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dynamical description of turbulent flows

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(τ) ∈M
a state of physical system at instant in time

deterministic dynamics
map x(τ) = f τ (x0) = representative point time τ later



today’s experiments

example of a representative point
x(τ) ∈M, d =∞
a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry→ 3D velocity field
over the entire pipe1

1Casimir W.H. van Doorne (PhD thesis, Delft 2004)



can visualize 61,506 dimensional state space of turbulent flow
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equilibria of turbulent plane Couette flow,
their unstable manifolds, and
myriad of turbulent videos mapped out as one happy family

for movies, please click through ChaosBook.org/tutorials

http://ChaosBook.org/tutorials


today’s talk’s focus:

nature loves symmetry

problem
physicists like symmetry more than Nature

Rich Kerswell



nature : turbulence in pipe flows

pipe flows : amazing data! amazing numerics!

36
Nature, she don’t care : turbulence breaks all symmetries



symmetry of a dynamical system

a group G is a symmetry of the dynamics if
for every solution f τ (x) ∈M and g ∈ G,

gf τ (x) = f τ (gx) is also a solution

a flow ẋ = v(x) is G-equivariant if

v(x) = g−1 v(g x) , for all g ∈ G .

equations of motion of the same form in all frames



example : SO(2)z ×O(2)θ symmetry of pipe flow
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a fluid state, shifted by a stream-wise translation, azimuthal
rotation gp is a physically equivalent state

b) stream-wise
c) stream-wise, azimuthal
d) azimuthal flip



trajectories, orbits
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(a) x tangent vectors:

v(x) along time flow x(τ)
t1(x), · · · , tN(x) group tangents

(b) trajectory x(τ)

(c) group orbits g x(τ)

(d) wurst g x(τ)



foliation by group orbits

group orbits
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group orbitMx of x is the set
of all group actions

Mx = {g x | g ∈ G}



foliation by group orbits

group orbits
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any point on the manifold
Mx(τ) is equivalent to any other



foliation by group orbits

group orbits
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action of a symmetry group
foliates the state spaceM into
a union of group orbitsMx

each group orbitMx is an
equivalence class



the goal
replace each group orbit by a unique point in a
lower-dimensional

symmetry reduced state spaceM/G



symmetry reduction

full state space
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reduced state space

M̂ x̂(0)

x̂(τ)



Cartan moving frame
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free to redefine the flow any time instant by transformation to a
frame moving along symmetry directions



relativity for cyclists

method of slices

cut group orbits by a hypersurface (not a Poincaré section),
each group orbit of symmetry-equivalent points represented by
the single point

cut how?

geometers’choice
chose the frames so that distances are minimized



cartography for geometers

use a yardstick!

then cover the reduced manifold with a set of flat charts

yes, we can do this with 106-dimensional flat sheets of ‘paper’



motivational : 2-chart sections atlas for Rössler flow

templates: 2 equilibria

x̂ ′(−)

x̂ ′(+)

top chart

x̂ ′(+)

bottom chart

x̂ ′(−)

2-chart atlas

x̂ ′(−)

x̂ ′(+)

red : borders blue : ridges



inspiration : pattern recognition

you are observing turbulence in a pipe flow, or your defibrillator
has a mesh of sensors measuring electrical currents that cross
your heart, and

you have a precomputed pattern, and are sifting through the
data set of observed patterns for something like it

here you see a pattern, and there you see a pattern that seems
much like the first one

how ‘much like the first one?’



distance

assume that G is a subgroup of the group of orthogonal
transformations O(d), and measure distance |x |2 = 〈x |x〉 in
terms of the Euclidean inner product

numerical fluids: PDE discretization independent L2 distance is

energy norm

‖u− v‖2 = 〈u− v|u− v〉 =
1
V

∫
Ω

dx (u− v) · (u− v)

experimental fluid:

image discretization independent distance
is pixel-to-pixel distance, or ???



