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Symmetry reduction in high dimensions, illustrated in a turbulent pipe
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Equilibrium solutions are believed to structure the pathways for ergodic trajectories in a dynamical system.
However, equilibria are atypical for systems with continuous symmetries, i.e., for systems with homogeneous
spatial dimensions, whereas relative equilibria (traveling waves) are generic. In order to visualize the unstable
manifolds of such solutions, a practical symmetry reduction method is required that converts relative equilibria
into equilibria, and relative periodic orbits into periodic orbits. In this article we extend the fixed Fourier mode
slice approach, previously applied one-dimensional PDEs, to a spatially three-dimensional fluid flow, and show
that it is substantially more effective than our previous approach to slicing. Application of this method to a minimal
flow unit pipe leads to the discovery of many relative periodic orbits that appear to fill out the turbulent regions
of state space. We further demonstrate the value of this approach to symmetry reduction through projections
(projections only possible in the symmetry-reduced space) that reveal the interrelations between these relative
periodic orbits and the ways in which they shape the geometry of the turbulent attractor.
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Chaotic dynamics can be interpreted as a trajectory in
state space, where each coordinate corresponds to a degree of
freedom. For higher-dimensional systems it can be difficult to
predict which coordinate choices will provide the most instruc-
tive projections, given that plots of these trajectories are limited
to displaying two or three dimensions at a time. To avoid
clutter in the projection caused by families of orbits related by
translations or reflections, symmetry-invariant measures such
as spatial averages are often favored. In practice, however,
there are only so many quantities that may be averaged and,
in addition, information held in the spatial structure is wiped
out in the averaging process. Often such averaging results in a
largely uninformative projection of the dynamics.

The study of turbulence is one example where substantial
progress has recently been made by viewing the flow as a
dynamical system, but now a more informative means of
projection is required to comprehend the way in which the
unstable manifolds of relative equilibria and other invariant
solutions shape the dynamics. These invariant solutions cor-
respond to recurrent but unstable motions [1] that share some
characteristics with fully turbulent flows. Experiments [1,2]
and simulations [3,4] have identified transient visits to spa-
tiotemporal patterns that mimic traveling wave solutions.
Certain low-dissipation traveling waves of the Navier-Stokes
equations have been shown to be important in the transition to
turbulence, where they lie in the laminar-turbulent boundary,
separating initial conditions that ultimately relaminarize from
those that develop into turbulence [5]. Spatiotemporal flow
patterns called ‘puffs’ and ‘slugs’ are observed during the
evolution to turbulence. Recently, spatially localized solutions
representative of puffs have been discovered [6] and shown
to be linked to spatially periodic traveling waves in minimal
domains [7]. As traveling waves are steady in their respective
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co-moving frames, they are relative equilibria, solutions that
do not exhibit temporal shape-changing dynamics. Their un-
stable manifolds, however, mold the surrounding state space,
carving pathways for relative periodic orbits, invariant orbits
embedded in turbulence whose temporal evolution captures
dynamics of ergodic trajectories that shadow them. A detailed
understanding of these recurrent motions is crucial if one is to
systematically describe the repertoire of all turbulent motions.
With the removal of spatial translations, which obscure visu-
alizations of the dynamics, a far greater number of projections
of chaotic trajectories is possible. In this article, we show that
visualizations of the symmetry reduced dynamics can help us
understand relationships between distinct families of periodic
orbits and traveling wave solutions, which in turn lends support
to the dynamical systems interpretation that relative periodic
orbits form the backbone of turbulence in pipe.

Our approach is dynamical: writing the Navier-Stokes
equations as u̇ = v(u), the fluid state u at a particular moment
in time is represented by a single point in state space M [8];
turbulent flow is represented by an ergodic trajectory that
wanders between accessible states in M [9]. Essential to
this analysis is that any two physically equivalent states
be identified as a single state: a symmetry-reduced state
space M̂ = M/G is formed by contracting the volume of
state space representing states that are identical except for
a symmetry transformation to a single point û. Only after a
symmetry reduction are the relationships between physically
distinct states revealed. In this article, symmetry reduction is
implemented with an extension of the ‘first Fourier mode slice’
method [10], a variant of the method of slices [11]. The method
of slices separates coordinates into phases along symmetry
directions (‘fibers’, ‘group orbits’ that parametrize families
of physically equivalent dynamical states) from the remaining
coordinates of the symmetry-reduced state spaceM̂. The latter
capture the dynamical degrees of freedom—those associated
with structural changes of the flow.

