvature of the wave front at the
observer. This radius is studied in e.g. geometric optics and it is possible to keep track of
its evolution during free propagation between the scatterers and at impact with possible
refractions using suitable ray matrices. Indeed, it can be shown that for our problem open
segments, in which end points are fixed and intermediate variables are integrated by the
saddle point method, has such an amplitude evolution. This comes about by calculating
the accompanying sparse hessian of this restricted integration.

For a full saddle point integration over all variables, a closed orbit p, the amplitude
turns out to be expressible as yet a sparse hessian and can be expanded into hessians
corresponding to the previous considered open pieces as in [2]. Using the previous
information then allows the full calculation with the amplitude going as

Ap =
αp

|Det(1−Jp)|1/2
znp (13)

with Jp and αp the product of ray matrices respective reflection coefficients along the
orbit bouncing np times. This form is precisely part of the conventional semiclassical
density of states [21–23]. However, the formal parameter z is also present and can be
seen as an ordering of the various orbits in the expansion over infinitely many orbits.



Incorporating the results of the geometric ray splitting orbits gives the following factor
of the cluster determinant:

FG(z) = exp

(

−∑
p

∞

∑
r=1

1
r

αr
p

eir ωTp

|1−Jr
p|1/2

zrnp

)

. (14)

The sum over r refers to a sum over repeats of shortest orbits, prime cycles p. Note, that
if the logarithmic derivative with respect to ω is taken a result very similar to the spectral
density for the interior problem is obtained. This yields an agreement with the general
result for the density of states for ray splitting systems described in [24]. Similar results
for the case of flexural vibrations in the interior case are given in [25]. As the orbits
are unstable and Jp is symplectic it is possible to expand the instability denominator
in (14) in the inverse of its leading eigenvalue 1/Λp for each orbit and obtain a so-
called Gutzwiller–Voros resummed zeta function similar to those of two-dimensional
Hamiltonian flows [26]:

FG(z) =
∞

∏
k=0

ζ−1
k , (15)

where

1/ζk(z) = ∏
p

(1− t(k)p ) with t(k)p = αp
eiωTp

√

|Λp|Λk
p

znp . (16)

7. SUMMARY

Detailed studies of Helmholtz scattering determinants at small wave lengths have shown
the influence of closed geometric rays. The case of scattering from voids in two–
dimensional elastodynamics was considered here with a discussion of the analytical
contribution of closed geometric ray splitting orbits to the scattering determinant.
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