take the first pattern

‘template’ or ‘reference state’

a point x̂ ′ in the state spaceM

and use the symmetries of the flow to

slide and rotate the ‘template’

act with elements of the symmetry group G on x̂ ′ → g(φ) x̂ ′

until it overlies the second pattern (a point x in the state space)

distance between the two patterns

|x − g(φ) x̂ ′| = |x̂ − x̂ ′|

is minimized



idea: the closest match

template: Sophus Lie

(1) rotate man with a
beard x
traces out the group orbit
Mx

(2) replace the group
orbit by the closest
match x̂ to the template
pattern x̂ ′

the closest matches x̂ lie
in the (d−N) symmetry
reduced state space M̂



idea: the closest match

extremal condition for nearest
distance from template x̂ ′ to
group orbit of x

Mx

t ′x̂ ′

x̂

minimal distance
is a solution to the extremum conditions

∂

∂φa
|x − g(φ) x̂ ′|2

but what is
∂

∂φa
g(φ) ?



infinitesimal transformations

g ' 1 + φ · T , |δφ| � 1

Ta are generators of infinitesimal transformations
here Ta are [d×d ] antisymmetric matrices



now have the ‘slice condition’

flow field at the state space
point x induced by the action of
the group is given by the set of
N tangent fields

ta(x)i = (Ta)ijxj

group tangent fields

v

x(τ)

t1

t2
Mx

x

slice condition
∂

∂φa
|x − g(φ) x̂ ′|2 = 2 〈x̂ |t ′a〉 = 0 , t ′a = Tax̂ ′



flow within the slice

slice hyperplane : normal to template x̂ ′ group tangent t ′

reduced state space M̂ flow v̂(x̂)

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) , x̂ ∈ M̂
φ̇a(x̂) = 〈v(x̂)T |t ′a〉/〈t(x̂)T |t ′〉 .

v : velocity, full space
v̂ : velocity component in slice
φ̇ · t : velocity component normal to slice
φ̇ : reconstruction equation for the group phases



flow within the slice

M̂
g x̂ ′ x̂ ′

t ′

x(τ)
x̂(τ)

g x(τ)

full-space trajectory x(τ)
rotated into the reduced state space x̂(τ) = g(φ)−1x(τ)
by appropriate moving frame angles {φ(τ)}



relative periodic orbit

a relative periodic orbit p is an orbit in state spaceM which
exactly recurs

xp(τ) = gpxp(τ + Tp) , xp(τ) ∈Mp

for a fixed relative period Tp and a fixed group action gp ∈ G
that “rotates" the endpoint xp(Tp) back into the initial point
xp(0).



relative periodic orbit→ periodic orbit

M̂

x(0)

x̂(τ)

x(τ)

x(Tp)
x̂(0)

full state space relative periodic orbit x(τ)
is rotated into the reduced state space periodic orbit



however : slice charts are local

a slice hyperplane cuts every group orbit at least twice

wurst, sliced

p̂

p̂

x̂(0) x(0)

x(Tp)

an SO(2) relative periodic orbit
is topologically a torus : the
cuts are periodic orbit images
of the same relative periodic
orbit, the good close one, and
the rest bad ones



nature couples many Fourier modes

group orbits of highly nonlinear states are highly contorted:
many extrema, multiple sections by a slice



example : group orbit of a pipe flow turbulent state

x̂ ′ is Kerswell et al N2_M1 relative equilibrium
( Re = 2400, stubby L = 2.5D pipe)

SO(2)× SO(2) symmetry
⇒ group orbit is 2-torus

a turbulent state

distance extremum
condition

∂

∂φa
|x − g(φ) x̂ ′|2 = 0

group orbits of highly nonlinear states are highly contorted:
many extrema, multiple sections by a slice



slice charts are local

reduced state space M̂ flow v̂(x̂)

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) , x̂ ∈ M̂
φ̇a(x̂) = (v(x̂)T t ′a)/(t(x̂)T · t ′) .