The Navier-Stokes equations are invariant under trans-
lations, rotations, and inversions about the origin, and the
application of any of these symmetry operations to a state u(x)
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FIG. 1. Schematic of symmetry reduction by the method of slices.
The blue point is the template x̂ ′. Group orbits are marked by dotted
curves, so that all pink points are equivalent to x̂ up to a shift. The
relative periodic orbit (green) in the d-dimensional full state space
M closes into a periodic orbit (blue) in the slice M̂ = M/G, a
(d−1)-dimensional slab transverse to the template group tangent
t ′. A typical group orbit crosses the slice hyperplane transversally,
with a non-orthogonal group tangent t = t(x̂). A slice hyperplane is
almost never a global slice; it is valid up to the slice border, a (d−2)-
dimensional hypersurface (red) of points x̂∗ whose group orbits graze
the slice, i.e., points whose tangents t∗ = t(x̂∗) lie in M̂. Beyond the
slice border (dashed ‘chunk’), group orbits do not cross the slice
hyperplane locally.

results in another dynamically equivalent state. The boundary
conditions for pipe flow restrict symmetries to translations
along the axial and azimuthal directions, and reflections in the
azimuthal direction. In the computations presented here,axial
periodicity is assumed so that the symmetry group of the
system is O(2)θ × SO(2)z. In order to illustrate the key ideas,
we constrain azimuthal shifts, and focus on the family of
streamwise translational shifts {g} parametrized by a single
continuous phase parameter �,

(g(�) u)(z) = u(z − �) .

If periodic axial symmetry is assumed, application of g gives
a closed curve family of dynamically equivalent states—
topologically a circle, called a group orbit—in state space
M. Were azimuthal (‘spanwise’) shifts included, equivalent
states would lie on a two-torus.

Symmetry reduction simplifies the state space by reducing
each set of dynamically equivalent states to a unique point
û. The method of slices achieves this with the aid of a
fixed template state u′ (see Fig. 1). A shift is applied so
that the symmetry-reduced state û = g(−�)u lies within
the hyperplane orthogonal to t ′ = lim�→0 (g(�)u′ − u′)/�, the
tangent to the template u′ in the direction of the shift. For a
time-dependent flow, one determines � = �(t) by choosing û
to be the point on the group orbit of u closest to the template,
〈û − u′|t ′〉 = 0 in a given norm. In this work we use the L2 or
‘energy’ norm E = 〈u|u〉/2 = ∫

u2/2 dV .
As traveling waves drift downstream without changing their

spatial structure, the family of traveling wave states u(t) is
dynamically equivalent [lies on the same group orbit g(�) u]
and may be represented by a single state ûq . Thus all traveling
waves are simultaneously reduced to equilibria in the slice,
irrespective of their individual phase velocities, a powerful

property of the method of slices. Furthermore, all relative
periodic orbits p, flow patterns each of which recurs after
a different time period Tp, shifted downstream by a different
�p, close into periodic orbits in the slice hyperplane.

Dynamics within the slice is given by

˙̂u = v(û) − �̇(û) t(û) , (1)

�̇(û) = 〈v(û)|t ′〉 / 〈t(û)|t ′〉 , (2)

where the expression for the phase velocity �̇ is known as the
reconstruction equation [12]. No dynamical information is
lost and we may return to the full space by integrating Eq. (2).
In contrast to a Poincaré section, where trajectories pierce
the section hyperplane, time evolution traces out a continuous
trajectory within the slice. In principle, the choice of template
is arbitrary; in practice, some templates are preferable to
others. While one is concerned with the dynamics within the
slice û(t), in practice it may be simpler to record �(t) and to
post-process, or to process on the side, visualizations within
the slice—slicing is much cheaper to perform than gathering
u(t) from simulation or laboratory experiment.

The enduring difficulty with symmetry reduction is in
determining a unique shift � for a given state u, while avoiding
discontinuities in �(t) that arise when multiple ‘best fit’
candidates û = g(−�)u to the template u′ occur. A singularity
arises if the group orbit gu grazes the slice hyperplane (Fig. 1).
At the instant this occurs, the tangents to the fluid state û and
the template u′ are orthogonal, and there is a division by zero in
the reconstruction equation (2). In Ref. [13] it was shown that
the hyperplanes defined by multiple templates could be used
to tile a slice, but while switching may permit the symmetry
reduction of longer trajectories, it is often not possible to
both switch templates before a slice border is reached and
to simultaneously maintain continuity in �. Furthermore, it
is uncertain when to switch back to the first template, in
order to produce a unique symmetry-reduced state. Our aim
in this article is to avoid such difficulties through the use of
a single template with distant slice borders. The approach of
Budanur et al. [10] for the case of one translational spatial
dimension fixes the phase of a single Fourier coefficient. This
‘Fourier’ slice is a special case within the slicing framework,
with the effect of extreme smoothing of the group orbit. Here
the approach is extended to a spatially three-dimensional case,
that of turbulent pipe flow.

For the case of a scalar field defined on one spatial
dimension [10] there is a unique Fourier coefficient ap-
propriate for determining the symmetry reduction. Here,
for the three-dimensional turbulent flow, there are three
components of velocity with a spatial discretization for each,
and it is not obvious which coefficients to fix in order to
define an effective symmetry-reducing slice. In this paper
we construct a template u′(r,θ,z) = uc cos(αz) + us sin(αz),
where uc(r,θ ) = ∫ L

0 ũ cos(αz) dz, us(r,θ ) = ∫ L

0 ũ sin(αz) dz,
and L = 2π/α, for some chosen state ũ. This corresponds
to (all of) the first coefficients in the streamwise Fourier
expansion for ũ. Arbitrary states u may then be projected onto
a plane via a1 = 〈u|u′〉 and a2 = 〈u | g(L/4) u′〉, respectively
(see Fig. 2). In this projection, the group orbit gu of any state
is a circle centered on the origin, and the polar angle θ for the
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FIG. 2. (Top left) Schematic of the first Fourier mode slice,
with a1, a2 defined in the text. In this projection the slice border
is a zero-measure ‘point’ at the origin. (Bottom) For a generic
ergodic trajectory the phase velocity c = �̇(t) appears to encounter
singularities whenever it approaches the slice border, which, however,
is never reached [10]. Closer inspection reveals a rapid but continuous
change in the shift (top right) by ≈L/2 in the �(t) − ct Galilean frame,
moving (for our parameter values) at c = 1.1092. These apparent
jumps are well resolved: each ‘+’ corresponds to 10 time integration
steps.

point (a1,a2) corresponds to a unique shift � = θ (L/2π ). The
symmetry reduced state û = g(−l) u is the closest point on its
group orbit to the template u′. The slice is projected onto the
positive a1-axis in this projection.

Note that the approach is independent of discretization,
and does not actually require a Fourier decomposition. Note
also that the inner-product gathers information from the full
velocity field.

As group orbits are circles crossing perpendicular to the
a1-axis in this projection, 〈t(û)|t ′〉 in Eq. (2) can only be zero
if the circle shrinks to a point at the origin. This requires that
both inner products 〈u|u′〉 and 〈u | g(L/4) u′〉 are zero at the
same time, which has vanishing probability. While we thus
avoid the slice border, there is a rapid change in θ by ≈π (in
� units by ≈L/2) whenever the trajectory (a1,a2)(t) sweeps
past the origin, see the inset to Fig. 2. Rapid phase shifts
notwithstanding, this choice of template has made possible
the discovery and analysis of the many relative periodic orbits
discussed below.

‘Minimal flow units’ [15], which capture much of the
statistical properties of turbulence, have been invaluable in
analyzing fundamental self-sustaining processes [16]. Here,
the fixed-flux Reynolds number for all calculations is Re =
DU/ν = 2500, where lengths are non-dimensionalized by
diameter D and velocities are normalized by the mean axial
speed U . The minimal flow unit is in the m = 4 rotational
subspace, such that (r,θ,z) ∈ [0, 1

2 ] × [0, π
2 ] × [0, π

1.7 ]. The size
of the domain is more usefully measured in terms of wall units,
ν/uτ , where u2

τ = −ν(∂ruz)|wall, which allows comparison
with flow units used in other geometries. In these units, the
domain is of size 	+ ≈ [100,160,370] in the wall-normal,
spanwise and streamwise dimensions, respectively. Our flow
unit compares favorably with the minimal flow units for
channel flow [15] 	+ ≈ [ >40,100,250–350] and Couette
flow [16] 	+ ≈ [68,128,190]. Recurrent flows have been