glitches!
group tangent of a generic trajectory orthogonal to the slice
tangent at a sequence of instants τk

t(τk )T · t ′ = 0



slice is good up to the chart border

M̂

gx̂ ′
x̂ ′

t ′

M̂

x̂ ′

t ′

gx̂ ′

SO(2) : two hyperplanes to a given template x̂ ′; the slice M̂,
and chart border x̂∗ ∈ S. Beyond :
group orbits pierce in the wrong direction
(a) a circle group orbit crosses the slice hyperplane twice.
(b) a group orbit for a combination of m = 1 and m = 2 Fourier
modes resembles a baseball seam, and can be sliced 4 times,
out of which only the point closest to the template is in the slice



charting the state space

for turbulent/chaotic systems a set of charts is needed to
capture the dynamics

templates should be representative of the dynamically
dominant patterns seen in the solutions of nonlinear PDEs

construct a global atlas of the dimensionally reduced state
space M̂ by deploying linear slices M̂(j) across neighborhoods
of the qualitatively most important patterns x̂ ′(j)



2-chart atlas

x̂ ′(1)

t ′(1)

x ′(2) t ′(1)

x̂ ′(1)

x̂ ′(2)

t ′(2)

x ′(2)

M̂(1)

templates x̂ ′(1), x ′(2), with group orbits. Start with the template
x̂ ′(1). All group orbits traverse its (d−1)-dimensional slice
hyperplane, including the group orbit of the second template
x ′(2). Replace the second template by its closest group-orbit
point x̂ ′(2), i.e., the point in slice M̂(1).



2-chart atlas

x̂ ′(1)

x̂ ′(2)

x̂(0)

x̂(τ)

atlas : set of
(d−1)-dimensional charts

M̂(1) M̂(2)

x̂(0)
x̂(τ)x̂ ′(2)

x̂ ′(1)

2 templates reduced to the closest points viewed from either
group orbit

tangent vectors have different orientations :
2 slice hyperplanes M̂(1), M̂(2)

intersect in the ridge, a hyperplane of dimension (d−2)
each chart (page of the atlas) extends only as far as this ridge
if the templates are sufficiently close, the chart border of each
slice (red region) is beyond this ridge



x̂(0)

x̂(τ)

M̂ (2)

M̂
(1)

x̂2

x̂1

the two charts drawn as two (d−1)-dimensional slabs

shaded plane : the ridge, their (d−2)-dimensional intersection



rotation into a slice is not an average
over 3D pipe azimuthal angle

it is the full snapshot of the flow embedded in the

∞-dimensional state space

NO information is lost by symmetry reduction
not modeling by a few degrees of freedom
no dimensional reduction



today’s talk’s focus :
if you have a symmetry, reduce it!

your quandry
mhm - seems this would require extra thinking
what’s the payoff?



example : dynamics simplified

complex Lorenz equations


ẋ1
ẋ2
ẏ1
ẏ2
ż

 =


−σx1 + σy1
−σx2 + σy2

(ρ1 − z)x1 − ρ2x2 − y1 − ey2
ρ2x1 + (ρ1 − z)x2 + ey1 − y2

−bz + x1y1 + x2y2


ρ1 = 28, ρ2 = 0, b = 8/3, σ = 10, e = 1/10

A typical {x1, x2, z} trajectory
superimposed: a trajectory
whose initial point is close to the
relative equilibrium Q1

attractor



example : dynamics confused

what to do?
it’s a mess

the goal
reduce this messy strange attractor to
something simple

attractor



example : dynamics symplified

what to do?
it’s a mess

the goal
reduce this messy strange attractor to
something simple

symmetry reduced
state space

amazing!



SO(2)z ×O(2)θ relative periodic orbits of pipe flow

(a)
z

θ
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θ

(c)
z

θ

(d)
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relative periodic orbit : recurs at time Tp, shifted by a
streamwise translation, azimuthal rotation gp

b) stream-wise recurrent
c) stream-wise, azimuthal recurrent
d) azimuthal flip recurrent



example : pipe flow relative periodic orbit

3 repeats, full space reduced space



triumph : all pipe flow solution in one happy family

example : relative periodic orbit in turbulent pipe flow
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first relative periodic orbits embedded in turbulence for a pipe
flow!



summary

symmetry reduction achieved!
families of solutions are mapped to a single solution

relative equilibria become equilibria
relative periodic orbits become periodic orbits

conclusion
symmetry reduction by method of slices:
efficient, allows exploration of high-dimensional flows
hitherto unthinkable

to be done
construct Poincaré sections
use the information quantitatively (periodic orbit theory)



take-home message

if you have a symmetry

use it!

without symmetry reduction, no understanding of fluid flows,
nonlinear field theories possible



amazing theory! amazing numerics! hope...