TABLE I. A subset of traveling waves and relative periodic orbits
of the lowest Kaplan-Yorke dimension [14], out of, respectively, 10
and 29 extracted so far and plotted in Fig. 4. traveling waves are
labeled by their dissipation rate, and relative periodic orbits are
labeled by their period T. Listed are mean dissipation D, mean
down-stream phase velocity c, the number of unstable eigendirections
(two per each complex pair), Kaplan-Yorke dimension DKY , the real
part of the largest stability eigenvalue or Floquet exponent μ(max), and
either the corresponding imaginary part ω(max) for traveling waves, or
the phase θ of the complex Floquet multiplier for relative periodic
orbits, or its sign, if real: −1 indicates inverse hyperbolic.

D c # DKY μ(max) ω or θ

TWN4L/1.38 1.380 1.238 3 6.97 0.1809 0
TW2.03 2.039 1.091 7 15.21 0.1159 0
TW1.97 1.968 1.104 9 20.01 0.1549 0.259
TW2.04 2.041 1.095 8 20.04 0.1608 0
TWN4U/3.28 3.279 1.051 30 73.67 0.9932 3.136
RPO6.66 1.806 1.122 3 7.99 0.0535 1.690
RPO27.30 1.815 1.127 4 8.98 0.0678 0.961
RPO13.19 1.839 1.119 5 9.68 0.0581 2.038
RPO20.43 1.809 1.130 5 11.03 0.0771 +1
RPO4.95 2.015 1.090 3 11.54 0.1509 1.643
RPO7.72 1.708 1.141 5 11.62 0.0983 +1
RPO15.46 1.781 1.027 7 12.69 0.1162 +1
RPO9.74 2.050 1.088 7 12.87 0.1873 −1
RPO23.36 1.980 1.113 6 13.37 0.1011 1.251
RPO7.42 1.838 1.111 6 13.89 0.1195 0.388
RPO17.46 1.917 1.122 6 14.67 0.0841 0.196
RPO14.05 1.902 1.109 7 14.75 0.1403 −1
ergodic 1.956 1.109

identified in Ref. [8] for a box of size 	+ ≈ [68,86,190]. Our
domain is sufficiently large to reproduce Reτ = (D/2)uτ/ν =
100 ± 1 to within 10% of its value in the infinite domain. The
mean wall friction for turbulent flow is approximately 100%
greater than that for laminar flow at this flow rate.

A Newton-Krylov scheme is used to search for relative
periodic orbits. Initial guesses are taken from near recurrences
of ergodic trajectories [8] within the symmetry-reduced state
space. This preferentially identifies structures embedded in
regions of high natural measure (regions most frequented
by ergodic trajectories), with isolated traveling waves and
relative periodic orbits that sit in the less frequented reaches
of state space less likely to be found. Our searches have so
far identified ten traveling waves and 32 relative periodic
orbits. An abbreviated summary of data is given in Table I;
the complete data set is available online in Ref. [17],
along with the open source code used to calculate these
orbits.

Visualizations of high-dimensional state space trajectories
are necessarily projections onto two or three dimensions. A
common choice is to monitor the flow in terms of the rate
of energy dissipation D = ρν

∫
u · ∇2u dV and the external

input power required to maintain constant flux I = Q�p,
where Q = ∫

u · d S is the flux at any cross section and �p

and is the pressure drop over the length of the pipe. As the
time-averages of I and D are necessarily equal, traveling
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WILLIS, SHORT, AND CVITANOVIĆ PHYSICAL REVIEW E 93, 022204 (2016)

FIG. 3. Projection of 32 relative periodic orbits and traveling
waves using symmetry-invariant coordinates, I/Ilam, D/Dlam, where
Ilam = Dlam are energy rates for the laminar flow. All discovered
traveling waves are included: (B) TW2.04, (C) TW2.03, (D) TW1.97, (G)
TW1.93, (H) TW1.89, (F) TW1.85, and (J) TW1.78, except for TWN4L/1.38,
TWN4U/3.28, and TW1.57, which lie far outside the ergodic cloud (grey
dots).

waves and orbits, which may be well separated in state space,
are contracted onto or near the I = D line, a drawback of
the two-dimensional (I,D) projection. Figure 3 shows that
the orbits appear to overlap with the ergodic region, but
reveals little of the relationships between solutions; we use D

values only to distinguish traveling waves solutions listed in
Table I.

In the symmetry-reduced state space it is possible to
construct coordinates that are intrinsic to the flow itself,
using spatial information that would otherwise be smeared
out by translational shifts. To obtain a global portrait of the
turbulent set, Fig. 4, we project solutions onto the three largest
principal components êi obtained from a PCA of N = 2000
independent û′

i = ûi − ¯̂u, where ¯̂u is the mean of the data,
using the SVD method (on average the square of the projection
pi = 〈û′(t)|êi〉 equals the ith singular value of the correlation
matrix Rij = 1

N−1 〈û′
i |û′

j 〉).
The lower (upper) branch pair TWN4L/1.38 (TWN4U/3.28)

were obtained by continuation from a smaller ‘minimal flow
unit’ [13]. In Table I and in the (I,D)-projection Fig. 3
the upper branch traveling wave TWN4U/3.28 appears to
be far removed from turbulence, unlikely to exert influ-
ence. The PCA projection of the symmetry-reduced state
space, however, reveals the strong repelling influence of
TWN4U/3.28 whose 30-dimensional unstable manifold acts
as a barrier to the dynamics, cleaving the natural measure
into two ‘clouds’, forcing a trajectory to hover around one
neighborhood until it finds a path to the other, bypassing
TWN4U/3.28. The two ergodic ‘clouds’ are related by the

FIG. 4. Projection of the symmetry-reduced infinite-dimensional
state space onto the first 3 PCA principal axes, computed from the
L2-norm average over the natural measure (the gray ‘cloud’) in the
slice. 32 relative periodic orbits, and a subset of the 7 shortest relative
periodic orbits, together with traveling waves (A) TWN4U/3.28, (B)
TW2.04, (C) TW2.03, (D) TW1.97, (E) TW1.98, (F) TW1.85. While TW1.93

appears to lie in the very center of the (I,D) projection Fig. 3, it is
revealed in this state space projection to lie far from the ergodic cloud,
outside the box plotted, as are (E) TWN4L/1.38 and (F) TW1.85. Due to
a ‘rotate-and-reflect’ symmetry, each solution appears twice, with the
exception of (A) TWN4U/3.28 (and the far-away TWN4L/1.38), which
belong to the ‘rotate-and-reflect’ invariant subspace. Our relative
periodic orbits capture the regions of high natural measure very well.
The symmetry-invariant subspace has a strong repulsive influence,
separating the natural measure into two weakly communicating
regions. The inset shows the ergodic cloud from another perspective.

‘rotate-and-reflect’ symmetry (π/4 rotation), under which
TWN4U/3.28 is invariant (for symmetries of pipe flow see
Ref. [13]).

The symmetry-reduced state space projections reveal sets
of relative periodic orbits with qualitatively similar dynamics.
The short-period orbits are well spread over the dense regions
of natural measure, and the long relative periodic orbits in
Fig. 4 appear to ‘shadow’ short orbits (black orbits), but also
exhibit extended excursions that fill out state space. While sets
of relative periodic orbits often share comparable dissipation
rates and Floquet exponents (Table I and Ref. [17] data sets), it
is the state space projections that are essential to establishing
genuine relationships.

In summary, we have shown that symmetry reduction can
be applied to a dynamical system of very high dimensions, here
turbulent pipe flow. An appropriately constructed template
renders the method of slices substantially more effective for
projecting the dynamics and for Newton searches for invariant
solutions. The method is general and can be applied to any
dynamical system with continuous translational or rotational
symmetry. Projections of the symmetry-reduced space reveal
fundamental properties of the dynamics not evident prior to
symmetry reduction. In the application at hand, to a turbulent
pipe flow, the method has enabled us to identify for the
first time a large set of relative periodic orbits embedded
in turbulence, and to demonstrate that the key invariant
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solutions strongly influence turbulent dynamics. To follow this
demonstration of the power of symmetry reduction, work is
now underway to determine the relationship between relative
periodic orbits [18]. Analysis of their unstable manifolds are
expected to reveal the intimate links between traveling waves
and relative periodic orbits, allowing for explicit construction
of the invariant skeleton that gives shape to the strange attractor
explored by turbulence.
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