Das Gebot

what I teach you now you must do



continuous symmetry induces drifts

x1 x2
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01

generic chaotic trajectory (blue)
E0 equilibrium
E0 unstable manifold - a cone of such (green)
Q1 relative equilibrium (red)
Q1 unstable manifold, one for each point on Q1 (brown)
relative periodic orbit 01 (purple)



example : SO(2) invariance

complex Lorenz equations
ẋ1
ẋ2
ẏ1
ẏ2
ż

 =


−σx1 + σy1
−σx2 + σy2

(ρ1 − z)x1 − ρ2x2 − y1 − ey2
ρ2x1 + (ρ1 − z)x2 + ey1 − y2

−bz + x1y1 + x2y2



invariant under a SO(2) rotation by finite angle φ:

g(φ) =


cosφ sinφ 0 0 0
− sinφ cosφ 0 0 0

0 0 cosφ sinφ 0
0 0 − sinφ cosφ 0
0 0 0 0 1





example : SO(2) invariance of complex Lorenz equations

complex Lorenz equations equations are invariant under
SO(2) rotation by finite angle φ:

g(φ) =


cosφ sinφ 0 0 0
− sinφ cosφ 0 0 0

0 0 cosφ sinφ 0
0 0 − sinφ cosφ 0
0 0 0 0 1


SO(2) has one generator of infinitesimal rotations

T =


0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0





die Lösung : complex Lorenz flow reduced

full state space reduced state space

x2

y2

z

W
�
�0�
u

01

Q1

ergodic trajectory was a mess, now the topology is reveled
relative periodic orbit 01 now a periodic orbit



slice charts are local

portrait of complex Lorenz flow in a single slice hyperplane
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any choice of the slice x̂ ′ exhibit flow discontinuities



relativity for pedestrians

in full state space

(a)

v1v2

v3

a relative periodic orbit of the Kuramoto-Sivashinsky flow, 128d
state space traced for four periods Tp, projected on

full state space coordinate frame {v1, v2, v3}; a mess



relativity for pedestrians

in slice

(b)

v�1
v�2

v�3

a relative periodic orbit of the Kuramoto-Sivashinsky flow
projected on

a slice {ṽ1, ṽ2, ṽ3} frame



how relativists do it : connections or ‘gauge fixing’

2-continuous parameter symmetry :
each state space point x owns 3 tangent vectors

local tangent space

v(x) along the time flow

t(1)(x), t(2)(x) along infinitesimal
symmetry shifts

Kim Jong Il gauge

follow flow v̂(x) normal to group tangent directions



method of “connections”

never stray along the group directions, always move
orthogonally to the group orbit

North Korean gauge :
slacking along non-shape-changing directions is forbidden



sophisticates do it : Faddeev-Popov gauge fixing

the equivalence principle
integrate over classes of gauge equivalent fields
instead of all fields Aa

µ

the representative in the class of equivalent fields is fixed by a
gauge condition,

∂µAa
µ = 0 ,

a plane intersected by the gauge orbits

Aµ = Aa
µta → AΩ

µ = ΩAµΩ−1 + ∂µΩΩ−1

abelian orbits intersect the plane at the same angle
non-abelian intersection angle depends on the field



Zutiefst Nutzlos

elegant, deep and useless : no symmetry reduction



Die Faulheit

drifting is energetically cheap
flows are lazy, rather than doing work, solutions drift along
non-shape-changing symmetry directions



make Phil Morrison happy

call this

Cartan derivative

g−1ġ x = e−φ·T
d
d τ

eφ·Tx = φ̇ · t(x)
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